Design and Implementation of the Sickle Cell Disease
Hematopoietic Cell Transplantation Evaluating Long Term and
Late Outcomes Registry (STELLAR) to Compare Long Term
Outcomes after Hematopoietic Cell Transplantation to that in
Siblings without Sickle Cell Disease and in Non-Transplanted
Individuals with Sickle Cell Disease

Lakshmanan Krishnamurti¹, Staci Arnold¹, Ann Haight¹, Allistair Abraham², Gregory Guilcher³, Tami John⁴, Nitya Bakshi¹, Shalini Shenoy⁵, Karen Syrjala⁶, Paul Martin⁷, Sonali Chaudhury⁸, Gretchen Eames⁹, Olowoselu Olusola¹⁰, Josu De La Fuente ¹¹, Matthew Hsieh¹², Kimberly Kasow¹³, Ann Mertens¹, Fuad El-Rassi¹, Peter Lane¹, Bronwn Shaw¹⁴, Lillian Meacham¹, and David Archer¹

April 16, 2024

Abstract

Background There are sparse data on long-term and late effects of hematopoietic cell transplantation (HCT) for sickle cell disease (SCD) Objectives To establish an international registry of long-term outcomes post-HCT for SCD and demonstrate the feasibility of recruitment at a single site in the US. Methods The STELLAR registry is designed to enroll SCD patients [?] 1-year post-HCT, their siblings without SCD, and non-transplanted SCD controls to collect participant self-report of health status and practices using the BMT survivor study surveys, HRQOL using PROMIS 25 or 29, cGVHD using the symptom scale survey, daily pain using an electronic pain diary, economic impact of HCT using the financial hardship survey, and sexual function using PROMIS SexFSv2.0. We also piloted retrieval of clinical data previously submitted to CIBMTR, recorded demographics, height, weight, BP, hip and waist circumference, timed-up-and-go, and handgrip test, and obtained blood for

¹Emory University School of Medicine

²Children's National Health System

³Alberta Children's Hospital

⁴Baylor College of Medicine

⁵Washington University in St Louis

⁶Fred Hutchinson Cancer Research Center

⁷Duke University School of Medicine

⁸Ann and Robert H Lurie Children's Hospital of Chicago

⁹Cook Children's Medical Center

¹⁰Lagos University Teaching Hospital

¹¹Imperial College London Faculty of Medicine

¹²National Institute of Health

¹³University of North Carolina School of Medicine

¹⁴Medical College of Wisconsin

metabolic screening, gonadal function, fertility potential, and biorepository of plasma, serum, RNA, and DNA. Results Among 100 eligible post-HCT patients, we enrolled 72 participants 9-38 (median 17) years age. We also enrolled 19 siblings 5-32 (median 10) years age and 28 non-transplanted SCD controls 4-46 (median 22) years age. Of 119 participants, 73 completed 85 sets of surveys and 41 contributed samples to the biorepository. We successfully piloted retrieval of data submitted to CIBMTR and expanded recruitment to seven US, Canada, UK, and Nigeria sites. Conclusions It is feasible to recruit subjects and conduct study procedures for the STELLAR registry of long-term and late effects of HCT for SCD.

Hosted file

Design and Implementation of the Sickle Cell Disease Hematopoietic Cell.docx available at https://authorea.com/users/369413/articles/712854-design-and-implementation-of-the-sickle-cell-disease-hematopoietic-cell-transplantation-evaluating-long-term-and-late-outcomes-registry-stellar-to-compare-long-term-outcomes-after-hematopoietic-cell-transplantation-to-that-in-siblings-without-sickle-cell-disease-and-in-non-transplanted-individuals-with-sickle-cell-disease