
P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
67
07
25
.5
89
96
71
0/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Scale-Dependent Coherence of Terrestrial Vertebrate Biodiversity

with Environment

Conor O’Malley1, Gareth Roberts1, Philip Mannion2, Jan Hackel3, and Yanghua Wang1

1Imperial College London
2University College London Department of Earth Sciences
3Royal Botanic Gardens Kew

March 07, 2024

Abstract

Disentangling contributions from environmental variables is crucial for explaining global biodiversity patterns. We use wavelet

power spectra to separate wavelength-dependent trends across Earth’s surface. Spectra reveal scale- and location-dependent

coherence between species richness and topography (E), annual precipitation (Pn), temperature (Tm) and temperature range

(ΔΤ). >97% of richness of carnivorans, bats, songbirds, hummingbirds and amphibians resides at wavelengths >˜103 km.

30-69% is generated at scales >˜104 km. At these scales, richness across the Americas is anti-correlated with E and ΔΤ , and

positively correlated with Pn and Tm. Carnivoran richness is incoherent with ΔΤ , suggesting insensitivity to temperature

seasonality. Conversely, amphibian richness is anti-correlated with ΔΤ at large scales. At scales <˜103 km, richness is highest

within the tropics. Terrestrial plateaux exhibit coherence between carnivoran richness and E at scales ˜103 km, reflecting

contributions of orogeny/epeirogeny to biodiversity. Similar findings result from transects across other continents. Scale-

dependent sensitivities of vertebrate populations to climate are revealed.
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Abstract28

Disentangling contributions from environmental variables is crucial for explaining global biodiversity29

patterns. We use wavelet power spectra to separate wavelength-dependent trends across Earth’s sur-30

face. Spectra reveal scale- and location-dependent coherence between species richness and topography31

(E ), annual precipitation (Pn), temperature (Tm) and temperature range (∆T ). > 97% of richness of32

carnivorans, bats, songbirds, hummingbirds and amphibians resides at wavelengths & 103 km. 30–69%33

is generated at scales & 104 km. At these scales, richness across the Americas is anti-correlated with34

E and ∆T, and positively correlated with Pn and Tm. Carnivoran richness is incoherent with ∆T,35

suggesting insensitivity to temperature seasonality. Conversely, amphibian richness is anti-correlated36

with ∆T at large scales. At scales . 103 km, richness is highest within the tropics. Terrestrial plat-37

eaux exhibit coherence between carnivoran richness and E at scales ∼ 103 km, reflecting contributions38

of orogeny/epeirogeny to biodiversity. Similar findings result from transects across other continents.39

Scale-dependent sensitivities of vertebrate populations to climate are revealed.40

1 Introduction41

Biological diversity is critical to many basic human needs, including health, food, water and shelter.42

It also plays an important role in moderating physical and chemical processes in natural environments43

(Balmford & Bond, 2005; Barrett et al., 2011; Corenblit et al., 2011; Fei et al., 2014). Quantifying44

links between environment and biodiversity is crucial for understanding the response of ecosystems45

to climatic and physiographic change, and for conservation efforts (Araújo & Rahbek, 2006; Hampe46

& Petit, 2005; Norris et al., 2013). Many extrinsic processes postulated to control biodiversity (e.g.47

climate) are rapidly changing; therefore quantifying the strength of relationships between them is a48

pressing concern (Nogués-Bravo et al., 2018).49

50

Environmental variables and species richness exhibit variance in space across a range of scales.51

However, it is unclear whether coherence between variables is uniform across all scales. As such, de-52

veloping methodologies that can disentangle scale and location from biotic and environmental data to53

identify correlations is crucial. Here, we focus on quantifying coherence between species richness of54

continental vertebrate taxa and elevation, precipitation, temperature, and annual temperature range,55

which are postulated to drive biodiversity (e.g. Antonelli et al., 2018; Rahbek & Graves, 2001). We56

do so by mapping coherence between biotic and environmental signals as a function of scale and loc-57

ation using wavelet spectral analyses. Unlike in spatial regression studies, these analyses inherently58

disentangle scale-dependent effects, and identify strength of correlation between variables at individual59

scales.60
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61

Identifying links between biodiversity and environment has recently become significantly more62

tractable for three reasons. First, global patterns of species richness have been estimated with unpre-63

cedented detail, from horizontal scales as broad as continents, to those as fine as ∼ 10 km in wavelength64

(Jenkins & Joppa, 2009; Jenkins et al., 2013, 2020). Second, values and variance of many environ-65

mental variables postulated to be responsible for determining distributions of species are now available66

globally at even higher resolution (e.g. Karger et al., 2017). Finally, wavelet spectral methods, which67

can identify the locations and scales at which signals (e.g. spatial series of taxa) are generated, as well68

as coherence and phase differences (offsets) between series such as species richness, topography and69

climate, are now established (see Materials and Methods; Grinsted et al., 2004; Torrence & Compo,70

1998). These kinds of analyses are key to understanding how the changing global climate will affect71

the distribution of biodiversity across Earth.72

73

2 Materials and Methods74

2.1 Species Richness Data75

Figure 1a–f shows species richness per 10×10 km cell for all mammals (Mammalia), carnivorans (Car-76

nivora), bats (Chiroptera), songbirds (Passeriformes), hummingbirds (Trochilidae), and amphibians77

(Amphibia). These data reinforce well-known large-scale observations, e.g. the latitudinal diversity78

gradient (LDG), but also contain evidence of significant complexity across scales of interest, here79

wavelengths between 10–104 km (Hillebrand, 2004; Willig et al., 2003). We examine species richness80

trends in this study, since it is the easiest biodiversity metric to calculate, having been done so for a81

wide range of taxa. Here, we focus on terrestrial taxa since terrestrial surface environmental conditions82

are best-mapped, as is terrestrial vertebrate biodiversity. Similar analysis is possible for marine taxa,83

invertebrates, plants etc., and for metrics other than species richness, for example range sizes and84

trophic interactions.85

86

Species richness is here defined as number of species of a given taxon within a 10×10 km square.87

We use the grids compiled by Jenkins et al. (2013), which were generated by combining maps of spe-88

cies distributions, and counting the number of overlapping polygons in a given cell. For birds, the89

species richness data were calculated from breeding ranges compiled by BirdLife International Nature-90

Serve (2011). For amphibians and mammals, the data were based on range maps generated by the91

International Union for Conservation of Nature (2021). A minimum grid spacing of 10 km yields92

a minimum scale for wavelet spectral analysis of ∼ 20 km (see Materials and Methods; Torrence &93
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Compo, 1998). Species richness varies as a function of the spatial range characteristics of a study,94

particularly “grain”, i.e. piece-wise horizontal resolution within a study (Gaston, 2000; Palmer &95

White, 1994; Willig et al., 2003). By using a constant grain (i.e. “focus” or grid spacing) of 10 km,96

challenges associated with comparing results generated using different grains are avoided (Willig et al.,97

2003). Here, scale-dependent trends are calculated as a function of “extent” rather than “grain” sensu98

Palmer & White (1994). Latitudinal terrestrial averages of species richness and environmental data,99

and their wavelet transforms are shown in Supporting Information Figures S25–S29.100

101

Latitudinal transects through terrestrial vertebrate richness data are shown in Figure 2. We focus102

on the Americas, where transects can be generated that encompass almost all of Earth’s latitudinal103

range (Figures 1 & 2: A—A′). Transects through data for Australia (B—B′), Africa (C—C′), Eurasia104

(D—D′) and global averages are shown in Supporting Information (Figures S7–S29). We have ex-105

amined how uncertainties in species richness could contribute to uncertainties in calculated spectra106

and coherence by adding uniformly distributed (white) noise to transects before they are transformed107

into the spectral domain (Supporting Information Figure S5).108

109

2.2 Environmental Variable Data110

Figures 1g–i and 2m, o, q and s show examples of maps and cross sections through elevation and111

climatic data which we use, from the ETOPO1 and CHELSA datasets, respectively (Amante & Eakins,112

2009; Karger et al., 2017).113

114

The global elevation grid ETOPO1 has a horizontal resolution of 1 arc-minute (Figure 1g; Amante115

& Eakins, 2009). It is primarily generated from ∼ 30 m resolution Shuttle Radar Topography Mis-116

sion (SRTM30) data and includes interpolated coastlines and satellite altimetry (Jarvis et al., 2008).117

Amante & Eakins (2009) suggest a mean vertical error of ∼ 10 metres for ETOPO1. Since the ho-118

rizontal resolution of this dataset is approximately 1.8 km, wavelet transformation of topography in119

this case would have a minimum scale of ∼ 3.6 km (see below; Torrence & Compo, 1998). We down-120

sampled the data to a horizontal resolution of 10 km using Generic Mapping Tools to match resolution121

of species richness grids (Wessel et al., 2019).122

123

Annual mean values for climatic data, from 1981–2010, were extracted from the Climatologies at124

High Resolution for the Earth’s Land Surface Areas (CHELSA) dataset (Karger et al., 2017). CHELSA125

was generated by applying corrections to the ERA-Interim climatic reanalysis and has a horizontal126

resolution of up to 30 arc-seconds (Dee et al., 2011). Temperature data were corrected for elevation127
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above sea level and precipitation rates were corrected using wind direction, valley exposition and128

boundary layers. Precipitation rate is weakly dependent on elevation. These values were successfully129

benchmarked against alternative climatology data and models: WorldClim, TRMM , GPCC and GHCN130

(Hijmans et al., 2005; Goddard Earth Sciences Data and Information Services Center, 2017; Lawrimore131

et al., 2011; Schneider et al., 2014). The data were down-sampled to 10 km prior to spectral analyses.132

2.3 Continuous Wavelet Transform133

Spatial series, xn, of species richness or environmental variables were transformed into distance-134

wavenumber space using continuous wavelet transforms (for practical guide, see Torrence & Compo,135

1998). The transform convolves uniformly sampled spatial series with a mother wavelet, ψ. The Morlet136

wavelet with dimensionless frequency ω◦ = 6 is used in this study, although other mother wavelets137

are investigated in Supporting Information Figure S6. Use of different mother wavelets (Morlet, order138

ω◦ = 4, 8; Paul, order m = 2, 4, 6; derivative of Gaussian, order m = 2, 4, 6) does not significantly139

change patterns of mapped power, and distance-averaged power shows similar trends to the results140

presented here. The mother wavelet is scaled and translated along spatial series to reveal variations in141

amplitude as a function of scale, s, and position, xn. Sampling interval δj = 10 km, n = 0, 1 . . . N − 1,142

where N is number of measurements. The wavelet transformation is143

Wn(s) =

N−1∑
n′=0

xnψ
∗
[

(n′ − n)δt

s

]
, (1)

where ∗ denotes the complex conjugate. We use the mlpy Python module to transform the spatial series144

(Albanese et al., 2012), which is based on the methods summarized by Torrence & Compo (1998).145

Spatial series were mirrored across the x (distance) and y (dependent variable) axes to reduce edge146

effects (Roberts et al., 2019). Inverse transforms were generated for each signal to quantify fidelity147

of transformed series. Median difference between input signals and inverse transforms were always148

≤ 0.9%. The distance-averaged power spectrum, which yields similar results to Fourier transformation,149

is given by150

φ(s) =
1

N

N∑
x=0

|Wn(s)|2. (2)

In Figure 3, we plot rectified distance-averaged power φr = φ(s)s−1 after Liu et al. (2007). We151

calculate distance-averaged power within and outside of the tropics, but note that in those calcula-152

tions, power was normalized by the proportion of the transect within/outside of the tropics respect-153

ively. Therefore there is no bias in distance-averaged power if the transect has a greater distance154

within/outside of tropical latitudes. Best-fitting spectral slopes were identified using simple one- and155

two-slope models after Roberts et al. (2019) (see Supporting Information).156
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2.4 Cross Wavelet Power & Wavelet Coherence157

Cross wavelet power is calculated to identify signals in separate spatial series (e.g. amphibian richness158

and precipitation) that have large amplitudes located at the same position in distance-wavenumber159

space. To facilitate comparison, signals are normalized to zero mean and unit variance prior to trans-160

formation. The normalized signals X and Y , are transformed to yield WX and WY . Cross wavelet161

power WXY is calculated such that162

WXY = WXWY ∗ . (3)

Wavelet coherence, R2
n, is calculated to identify parts of signals that are coherent, but not neces-163

sarily of common high amplitude, such that164

R2
n(s) =

|S{s−1WXY
n (s)}|2

S{s−1|WX
n (s)|2} · S{s−1|WY

n (s)|2}
, (4)

where s, n and Wn(s) are as in Equation 1. S is an operator that smooths along distance and scale165

(Grinsted et al., 2004).166

167

Since each of the studied signals broadly exhibits a red noise relationship (autocorrelation) between168

power and wavenumber, there is a chance that sections of transects of different variables could correlate169

by chance, without true interdependence. Therefore, it is important to calculate the coherence between170

each pair of signals, and not simply the cross wavelet power. The 90% significance limit for coherence,171

which was used to mask Figure 3, depends only on scale and not position, and was calculated using172

Monte Carlo methods with the PyCWT Python module (Grinsted et al., 2004; Krieger et al., 2020).173

The minimum bound for coherence per scale, for each transect, was calculated from cross wavelet power174

spectral analysis of 300 random signals, which follow a red noise spectral relationship, generated by the175

same autocorrelation coefficient as the input signals, and having the same length N as the input signals.176

177

The local phase difference (angular offset, 0 ≤ a ≤ 2π) of two signals is given by the complex178

argument of their cross wavelet transform, arg
(
WXY

)
(Grinsted et al., 2004). Figure 3 indicates179

phase difference as arrows measured from horizontal: in-phase, a = 0, B; anti-phase, a = π, C.180

A working example for species richness and elevation, including continuous wavelet transformation,181

cross wavelet power and wavelet coherence calculations, can be found at https://doi.org/10.5281/182

zenodo.XXXXXX.183
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3 Results184

Spectral analyses of American vertebrate species richness and environmental variables are shown in185

Figures 2 and 3. Figure 2 shows that highest spectral power, φ (∝ z2, where z is signal amplitude),186

is concentrated at largest scales for all taxa and environmental variables studied. Dependent on taxo-187

nomic group, from 96% to almost 100% of power resides at wavelengths > 103 km. 29–74% of power188

resides at wavelengths & 104 km. These results reinforce the notion that species richness is dominated189

by long wavelength, latitudinal, variability. A guide to scale-dependence and self-similarity of spatial190

series is the color of spectral noise that they possess. For example, red (Brownian) noise occurs when191

φ ∝ k−2, where k is wavenumber or spatial frequency, proportional to 1/wavelength, indicating self-192

similarity. Pink noise occurs when φ ∝ k−1, and white noise indicates that power is equal across all193

scales, φ ∝ 1.194

195

Species richness tends to have a pink noise spectrum (see Supporting Information for slope fitting).196

Thereby, shorter wavelength features in species richness signals tend to have the lowest amplitudes197

and comprise relatively little (few %) of species richness signal at a particular location. Mammals198

and bats are better characterized by red noise at long wavelengths. This result implies self-similarity199

across scales, and that signal amplitudes decrease even more rapidly with decreasing wavelength than200

for other taxa. At wavelengths & 103 km, species richness power for amphibians is best characterized201

as blue noise, i.e. φ ∝ k1. This trend is not observed along the entire transect, but indicates that short202

wavelength features can be increasingly important contributors to amphibian richness (see Figure 2f).203

A single spectral slope akin to pink noise can adequately fit the amphibian richness spectrum (see204

Supporting Information Figure S1f, p).205

206

To assess the impact of uncertainties for these results, white noise was added to the amphibian207

transect in a systematic set of tests. These tests examined changes in calculated spectra when noise208

with maximum amplitudes of 10%, 50% and 100% of the standard deviation of the original signal’s209

amplitude (in this case = 24 species per pixel) was added to the transect prior to transformation. These210

tests included adding noise at wavelengths . 100, . 1000 and . 10, 000 km (Supporting Information211

Figure S5). As expected, these tests indicated that spectral power is least likely to be well constrained212

at short wavelengths. Nonetheless, these tests indicate that even high amplitude uniformly distributed213

noise does not significantly change the overall spectral characteristics of terrestrial species richness.214

215

Although almost no power is concentrated below wavelengths of ∼ 100 km for any of the taxa216

examined here, there are some parts of some wavelet transforms which show increased power in the217

range ∼ 300–1000 km. This deviation, away from a broadly monotonic decrease in power towards218
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shorter wavelengths, is driven principally by species richness within tropical latitudes, and is especially219

prominent for songbirds, hummingbirds and amphibians (Figure 2h, j, l). Supporting Information220

Figure S3a–f shows that at wavelengths & 1000 km, there is no notable difference between power in221

species richness within or outside the tropics. However, at wavelengths . 1000 km, there is signific-222

antly greater power for regions within the tropics. This trend arises since power spectral slopes remain223

close to −2 at shorter wavelengths outside of the tropics (i.e. red noise; Supporting Information Figure224

S3), before increasing to be closer to −1 (i.e. pink noise). We suggest that these results are consistent225

with the concept that topography in tropical regions can generate higher species richness towards the226

equator via the increased effectiveness of relief at isolating species (Janzen, 1967). We find the effect227

has a greatest impact on species richness power of hummingbirds and amphibians; the impact on bats228

and songbirds richness appears to be more modest. Tropical increases in species richness of carnivor-229

ans, and mammals more generally, are much more subdued (Supporting Information Figure S3).230

231

Elevation transects exhibit red and pink noise spectral characteristics at wavelengths & 103 km and232

. 103 km, respectively, which we note is similar to distance-averaged power from wavelet transforms233

of longitudinal river profiles and other topographic transects (Supporting Information Figures S1g,234

S1q, S2g, S2q; Roberts et al., 2019; Wapenhans et al., 2021). Precipitation rate, temperature and235

annual temperature range can also be characterized as red and pink noise (Figures S1h–j, r–t & S2h–j,236

r–t). Similar results are obtained for transects through Africa, Eurasia and Australia, as well as across237

global, latitudinally-averaged sections (see Supporting Information).238

3.1 Coherence between Taxa and Environment239

Visual inspection of Figure 2 indicates that there is strong, location- and scale-dependent, similarity240

between the wavelet transforms of transects through species richness and environmental variables. To241

quantify the strength of these relationships we calculate cross wavelet power, which identifies co-located242

high amplitudes in the location-scale domain, and wavelet coherence (see Materials and Methods). In243

the main manuscript, we show results from carnivorans (which are similar to those for mammals244

generally), and amphibians (which are similar to those for bats, songbirds and hummingbirds). See245

Supporting Information Figure S3 for analysis of those other taxa.246

247

Figure 3a shows cross wavelet power between species richness of carnivorans along transect A—A′248

and elevation. Almost no short-wavelength (< 103 km) features are coherent above a 90% confidence249

limit (see Materials and Methods). These short wavelength regions contain almost no cross wavelet250

power; 94% of all cross power is in the region of high coherence colored on Figure 3a, which accounts251

for 30% of the location-scale domain. 79% of the area of the cross wavelet spectrum that is signific-252
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antly coherent resides at wavelengths & 103 km. Distance-averaged cross wavelet power for all parts of253

the power spectrum, not just those parts which are coherent above the 90% significance threshold, is254

shown to the right of each panel, on a logarithmic scale. Full, unmasked, plots of cross wavelet power255

are shown in Supporting Information Figure S4. Distance-averaged cross wavelet power between all256

taxa and environmental variables studied is shown in Figure S3g–ad.257

258

Cross wavelet power between amphibians and elevation is also highest at long wavelengths, al-259

though overall there is a smaller proportion of the two signals that is coherent: 78% of the plot region260

is masked in Figure 3e. Only a small part of the cross wavelet transform for amphibians and elevation261

is coherent below wavelengths of ∼ 5000 km, and that part lies near the centre of the transect, i.e.262

within the tropics. Distance-averaged power outside the tropics, plotted to the right of Figure 3e, is an263

order of magnitude lower than within the tropics, especially at shorter wavelengths. This observation264

is in contrast to cross power between species richness of carnivorans and elevation, where there is265

almost no difference within the tropics and outside the tropics, across all scales. These results may266

indicate that carnivorans are less affected by “mountain passes” (sensu Janzen, 1967) in the tropics,267

compared with amphibians (cf. Antonelli et al., 2018; Eronen et al., 2015; Rahbek et al., 2019; Rolland268

et al., 2015). Carnivoran species richness is most coherent with elevation and mean annual temperat-269

ure at wavelengths ∼ 103 km atop terrestrial plateaux (e.g. Rocky-Mountains-Colorado Plateau and270

Altiplano, between 4000 − 7000 km and 13, 000 − 14, 000 km distance along transect A–A′, respect-271

ively; Figures 1–3). An obvious interpretation is the local importance of tectonics for determining272

biodiversity (Antonelli et al., 2018).273

274

Coherent cross wavelet power between species richness of carnivorans and amphibians, mean an-275

nual precipitation rate, temperature and annual temperature range is shown in Figure 3b–d, f–h.276

Cross power between amphibian species richness and precipitation rate, temperature, and temperat-277

ure range is high within the tropics, whereas those differences are absent or reduced for carnivorans.278

Furthermore, for these three climatic variables, there is much weaker coherence with carnivoran species279

richness. Carnivorans appear less sensitive to changes in those variables compared with amphibians.280

Calculated phase indicates long-wavelength anticorrelation between elevation and species richness for281

both carnivorans and amphibians (left-pointing arrows in Figure 3a and e; phase angle, a = π; see282

Materials and Methods). Highly coherent long-wavelength anticorrelation between amphibian species283

richness and annual temperature range is also observed across the entire transect. Highly coherent,284

long-wavelength cross power between precipitation rate or temperature and species richness of both285

carnivorans and amphibians is in phase, i.e. there is positive correlation at these scales. This result is286

in agreement with the idea that faster diversification rates drive species richness, since it suggests that287

both taxa benefit from increased energy and high productivity associated with greater availability of288
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heat and water (cf. Allen et al., 2006).289

3.2 Global and Local Species Richness and Environment290

These American results can be compared to transects from Australia, Eurasia and Africa. For Aus-291

tralia, similar trends in power spectral slopes, distance-averaged power and cross wavelet power are292

observed (Figure 1: B—B′; Supporting Information Figures S8–S10). However, there is almost no293

difference in power or cross power between tropical regions and regions outside the tropics. We note,294

however, that the transect does not include the entirety of the tropics. Signals are mostly coherent at295

wavelengths & 103 km, and the same pattern of correlation/anticorrelation is observed with climatic296

variables (Supporting Information Figure S11). In Africa, songbirds and amphibians have greater297

species richness power within the tropics but the differences are not as stark as for the Americas (Fig-298

ure 1: C—C′; Supporting Information Figure S16a–f). This result may reflect differences in Cenozoic299

paleoclimatic history between Africa and the Americas (Hagen et al., 2021). The greatest difference300

between cross power within the tropics and outside the tropics is for precipitation rate, suggesting301

that water availability controls species richness for all African taxa studied here. Wavelet coherence302

indicates that, across Africa, carnivoran species richness does not correlate with environmental vari-303

ables, whereas species richness of amphibians is strongly positively correlated with precipitation rate304

at long wavelengths (Buckley & Jetz, 2007). Anticorrelation is observed between amphibian species305

richness and temperature across Africa. Results for Eurasia are dominated by the presence of the306

Tibetan Plateau, and the low proportion of the transect within tropical latitudes (Figure 1: D—D′;307

Supporting Information Figures S19–S24). Similar trends to the Americas are observed, albeit with308

generally lower cross power and coherence.309

310

Mean terrestrial values of each variable across all latitudes globally were transformed into the311

location-scale domain. Distance-averaged wavelet power spectra of the resulting transects have spectral312

slopes between −2 and −1 (red to pink noise), reflecting the importance of long-wavelength trends.313

Species richness power for all taxa except Mammalia and Carnivora is at least an order of magnitude314

lower outside of tropical latitudes, at wavelengths . 3000 km, consistent with results obtained from315

transforming the American transect (Figures 2 and 3). This result suggests that the increase in species316

richness power at short wavelengths may be a global phenomenon reflecting sensitivity of tropical317

species to local climatic effects.318

4 Discussion319

A principal result of this study is that terrestrial species richness tends to be most coherent with to-320

pography, precipitation and temperature at long wavelengths (> 103 km). These results indicate that321

10



large-scale variation in tectonic and climatic processes play a governing role in generating the LDG322

(Field et al., 2009). However, our results also indicate that the distribution of taxa, and their coher-323

ence and phase with environmental variables, is highly location- and scale-dependent. For example,324

whereas carnivorans and amphibians are in phase and coherent with mean annual precipitation and325

temperature at wavelengths > 104 km, that is not true at smaller scales (i.e. shorter wavelengths).326

Significant deviations from the LDG indicate that external variables such as elevation, climatic pat-327

terns and tectonic history, play important roles in determining biodiversity at specific locations and328

scales (e.g. Archibald et al., 2010, 2013; Hagen et al., 2021; Mannion et al., 2014; Saupe, 2021; Song329

et al., 2020).330

331

Spectral analyses highlight the importance of the tropics for biodiversity, in particular for amphi-332

bians where local changes in elevation and mean annual temperature (but not annual temperature333

range) are highly coherent with species richness. These results are consistent with the idea that in-334

creased resource availability at the tropics may generate higher primary productivity, supporting a335

greater number of individuals within a given area (i.e. higher carrying capacity), and therefore a336

greater number of different species (e.g. Fritz et al., 2016; Gillman et al., 2015; Hawkins et al., 2003;337

Kessler et al., 2014). Our results support the suggestion that elevated topography at the tropics is338

more likely to result in increased species diversity when compared to higher latitudes (Janzen, 1967;339

Polato et al., 2018). However, this trend is not uniformly observed across taxa and for all continents.340

Species richness of carnivorans, for example, has no significant coherence with elevation or temperature341

range in the tropics, which suggests that this group is largely unaffected by the challenges posed by342

tropical mountain ranges. Power spectral slopes for such taxa are steeper (more negative) at shorter343

wavelengths, whereas more environmentally-sensitive taxa, such as hummingbirds and amphibians,344

have shallower spectral slopes at longer wavelengths within tropical latitudes.345

346

Cross wavelet power and coherence indicate that species richness is decoupled from short wavelength347

(. 103 km) changes in elevation, temperature, annual temperature range and precipitation at nearly348

all locations, except for certain taxa within the tropics. Locally, uplifted topography can be highly co-349

herent with species richness. Trends across the Americas are reflected in global, latitudinally-averaged,350

transects and for other continents. In general, the species richness of taxa such as hummingbirds and351

amphibians is strongly and positively correlated with precipitation rate and temperature, except in352

Africa, where high temperatures may limit availability of water. Crucially, these results could be used353

to predict the changes in biodiversity that could arise from different future Earth climate change scen-354

arios.355

356

In summary, wavelet power spectral analysis provides insight into the coherence between species357
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richness and environmental variables. Species richness is shown to vary as a function of location and358

scale. Comparisons with topography, temperature and precipitation show that species richness tends359

to be highly coherent with external forcing at large scales (wavelengths > 104 km). Phase difference360

between signals reveals that species richness is in-phase with precipitation and temperature, and anti-361

phase with elevation and annual temperature range, at these scales. However, these relationships362

are dependent on scale and taxon. At smaller scales, richness of bats, songbirds, hummingbirds and363

amphibians tends to be greatest in the tropics, where calculated coherence highlights the importance364

of topography and temperature range for determining species richness. Carnivorans, in contrast, show365

little coherence with environmental variables at these scales in the tropics. They are instead most366

coherent in the vicinity of the Colorado Plateau and Altiplano. These observations suggest that367

large scale (> 103 km) variations in environmental variables determine almost all of the distribution368

of terrestrial vertebrates. Smaller scale (. 103 km) variation can play an important role locally,369

particularly within the tropics. These results highlight the importance of environment change at the370

scale of tens degrees of latitude, and local changes in tropical environment, for determining biodiversity.371
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Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut,411

J. N., & Vitart, F., 2011. The ERA-Interim reanalysis: Configuration and performance of the data412

assimilation system, Quarterly Journal of the Royal Meteorological Society , 137(656), 553–597.413

Eronen, J. T., Janis, C. M., Chamberlain, C. P., & Mulch, A., 2015. Mountain uplift explains differences414

in Palaeogene patterns of mammalian evolution and extinction between North America and Europe,415

Proceedings of the Royal Society B: Biological Sciences, 282(20150136), 1–8.416

Fei, S., Phillips, J., & Shouse, M., 2014. Biogeomorphic impacts of invasive species, Annual Review of417

Ecology, Evolution, and Systematics, 45, 69–87.418

13



Field, R., Hawkins, B. A., Cornell, H. V., Currie, D. J., Diniz-Filho, J. A. F., Guégan, J.-F., Kaufman,419
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Figure 1: (a)–(f) Global patterns of species richness for all Mammalia (M ), Carnivora (Ca), Chiroptera
(Ch), Passeriformes (Pa), Trochilidae (Tr), Amphibia (Am); spx = species per 10×10 km pixel (Jen-
kins et al., 2013); horizontal lines = Tropics of Cancer (northern), Capricorn (southern), and Equator;
A–A′ = transect through Americas investigated here; B–B′, C–C′, D–D′ = transects investigated in
Supporting Information. (g) Elevation (E ) from ETOPO1 global model with horizontal resolution of
1 arc-minute (Amante & Eakins, 2009); filled circles on A–A′ = Colorado Plateau/Mexican High-
lands and Andean Altiplano. (h)–(j) Mean annual precipitation rate (Pn), temperature (Tm), and
temperature range (∆T ) from 1981–2010 (Karger et al., 2017).
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Figure 2: (a) Black line = species richness of Mammalia (M ) along transect A–A′; gray bands =
100 km wide swaths centred on A–A′; blue bands = tropical latitudes; white circles are shown every
1000 km, see transect A–A′ in Figure 1; black arrow and symbols above top axis = Equator and
tropics as in Figure 1. (b) Continuous wavelet transform of Mammalia spatial series (black line in
panel a). Colors = spectral power as a function of location and scale (wavelength); spx = species per
pixel. (c)–(t) As (a)–(b) but for Carnivora (Ca), Chiroptera (Ch), Passeriformes (Pa), Trochilidae
(Tr), Amphibia (Am), elevation (E ), mean annual precipitation rate (Pn), temperature (Tm) and
temperature range (∆T ) along transect A–A′ (Amante & Eakins, 2009; Jenkins et al., 2013; Karger
et al., 2017). See Supporting Information for results for transects B–B′, C–C′, D–D′ and average global
latitudinal transect.
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Figure 3: (a) Comparison of Carnivora (Ca) and elevation (E ) as a function of location and scale
along transect A–A′ (Figures 1–2). Colors = cross wavelet power; yellow = co-located large (positive
or negative) amplitude signals. Gray masks regions with coherence below 90% significance level (see
body text, Materials and Methods). Arrows = phase difference between spatial series: right/left
pointing = in-phase/anti-phase (see guide above panels b–d). Black arrow and symbols above plot
= Equator and tropics, as in Figure 1. Side panel: black/blue/gray lines = distance-averaged cross
wavelet power of all/tropical/non-tropical latitudes (see Figure 2). High cross power = large co-located
amplitudes in the two spatial series. (b)–(d) Comparison of Carnivora and mean annual precipitation
rate (Pn), temperature (Tm) and annual temperature range (∆T ). (e)–(h) Comparison of amphibian
species richness and same environmental variables as panels a–d.
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