New expectations to soliton arising from the (2+1)-dimensional
generalized coupled nonlinear Schrodinger equation with four waves
mixing via three different techniques

Emad Zahran' and Ahmet Bekir?

'Benha University
2Eskisehir

April 16, 2024

Abstract

From the point of view of three famous and important techniques we will achieve new expectations for the soliton configurations
to the (241)-dimensional generalized nonlinear Schrédinger equation (GNLSE) with four waves mixing (FWM). The suggested
model describes propagation of solitons in birefringent fiber. The FWM governed effectively the performance of the resultant
soliton amplitudes. The three famous methods candidates for this purpose are the extended direct algebraic method (EDAM), the
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successively for the suggested model successfully. Surprise expectations for solitons via these three techniques to this model

which weren’t achieved previously by any other authors who used other techniques have been demonstrated.



New expectations to soliton arising from the (2+1)-
dimensional generalized coupled nonlinear
Schrodinger equation with four waves mixing via
three different techniques

Emad H.M. Zahran !, Ahmet Bekir 2

! Departments of Mathematics, Zagazig University, Faculty of Science, Zagazig, Egypt
Email: e_h_zahran@hotmail.com
% Neighbourhood of Akcaglan, Imarli Street, Number: 28/4, 26030, Eskisehir, Turkey
Email: bekirahmet@gmail.com

ABSTRACT

From the point of view of three famous and important techniques we will achieve new
expectations for the soliton configurations to the (2+1)-dimensional generalized nonlinear
Schrodinger equation (GNLSE) with four waves mixing (FWM). The suggested model
describes propagation of solitons in birefringent fiber. The FWM governed effectively the
performance of the resultant soliton amplitudes. The three famous methods candidates for this
purpose are the extended direct algebraic method (EDAM), the extended simple equation
method(ESEM) and the solitary wave ansatz method (SWAM). The three techniques are
implemented successively for the suggested model successfully. Surprise expectations for
solitons via these three techniques to this model which weren’t achieved previously by any
other authors who used other techniques have been demonstrated.

Keywords : The generalized coupled Schrédinger equation, the SWAM, the EDAM, the
ESEM, Solitons.

1-Introduction

The soliton solutions of the GNLS with FWM which describes effectively the propagations of
the solitons in birefringent fiber has been proposed for the first once in the framework of three
important and impressive techniques. The FWM and the other parameters arising in the
proposed model will governs the speed and propagation direction of the resultant solitons, as
well as reduce the interactions between them. Moreover, we shall discuss the energy transfer
of solitons during elastic collision and separation. When dispersion term and the nonlinearity
term reach the equilibrium the resultant soliton is special case of the occurred ultra-short
pulse. The optical solitons have been widely studied either experimentally or theoretically via
many authors through [1-18]. Some various forms of Schrodinger equation have been studied
see for example Yang, et al [19] who studied the dynamics of soliton propagation in nonlinear
fibers. In related subject, the GCNLS which gives good description of the solitons propagate
in the multiple fields with various frequencies or polarizations at the same time has been
discussed for through different branches of physics see for example, Agrawal [20] who
utilized that, Som, et al. [21] who observed this behavior for plasma physics, Alwyn [22]
who observed this behavior for biophysics, [23] Dalfovo, et al. [23] who observed this
behavior for Bose-Einstein condensation and Lazarides, et al. [24]who observed this behavior
for meta-material technology [24]. The main responsibility for the nonlinear effects for the
GCNLS emerged from the four-wave mixing (FWM), cross phase modulation (XPM), and


mailto:dr.maha_32@hotmail.com

self-phase modulation (SPM). Among them, FWM has the greatest effect on the optical
system [25]. The GCNLSE with a FWM effect to describe the optical solitons in a
birefringent fiber is demonstrated through [26-30]. According to [30] the GCNLSE with four-
wave mixing (FWM) can be written as

iu, +uXX+2(a‘u2‘+c‘v2‘+buv*+b*u*v)u =0

A 1)

iV, +V,,, +2(a]u?|+c|v[+buv” +bUv)v =0
In the above equation if a=c,b=0,it will be converted to Manakov system and if
a=-c,b=0, it will be converted to mixed coupled NLS

The generalize form of Eq.(1) to a (2+1)-dimensional GCNLSE which will extract more
abundant physical phenomena can be written according to [30-33] as,

iU, +U,, +U, +2(a|u?|+cN?[+bUV +bUV)U =0
IV, +V,, +V,, +2(au?|+cV?|+bUV +bUV)V =0

The functions U,V appearing in this equation are in terms of X,Yy,t and describe the
envelopes of the two circularly polarized waves.

)

Let us consider the transformations
U (x,t) = Q,(m) Explip(x, )],V (x,t) = Q, (17) Explip(X, t)].
where 77 =x-Vt,p(X,t)=-kx-K,y+wt+6,,v,w,k and &, denotes respectively to

velocity, frequency, wave number and phase constants. With the aid of these transformations
the above system will split into the following real and imaginary systems, the real parts are,

2Q." -2k, +k)Q, +2(k7 +k?)Q, +2(aQ’ +¢QQ; +bQ,Qf +b'Q,Q7) =0
ZQZ” - 2(k1 + k1)Qz' + 2(k12 + klz)Qz + 2(3Q12Q2 + CQ23 + leQz2 + b*Q1Q22) =0 )

While the imaginary parts are,
VQ1’ -wQ =0
vQ, -wQ, =0 (4)

When one insert each one of the imaginary part into the corresponding one of the real part and
use the transformation v, = uy/, the system of real parts will be reduced to the same equation
which is,.

Q" +[(k2 +k3) ~2(k, + kl)%]Ql Hatc+b+b]Qi =0 (5)

When the homogeneous balance implemented between Q/" and Qf in equation (5) it implies

m=1.

The main purpose of this work extracting new expectations to the soliton arising from
equation (5) in the framework three distinct techniques, the three techniques candidates for
this target are the EDAM [34], the ESEM [35-38] and SWAM [39-43]. The suggested
methods are examined previously to many other nonlinear differential equations which
appearing in different branches of science and usually achieved good results.

This paper designed as follow, in section two the algorithm of the EDAM and its applications
to constructing the soliton solutions of this model. In section three, the algorithm of the
ESEM and its applications to generate the soliton solutions of this model. In section four the
algorithm of the SWAM and its application to extracting the soliton solutions of the suggested
model and in section five the conclusion of this article presented.



2. The EDAM algorithm

To discuss this technique let us firstly discuss the NLPDE algorithm by propose the function
Y as a function in R(x, t) and its partial derivatives as,

Y(R,R, R, R, Ryeeennene. )=0 (6)
That contain the highest order derivatives and nonlinear terms.
With the aid of the transformation R(X,t) = R(¢), < = wx + kt equation (34) can be reduced

to the following ODE:
Z(R,R,R"R" ... )=0 (7

where Z in terms of R(¢), its total derivatives, while /= di )
The solution of equation (7) can be written in the form [34],
M .
Q) =>a ¢'(n), ¢ =ap’+pp’+yp". )
i=1

Now, we will apply this technique to the suggested model equation (5) mentioned above,
since the balance is one thus the solution is

Q) =a,+ag. 9)
Via substituting about Q”, Q, Q®into equation (5)mentioned above which is
2q”+((kf+kf)—2(k1+k1)W)Q+2(a+c+b+b*)Q3:o . (10)
v

Via equating the coefficients of various power of Q' to zero leads to system of equations from
which the following results will be detected.
_2w(k, +k,) —v(kf + kzz)

2
(D o ,7=—a1?(a+b+c+b*),a0:ﬂ:0
_ * 2 AN
(2)0!=(k12+k22)—27W(k1+k2),ﬂ=—a1\/ 2v(a+b+c+b )\/\\//(kl +k;)—2w(k; +k,) |
2’ K k) - 2w(k +k,)

y:—?(aer+c+b*),aO (11)

J-2v(@a+b+c+b’)

=42 k) pog L RETDICD )va<k1 k)= 2uk +ky)

: . V(kZ +k2) - 2w(k, +k
)’=—i(a+b+c+b),aoz‘/(l ) (1* 2)
2 \/—2v(a+b+c+b)
These three results will generate three solutions, for simplicity and similarity we will

implement only the first and the third one.
Firstly, for the first result which is:

_ 2 2
(1)a — 2W(k1 + kz) V(kl + kz) ,
2v
From which we can obtain
o= 2W(k1 + kz) —v(kl2 + k22)
2V '

This can be simplified to be
a=1=0,y=1c=-3,a=-la =w=v=k =k, =1a,=0,b=1+i.

2
y:—%(a+b+c+b*),a0:ﬁ:0

2
y=_%(a+b+c+b*),ao=ﬂ=o (12)



In the framework of this values and the relation "> = ap® + S¢° + yp*, we can easily obtain

2
n
Q= ( 1+e j —1, the solution in the framework of the proposed method is Q(77) = a, + a,¢

1-¢7
1+e" )
Q(n)=[ ”j -1 (13)
1-e
U(x,t)—{[ijee:] 1} Expi(-kx-k,y+wt+6,) (14)
146 |
ReU(x,t)-[[lJr:n ] —l}cos(—klx—k2y+wt+90) (15)
ImU(x,t)—{[lJre:j 1}sin(k1xk2y+wt+90) (16)

Fig.1: The Re. part Eq. (15) in 2-nd and 3-th dimensions when:
a=1=0y=1c=-3a=-la=w=v=k =k, =1a,=0,b=1+i.

Fig.2: The Im. part Eq. (16) in 2-nd and 3-th dimensions when: £, =1
a=1p4=0,y=1c=-3a=-la =w=v=k =k,=1a,=0,b=1+i.

Secondly, for the third result which is

J-2v(@+b+c+b)v(k? +k2)—2w(k, +k,)

2
a:(k12+k22)_TW(k1+k2)’ﬂ:a1 v

; . k2 +k2)—2w(k, +k
7=—i(a+b+c+b),a0=\/"( L k) —2w( 14; 2)
2 \/—Zv(a+b+c+b)

This can be simplified to be
a=-2,f=-4y=1c=-3a=-la=w=v=k =k, =13a,=0.7,b=1+1.
In the framework of this values and the relation ¢'> = ap® + Bp® + yp*, we can easily obtain



-2

Q= m the solution in the framework of the proposed method is Q(77) =a, +a,¢
Q) :O.7+2\/_?§77+4 (7)
U(xt) :{o.nm} Expi(-kx—k,y+wt+6) (18)
ReU (x,t)= {0.7+m}c03(—k1x—kzy+wt +6,) (19)
ImU (x,t) :{0.7+m}sin(—klx—kzy+wt+00) (20)

Fig.3: The Re. part Eq. (19) in 2-nd and 3-th dimensions when:
a=-2,f=-4y=1c=-3,a=-la =w=v=k =k, =1,8,=0.7,b=1+i.

t { \/ .
Fig.4: The Im. part Eq. (20) in 2-nd and 3-th dimensions when: {, =1
a=-2,=-4y=lc=-3a=-la =w=v=k =k, =1a,=0.7,b=1+i.
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3. The ESEM algorithm

The solution of equation (7) in the framework of the ESEM is

Q=2 A V() 1)

i=—M

Where /(<) achieves the equation,
¥'()=B,+By + By’ (22)

The parameters Awill be located later, while the other parametersB,, B, and B, will
established the following forms of solutions,

(1) If B, =B, =0, Eq. (22) will be Riccati equation whose solutions are



w(0) =L Ztan(\/B B, (¢ +¢,) ByB, = 0

w(&) = —V_BBOBZ tanh(, /—BOBZQ’—%), B,B, <0, >=0,p=+1

2

(2) If B, =B, =0, Eq. (22) will be the Bernoulli equation whose solutions are

_ B BB +4)]
VO B BB

_ B EIB(C 4]
P Yy R

And the above solutions have the general forms which are;

w(e)= B[ _ J4BB, B tan {—\/451522(4 gO)D,43152>Bf,BZ>0,

2

v ($) =Bi{Bl+J4BlB2 — B! tanh {—‘4481822(4 gO)DABle =B/, B, <0,

2

Where the integer ¢, is the integration constancy

(23)

(24)

(25)

(26)

(27)

(28)

Lastly, by inserting Eq. (22) into Eq. (21), equating the coefficients of various powers of ' to

zero implies system of equations from which the values of the unknown variables will be
detected. Furthermore, the required solutions can be detected by inserting the obtained values

of these unknown variables into equations (21).
Now we will apply this technique to converted Eg. (10) mentioned above,

20" +[(kf +kf)—2(k1+k1)%)Q+2(a+c+b+b*)Q3 -0

Since the balance is M =1thus the solution is,
Q) =—"+A+Ay

Where ' =B, + Bln,y +By? + By’
Case 1: The 1¥ family in which B, = B, =0=>y' = B, + B,y*

, B A,
Q'= l// +AlB +A1E’2'// -B,A,
2B2A 2B.B, A

Q"= T 2AB By + 2AB]Y

(29)

(30)

(31)

(32)



Q= Aly® +3A ATy’ + BAA +3A AT )y + (A +6A,AA)
A, 3AN, 3AA +3AN, (33)

3 2

4 4 4
Via inserting the relations (30-33) into Eq. (29), equating the coefficients of various powers

Ofl//i to zero implies a system of equations in terms of unknown variables and by solves it the
following results will be achieved,

V[4A A@+c+b+b)+ (K +k2)] 5 A Natcth+b’ —|A1\/a+c+b+

Dw= 2 k) B, = % B,= N =0.  (34)
(Z)W:v[4A_1A1(a+2c(;(rlt:LE);)+(kf+k§)]lBO _-i, ajzc+b+b* Be iAJEHErW As0 @)
(3)W:V[“Al‘\(a*;(;lb:ki’;)*(kf*kf)l,go:iA aJ:/cE+b+ - —IAiJaDET )
: 4)W:v[4A1A(a+Zc(;t11t:;)+(kf+k22)]]BU i, a+j§+b+b* o iA&JzHEW As0 @D
(6)B, = '%\f&% Mg AlJE"*EW,;\):AFO. (39)
88, - s ag WAL N i[:yg(t;\:%)] A=A=0 (41)

These eight results will generate eight solutions, for simplicity we will draw only one say the
first identical to the first result which is

W_v[4A_1Al(a+c+b+b*)+(kf+k22)] 8 A Na+c+b+b’ —|A1\/a+c+b+
2k, +k,) - 2 %= 2

This result can be simplified to be

v=k =k,=A,=A=la=-1c=-3w=-15B,=1B,=1A =0b=1+i,b =1-i (42)

According to these values the proposed solution is
Q(¢) = ‘1+A0+AM y(@)="—— 2B tan(y/B,B, (£ +¢;), B,B, >0

w (&) =tan(x—t+1) (43)

Q&) =cot(x—t+1)+tan(x—t+1) (44)



U (x,t) =(cot(x —t +1) +tan(x —t +1) ) Expi(—x +1.5t +1.1) (45)
ReU (x,t) = (cot(x—t +1) + tan(x —t +1)) x cos(—x +1.5t +1.1) (46)

ImU (x,t) = (cot(x —t +1) + tan(x —t +1) ) xsin(—x +1.5t +1.1) (47)

Fig. 5: The Re. part Eq. (46) in 2D and 3D with values: §, =1
v=k =k,=A,=A=la=-1c=-3w=-15B,=1B,=1A =0b=1+ib =1-i

Fig.6: The Im. part Eq. (47) in 2D and 3D with values: {, =1
v=k =k,=A,=A=la=-1c=-3,w=-15B,=1B, =LA =0b=1+ib =1-i

By the same steps we can draw the other cases

Case 2: The 2™ family in which B, =B, = 0=y’ =B, + B,y*

A
Q&) =71+ A+ Ay, (48)
Q'= AiBZl//Z +B Ay - A8 -A,B,, (49)
n 2.3 2 2 Blefl
Q"=2ABZy* +3ABB,yw* + AB’w +A BB, + . (50)
v
Q° = Ay’ +3AA'w* +(BAA +3A Ay +(A +6A A A)
N A_fgl . 3Ab2AEl . 3A AP +3A A, _ (51)
v 7 7

Via inserting the relations (48-51) into Eq. (26), equating the coefficients of various powers
Ofl//i to zero implies a system of equations in terms of unknown variables and by solves it

the following results will be achieved
2 * 2 2 i *
(1)W:v[2A3(a+c+b+b)+(k1+k2)],Blz_ JiAarcibib B, - iAva+c+b+b

2k +k;) | V2

A, =0, (52)



VA @+c+b+b")+(k: +k2)]

2w= 2iA Ja+c+h+b’ B, =
2 z(kﬁk) g 2,
— % p--\k,5B, _cAvaresbib o
Va+c+b+b
——— B = J},B ————————A_=Q&:—k
Va+c+b+ ; 2 1 ;
Ja+c+b+b
———2 B =-,B,= —A7=0,k=—k.
Va+c+b+ 2 2 o
Ja+c+b+b
B,= fk,B—— A, =0k =k,
\/a+c+b+ ‘ 2 : ;

iAva+c+b+h’
T,A_lzo.

(53)

(54)

(55)

(56)

(57)

These six results will generate six solutions, for simplicity we will draw only one say the first

identical to the first result which is

W:v[2A§(a+c+b+b*)+(kf+k22)]

B =—J2iAva+c+b+b",B =
2(k, +k,) =2k 2

This result can be simplified to be

v=k =k, =A =A=Lw=-05a=-1c=-3B =2B,=1A,=0b=1+ib =1-i

According to these values the solution from point of view of the proposed method is

Q) = ‘1+Ab+A11// w($) = B, EXp[B, (¢ +¢0)]

1-B,Exp[B,({ +&o)]

2Exp[2(x —t +1)]

V() = Rt )]

2Exp[2(x—t+1)]

Q) = et 1)]

2Exp[2(x—t+1)]
1-Exp[2(x—t+1)]

U (x,t) =(1+

2Exp[2(x -t +1)]
1-Exp[2(x—t+1)]

ReU (x,1) :[1+

2EXp[2(x —t+1)]
1-Exp[2(x—t+1)]

ImU (x,t) :(1+

—iAVa+c+b+h’
Tﬂklza

j Expi(—x+0.5t+1.1)
jx cos(—x+0.5t +1.1)

jxsin(—x +0.5t+1.1)

(58)

(59)

(60)

(61)

(62)

(63)



Fig. 7: The Re. part Eq. (62) in 2D and 3D with values: §, =1
v=k =k,=A=A=Lw=-05a=-1=-3B=2B,=LA,=0b=1+ib =1-i

Fig. 8: The Im. part Eq. (63) in 2D and 3D with values: §, =1
v=k =k,=A =A=Lw=-05a=-1c=-3B=2B,=1A, =0,b=1+ib =1-i
By the same steps we can draw the other solutions.

4. The SWAM algorithm
From point of view of the SWAM [38, 42] the solution can be proposed in the form,

U (x,t) = (x,1)eRt (64)
Where y(X,t) and R(x,t)are the amplitude portion and the phase portion of soliton
respectively. Hence, via simple calculation of Eq.(2) we get the following relations,

U, =(y, +iyR,)e™ (65)
U, =y, +iyR,)e"™ (66)
Uy = W +2ip, Ry, +i R, —yRS )™ (67)
Uy =, +2y, R, +ip R, —yR)e"™ (68)

The two parts in equation (2) are the same when U = £V and can be converted to

iU, +U,, +U,, +2(au?|+c|u?|[+bu?|+b"[u?)u =0 (69)
Via inserting the relations (61-65) into the above equation the following real and imaginary
parts,

Qu+y, +y, — (R, +R )y +2(a+c+b+b )y’ =0 (70)

Wt + 2R1xl//x + 2R1ylr//y = O (71)
The bright solutions according to the proposed method [35-38] can be extracted as follow,
w(x,t) = A sech™t, where t, = B(x+y—wt)and R (x,t) =kx + 5y — Qt (72)

w, =—ABWR, sech™t, tanht, (73)
w, = ABR sech™t tanht, (74)
v, = AB°R (L+R)sech™?t — AB’R?sech®™t, (75)
w,, = AB’R (1+R )sech®™?t — AB?R?sech®t, (76)

By inserting the relations (72-76) into the real and imaginary parts equations (70), (71) we
obtain



(Q-k>-5%)Asech®t +2AB’R (1+ R )sech®™?t,

—2AB’R?sech™t, +2(a+c+b+b")A’sech®t =0

—ABWR, sech®t tanht, +2(k ++5)ABR, sech™ t tanht, =0 (78)
When equivalence operation is implemented for the higher of sech™ t, in the real part this
implies R, =1

(Q—k?*-5°-2B*)A secht, +[4AB* +2A’(a+c+b+b")]sech’t =0 (79)

2
From which we obtain these relations Q =k? + 5% +2B* A = L*
a+c+b+b

Moreover, the imaginary part impliesw, = 2(k ++0) . When we take the same values of
parameters like that chooses for the above two methods we get,

(77)

Q=4A=tlw=4B=0=k=la=-1c=-3 (80)
Thus the bright solution in the framework of these parameters is
U (x,t) = +sech[x + y — 4t]e'**y~4) (81)
ReU (x,t) =(+sech[x+y —4t])xcos(x +y —4t) (82)
ImU (x,t) =(+sech[x + y —4t])xsin(x+ y —4t) (83)

We will draw only the positive one

50 \/ M "
Fig. 9: The Bright soliton Re. part Eq. (82) in 2D and 3D with values:
v=k =k,=B=0=k=LQ=4,A=Lw=4a=-1c=-3a=-1c=-3b=1+i,b =1-i
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Fig. 10: The Bright soliton Im. part Eq. (83) in 2D and 3D with values:
v:klzkz:B:§:k:1,9:4,A:1,w:4,a:—1,c:—3a:—1,c:—3,b:1+i,b*:1—i

The dark solutions according to the proposed method [35-38] can be extracted as follow,



w(x,t) = A tanh™ t, where t, = B(x+ y —w,t)and R, (X, y,t) = kx + 5y — Qt (84)
w, = AW,BR [tanh®*™ t, —tanh™t,] (85)

w, = ABR [tanh® ™" t, —tanh ™™ t,] (86)

v, =AR,(R,-1)B’tanh®t, - 2A R’B*tanh® t, + AR (R, +1)B* tanh™**t,  (87)

» = AR,(R,-1)B” tanh™*t, —2A,R/B* tanh™ t, + A,R, (R, +1)B* tanh™**t,  (88)

By inserting the relations (84-88) into the real and imaginary parts equations (70), (71) we
obtain

(Q-k?—6°—4RZB?)A, tanh™ t, + 2A,R, (R, —~1)B* tanh ™ ?
+2AR, (R, +1)B* tanh®**t, + 2(a+c+b+b") A’ tanh** t, =0
Aw,BR,[tanh®™t, —tanh®t,]+ 2(k + 5)A,BR,[tanh ™ *t, —tanh®"™t,]=0  (90)

When equivalence operation is implemented for the higher of tanh™ t, in the real part this

(89)

implies R, =1hence the real and imaginary parts will be
(Q-k*-6%-4B*)A, tanht, + 4A,B* tanh®t, + 2(a+c+b+b")A’tanh®t, =0 (92)
Aw,B[tanh?t, —1]+2(k + 6) A,B[1-tanh®t,] =0 (92)
—2B?

Consequently, from the real part we get Q=k*+5°+4B* Al = mand the
a+c+b+

imaginary part implies w, =2(k +9) .
From which we can getw, =4,Q =6, A =1and the dark solution is

U (x,t) = +tanh[x + y — 4t]e'**¥) (93)
Re U (x,t) =(*tanh[x +y —4t] ) x cos(x + y — 6t) (94)
ImU(x,t) = (itanh[x+ y —4t] )xsin(x + y —6t) (95)

Fig. 11: The dark sollton Re. part Eg. (94) in Zb and 3D with values:
v=k =k,=B=0=k=10=6,A=Lw=4a=-1c=-3a=-Lc=-3h=1+i,b =1-i

: : : X
0 2 4
105+
110+

Fig. 12: The dark soli;[on Im. part Eq. (95) in 2D and 3D with values:
V:klzkz:B:§:kzl,Q:G,Ai:1,W:4,a:—1,C:—3a:—1,C:—3,b:1+i,b*:1—i




5. Conclusion

From the point of view for three various manners which are the EDAM, the ESEM and the
SWAM we detected new impressive expectations of solitons for the generalized (2+1)
nonlinear Schrodinger equation with four waves mixing. The three manners have been
applied for the first time to construct these new various solitons of this model. We success to
determine the speed and propagation direction of the resultant solitons, reduce the interactions
between two or more of two propagating waves via the four waves mixing. Furthermore,
through this article we establish many new impressive visions for solitons arising from the
suggested model via EDAM figures [1-4], ESEM figures [5-8] and the SWAM figures [9-12].
The novelty of our new achieved solitons for this model is clear when it compared with that
obtained previously [26-30] who applied different techniques.
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