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Abstract

From the point of view of three famous and important techniques we will achieve new expectations for the soliton configurations

to the (2+1)-dimensional generalized nonlinear Schrödinger equation (GNLSE) with four waves mixing (FWM). The suggested

model describes propagation of solitons in birefringent fiber. The FWM governed effectively the performance of the resultant

soliton amplitudes. The three famous methods candidates for this purpose are the extended direct algebraic method (EDAM), the

extended simple equation method(ESEM) and the solitary wave ansatz method (SWAM). The three techniques are implemented

successively for the suggested model successfully. Surprise expectations for solitons via these three techniques to this model

which weren’t achieved previously by any other authors who used other techniques have been demonstrated.
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                                                     ABSTRACT 
From the point of view of three famous and important techniques we will achieve new 

expectations for the soliton configurations to the (2+1)-dimensional generalized nonlinear 

Schrödinger equation (GNLSE) with four waves mixing (FWM). The suggested model 

describes propagation of solitons in birefringent fiber. The FWM governed effectively the 

performance of the resultant soliton amplitudes. The three famous methods candidates for this 

purpose are the extended direct algebraic method (EDAM), the extended simple equation 

method(ESEM) and the solitary wave ansatz method (SWAM). The three techniques are 

implemented successively for the suggested model successfully. Surprise expectations for 

solitons via these three techniques to this model which weren’t achieved previously by any 

other authors who used other techniques have been demonstrated. 

 

Keywords : The generalized coupled Schrödinger equation, the SWAM, the EDAM, the 

ESEM, Solitons. 

 

 

1-Introduction 
The soliton solutions of the GNLS with FWM which describes effectively the propagations of 

the solitons in birefringent fiber has been proposed for the first once in the framework of three 

important and impressive techniques. The FWM and the other parameters arising in the 

proposed model will governs the speed and propagation direction of the resultant solitons, as 

well as reduce the interactions between them. Moreover, we shall discuss the energy transfer 

of solitons during elastic collision and separation. When dispersion term and the nonlinearity 

term  reach the equilibrium the resultant soliton is special case of  the occurred ultra-short 

pulse. The optical solitons have been widely studied either experimentally or theoretically via 

many authors through [1–18]. Some various forms of Schrödinger equation have been studied 

see for example Yang, et al [19] who studied the dynamics of soliton propagation in nonlinear 

fibers. In related subject, the GCNLS which gives good description of the solitons propagate 

in the multiple fields with various frequencies or polarizations at the same time has been 

discussed for through different branches of physics see for example,  Agrawal [20] who 

utilized that, Som, et al.  [21] who observed this behavior  for plasma physics,  Alwyn [22] 

who observed  this behavior for biophysics, [23] Dalfovo, et al. [23] who observed this 

behavior for Bose-Einstein condensation and Lazarides, et al. [24]who observed this behavior 

for  meta-material technology [24]. The main responsibility for the nonlinear effects for the 

GCNLS emerged from the four-wave mixing (FWM), cross phase modulation (XPM), and 
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self-phase modulation (SPM). Among them, FWM has the greatest effect on the optical 

system [25]. The GCNLSE with a FWM effect to describe the optical solitons in a 

birefringent fiber is demonstrated through [26–30]. According to [30] the GCNLSE with four-

wave mixing (FWM) can be written as 
2 2 * * *

2 2 * * *

2( ) 0

2( ) 0

t xx

t xx

iu u a u c v buv b u v u

iv v a u c v buv b u v v

     

     
                                                 (1) 

In the above equation if , 0,a c b  it will be converted to Manakov system and  if 

, 0,a c b    it will be converted to mixed coupled NLS 

The generalize form of  Eq.(1) to a (2+1)-dimensional GCNLSE which will extract more 

abundant physical phenomena can be written according to [30-33] as, 

 
2 2 * * *

2 2 * * *

2( ) 0

2( ) 0

t xx yy

t xx yy

iU U U a U c V bUV b U V U

iV V V a U c V bUV b U V V

      

      
                             (2) 

The functions ,U V appearing in this equation are in terms of , ,x y t
 

and describe the 

envelopes of the two circularly polarized waves. 

 

Let us consider the transformations 

                  1 2( , ) ( ) [ ( , )], ( , ) ( ) [ ( , )].U x t Q Exp i x t V x t Q Exp i x t      

where 1 2 0, ( , )x vt x t k x k y wt         , , ,v w k
 

and 0  
denotes respectively to 

velocity, frequency, wave number and phase constants. With the aid of these transformations 

the above system will split into the following real and imaginary systems, the real parts are,  

                  
2 2 3 2 2 * 2

1 1 1 1 1 1 1 1 1 2 2 1 2 12 2( ) 2( ) 2( ) 0Q k k Q k k Q aQ cQ Q bQ Q b Q Q           

2 2 2 3 2 * 2

2 1 1 2 1 1 2 1 2 2 1 2 1 22 2( ) 2( ) 2( ) 0Q k k Q k k Q aQ Q cQ bQ Q b Q Q                                      (3) 

 

While the imaginary parts are, 

                                     1 1 0vQ wQ    

2 2 0vQ wQ                                                                                        (4) 

 

When one insert each one of the imaginary part into the corresponding one of the real part and 

use the transformation 2 1  the system of real parts will be reduced to the same equation 

which is,. 

2 2 * 3

1 1 1 1 1 1 1[( ) 2( ) ] [ ] 0
w

Q k k k k Q a c b b Q
v

                                                        (5) 

When the homogeneous balance implemented between 1Qand 
3

1Q in equation (5) it implies 

1m  . 

The main purpose of this work extracting new expectations to the soliton arising from 

equation (5) in the framework three distinct techniques, the three techniques candidates for 

this target are the EDAM [34], the ESEM [35-38] and  SWAM [39-43]. The suggested 

methods are examined previously to many other nonlinear differential equations which 

appearing in different branches of science and usually achieved good results. 

This paper designed as follow, in section two the algorithm of the EDAM and its applications 

to constructing the soliton solutions of this model. In section three, the algorithm of the 

ESEM and its applications to generate the soliton solutions of this model. In section four the 

algorithm of the SWAM and its application to extracting the soliton solutions of the suggested 

model and in section five the conclusion of this article presented. 



 

2. The EDAM algorithm 

To discuss this technique let us firstly discuss the NLPDE algorithm by propose the function 

  as a function in R(x, t) and its partial derivatives as, 

 ( , , , , ..........) 0x t xx ttR R R R R                                                                (6) 

That contain the highest order derivatives and nonlinear terms. 

With the aid of the transformation  ( , ) ( ),R x t R wx kt    equation (34) can be reduced 

to the following ODE:  

                                ( , , , ,...........) 0R R R R                                                                    (7) 

where   in terms of ( )R  , its total derivatives, while / d

d
 . 

The solution of equation (7) can be written in the form [34], 

2 2 3 4

1

( ) ( ),
M

i

i

i

Q a      


    .                                  (8) 

Now, we will apply this technique to the suggested model equation (5) mentioned above, 

since the balance is one thus the solution is 

 

0 1( )Q a a   .                                                                         (9) 

Via substituting about 
3, ,Q Q Q into equation (5)mentioned above which is 

 2 2 * 3

1 1 1 12 ( ) 2( ) 2 0
w

Q k k k k Q a c b b Q
v

           
 

 .                                  (10) 

Via equating the coefficients of various power of 
iQ to zero leads to system of equations from 

which the following results will be detected. 
2 2 2

*1 2 1 2 1
0

* 2 2

1 2 1 22 2

1 2 1 2 1

2 22
1 2 1 2*1

0
*

2 2

1 2 1 2

2 ( ) ( )
(1) , ( ), 0

2 2

2 ( ) ( ) 2 ( )2
(2) ( ) ( ), ,

( ) 2 ( )
( ),

2 2 ( )

2
(3) ( ) ( ),

w k k v k k a
a b c b a

v

v a b c b v k k w k kw
k k k k a

v v

v k k w k ka
a b c b a

v a b c b

w
k k k k

v

  

 



 

  
       

      
     

  
      

   

   

* 2 2

1 2 1 2

1

2 22
1 2 1 2*1

0
*

2 ( ) ( ) 2 ( )
,

( ) 2 ( )
( ),

2 2 ( )

v a b c b v k k w k k
a

v

v k k w k ka
a b c b a

v a b c b


      


  
     

   

           (11) 

These three results will generate three solutions, for simplicity and similarity we will 

implement only the first and the third one. 

Firstly, for the first result which is: 
2 2 2

*1 2 1 2 1
0

2 ( ) ( )
(1) , ( ), 0

2 2

w k k v k k a
a b c b a

v
  

  
         

From which we can obtain 
2 2 2

*1 2 1 2 1
0

2 ( ) ( )
, ( ), 0

2 2

w k k v k k a
a b c b a

v
  

  
                                  (12) 

This can be simplified to be 

1 1 2 01, 0, 1, 3, 1, 1, 0, 1 .c a a w v k k a b i                  



 

In the framework of this values and the relation 2 2 3 4       , we can easily obtain              

2

1
1

1

e

e






 
  

 
, the solution in the framework of the proposed method is 0 1( )Q a a    

     

2

1
( ) 1

1

e
Q

e






 
  

 
                                                                                             (13) 

2

1 2 0

1
( , ) 1 ( )

1

e
U x t Expi k x k y wt

e






   
       

   

                                                             (14) 

2

1 2 0

1
Re ( , ) 1 cos( )

1

e
U x t k x k y wt

e






   
       

   

                                                             (15) 

2

1 2 0

1
Im ( , ) 1 sin( )

1

e
U x t k x k y wt

e






   
       

   

                                                               (16) 
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Fig.1: The Re. part Eq. (15) in 2-nd and 3-th dimensions when:
 

1 1 2 01, 0, 1, 3, 1, 1, 0, 1 .c a a w v k k a b i                  
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Fig.2: The Im. part Eq. (16) in 2-nd and 3-th dimensions when: 0 1 
 

1 1 2 01, 0, 1, 3, 1, 1, 0, 1 .c a a w v k k a b i                  

 

Secondly, for the third result which is 

      

* 2 2

1 2 1 22 2

1 2 1 2 1

2 22
1 2 1 2*1

0
*

2 ( ) ( ) 2 ( )2
( ) ( ), ,

( ) 2 ( )
( ),

2 2 ( )

v a b c b v k k w k kw
k k k k a

v v

v k k w k ka
a b c b a

v a b c b

 



      
    

  
     

   

 

This can be simplified to be 

1 1 2 02, 4, 1, 3, 1, 1, 0.7, 1 .c a a w v k k a b i                    

In the framework of this values and the relation
2 2 3 4       , we can easily obtain              



 

2

2 5 sin 4








, the solution in the framework of the proposed method is 

0 1( )Q a a    

2
( ) 0.7

2 5 sin 4
Q 




 


                                                                        (17) 

1 2 0

2
( , ) 0.7 ( )

2 5 sin 4
U x t Expi k x k y wt 



  
      

  
                                           (18) 

1 2 0

2
Re ( , ) 0.7 cos( )

2 5 sin 4
U x t k x k y wt 



  
      

  
                                           (19) 

1 2 0

2
Im ( , ) 0.7 sin( )

2 5 sin 4
U x t k x k y wt 



  
      

  
                                           (20) 
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Fig.3: The Re. part Eq. (19) in 2-nd and 3-th dimensions when:

 
1 1 2 02, 4, 1, 3, 1, 1, 0.7, 1 .c a a w v k k a b i                    
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Fig.4: The Im. part Eq. (20) in 2-nd and 3-th dimensions when: 0 1 

 
1 1 2 02, 4, 1, 3, 1, 1, 0.7, 1 .c a a w v k k a b i                    

 

3. The ESEM algorithm 

The solution of equation (7) in the framework of the ESEM is 

( ) ( ).
M

i

i

i M

Q A  


                                                                                         (21)  

Where ( )  achieves the equation,  

 
2

0 1 2( ) B B B      
                                                                                 (22)  

The parameters iA will be located later, while the other parameters 0 1 2,B B and B will 

established the following forms of solutions,
 

(1) If 1 3 0,B B  Eq. (22) will be Riccati equation whose solutions are 



 

0 2

0 2 0 0 2

2

( ) tan( ( ), 0
B B

B B B B
B

                                                     (23) 

0 2 0
0 2 0 2

2

ln
( ) tanh( ), 0, 0, 1

2

B B
B B B B

B

 
    


              (24)  

(2) If 
0 3 0,B B   Eq. (22) will be the Bernoulli equation whose solutions are 

1 1 0
1

2 1 0

[ ( )]
( ) , 0

1 [ ( )]

B Exp B
B

B Exp B

 
 

 




                                                            (25) 

1 1 0
1

2 1 0

[ ( )]
( ) , 0

1 [ ( )]

B Exp B
B

B Exp B

 
 

 

 


                                                            (26)
 

And the above solutions have the general forms which are; 

2

1 2 12 2

1 1 2 1 0 1 2 1 2

2

41
( ) 4 tan ( ) , 4 , 0,

2

B B B
B B B B B B B B

B
   

  
      

  
  

      (27) 
 

2

1 2 12 2

1 1 2 1 0 1 2 1 2

2

41
( ) 4 tanh ( ) , 4 , 0,

2

B B B
B B B B B B B B

B
   

  
     

  
  

       (28)
 

 Where the integer 0 is the integration constancy  

Lastly, by inserting Eq. (22) into Eq. (21), equating the coefficients of various powers of
i to 

zero implies system of equations from which the values of the unknown variables will be 

detected. Furthermore, the required solutions can be detected by inserting the obtained values 

of these unknown variables into equations (21). 

Now we will apply this technique to converted Eq. (10) mentioned above, 

  2 2 * 3

1 1 1 12 ( ) 2( ) 2 0
w

Q k k k k Q a c b b Q
v

           
 

                                                      (29) 

Since the balance is 1M  thus the solution is, 

1
0 1( )

A
Q A A 


                                                                                          (30) 

Where 
2 3

0 1 2 3B B B B         

Case 1: The 1
st
 family in which

2

1 3 0 20B B B B       

  
20 1

1 0 1 2 2 12

B A
Q A B A B B A





                                                                    (31)                                                             

2
2 30 1 0 2 1

1 0 2 1 23

2 2
2 2

B A B B A
Q A B B A B 

 
                                                 (32) 



 

3 3 3 2 2 2 2 3

1 0 1 1 0 1 1 0 1 0 1

2 2 23

0 1 1 0 1 11

3 2

3 (3 3 ) ( 6 )

3 3 3
.

Q A A A A A A A A A A A

A A A A A AA

  

  

 

  

     


  

                     (33) 

Via inserting the relations (30-33) into Eq. (29), equating the coefficients of various powers 

of
i  to zero implies a system of equations in terms of unknown variables and by solves it the 

following results will be achieved, 

* 2 2 * *

1 1 1 2 1 1
0 2 0

1 2

[4 ( ) ( )]
(1) , , , 0.

2( ) 2 2

v A A a c b b k k iA a c b b iA a c b b
w B B A

k k

             
   


       (34) 

* 2 2 * *

1 1 1 2 1 1
0 2 0

1 2

[4 ( ) ( )]
(2) , , , 0.

2( ) 2 2

v A A a c b b k k iA a c b b iA a c b b
w B B A

k k

            
   


       (35)     

* 2 2 * *

1 1 1 2 1 1
0 2 0

1 2

[4 ( ) ( )]
(3) , , , 0.

2( ) 2 2

v A A a c b b k k iA a c b b iA a c b b
w B B A

k k

            
   


        (36)    

* 2 2 * *

1 1 1 2 1 1
0 2 0

1 2

[4 ( ) ( )]
(4) , , , 0.

2( ) 2 2

v A A a c b b k k iA a c b b iA a c b b
w B B A

k k

           
   


         (37)    

2 2 *

1 2 1 2 1
0 2 0 1

*

1

[2 ( ) ( )]
(5) , , 0.

22 2

i w k k v k k iA a c b b
B B A A

vA a c b b


      
   

  
                                         (38) 

2 2 *

1 2 1 2 1
0 2 0 1

*

1

[2 ( ) ( )]
(6) , , 0.

22 2

i w k k v k k iA a c b b
B B A A

vA a c b b


      
   

  
                                         (39) 

* 2 2

1 1 2 1 2
0 2 0 1

*

1

[2 ( ) ( )]
(7) , , 0.

2 2 2

iA a c b b i w k k v k k
B B A A

vA a c b b





      
   

  
                                        (40) 

* 2 2

1 1 2 1 2
0 2 0 1

*

1

[2 ( ) ( )]
(8) , , 0.

2 2 2

iA a c b b i w k k v k k
B B A A

vA a c b b





      
   

  
                                        (41) 

These eight results will generate eight solutions, for simplicity we will draw only one say the 

first identical to the first result which is 

* 2 2 * *

1 1 1 2 1 1
0 2 0

1 2

[4 ( ) ( )]
, , , 0.

2( ) 2 2

v A A a c b b k k iA a c b b iA a c b b
w B B A

k k

             
   


 

This result can be simplified to be 

 
*

1 2 1 1 0 2 01, 1, 3, 1.5, 1, 1, 0, 1 , 1v k k A A a c w B B A b i b i                                  (42)  

According to these values the proposed solution is 

   1
0 1( )

A
Q A A 


   , 0 2

0 2 0 0 2

2

( ) tan( ( ), 0
B B

B B B B
B

       

( ) tan( 1)x t                                                                                           
(43) 

( ) cot( 1) tan( 1)Q x t x t                                                                          (44) 



 

 ( , ) cot( 1) tan( 1) ( 1.5 1.1)U x t x t x t Expi x t                           (45) 

 Re ( , ) cot( 1) tan( 1) cos( 1.5 1.1)U x t x t x t x t                      (46) 

 Im ( , ) cot( 1) tan( 1) sin( 1.5 1.1)U x t x t x t x t                       (47) 
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Fig. 5: The Re. part Eq. (46) in 2D and 3D with values: 0 1 
 
*

1 2 1 1 0 2 01, 1, 3, 1.5, 1, 1, 0, 1 , 1v k k A A a c w B B A b i b i                   
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Fig.6: The Im. part Eq. (47) in 2D and 3D with values: 0 1 
 
*

1 2 1 1 0 2 01, 1, 3, 1.5, 1, 1, 0, 1 , 1v k k A A a c w B B A b i b i                   

By the same steps we can draw the other cases 

Case 2: The 2
nd

 family in which
2

0 3 1 20B B B B       

1
0 1( ) ,

A
Q A A 


                                                                                           (48) 

2 1 1
1 2 1 1 1 2 ,

A B
Q A B B A A B 





                                                                     (49) 

2
2 3 2 2 1 1

1 2 1 1 2 1 1 1 1 22 3 .
B A

Q A B A B B A B A B B  





                                       (50) 

3 3 3 2 2 2 2 3

1 0 1 1 0 1 1 0 1 0 1

2 2 23

0 1 1 0 1 11

3 2

3 (3 3 ) ( 6 )

3 3 3
.

Q A A A A A A A A A A A

A A A A A AA

  

  

 

  

     


  

                       (51) 

Via inserting the relations (48-51) into Eq. (26), equating the coefficients of various powers 

of
i  to zero implies  a system of equations in terms of unknown variables and by solves it 

the following results will be achieved 

2 * 2 2 *
*0 1 2 1

1 0 2 1

1 2

[2 ( ) ( )]
(1) , 2 , , 0.

2( ) 2

v A a c b b k k iA a c b b
w B iA a c b b B A

k k


        
       


          (52) 



 

   

2 * 2 2 *
*0 1 2 1

1 0 2 1

1 2

[2 ( ) ( )]
(2) , 2 , , 0.

2( ) 2

v A a c b b k k iA a c b b
w B iA a c b b B A

k k


       
      


         (53)                                                                             

*

2 1
0 1 2 2 1 1 2

*
(3) , 2 , , 0, .

2

ik iA a c b b
A B k B A k k

a c b b


    
      

  
                                   (54)                

*

2 1
0 1 2 2 1 1 2

*
(4) , 2 , , 0, .

2

ik iA a c b b
A B k B A k k

a c b b


   
     

  
                                      (55)                                          

 

*

2 1
0 1 2 2 1 1 2

*
(5) , 2 , , 0, .

2

ik iA a c b b
A B k B A k k

a c b b


  
      

  
                                    (56)                                                              

     

*

2 1
0 1 2 2 1 1 2

*
(6) , 2 , , 0, .

2

ik iA a c b b
A B k B A k k

a c b b


   
     

  
                                    (57)                

These six results will generate six solutions, for simplicity we will draw only one say the first 

identical to the first result which is 

2 * 2 2 *
*0 1 2 1

1 0 2 1

1 2

[2 ( ) ( )]
, 2 , , 0.

2( ) 2

v A a c b b k k iA a c b b
w B iA a c b b B A

k k


        
       


 

This result can be simplified to be 
*

1 2 0 1 1 2 11, 0.5, 1, 3, 2, 1, 0, 1 , 1v k k A A w a c B B A b i b i                                    (58) 

 

According to these values the solution from point of view of the proposed method is 

            1
0 1( )

A
Q A A 


   , 1 1 0

1

2 1 0

[ ( )]
( ) , 0

1 [ ( )]

B Exp B
B

B Exp B

 
 

 




 
 

 
2 [2( 1)]

( )
1 [2( 1)]

Exp x t

Exp x t
 

 


  
                                                                                (59)    

2 [2( 1)]
( ) 1

1 [2( 1)]

Exp x t
Q

Exp x t


 
 

  
                                                                                   (60)             

2 [2( 1)]
( , ) 1 ( 0.5 1.1)

1 [2( 1)]

Exp x t
U x t Expi x t

Exp x t

  
     

   
                                    (61) 

2 [2( 1)]
Re ( , ) 1 cos( 0.5 1.1)

1 [2( 1)]

Exp x t
U x t x t

Exp x t

  
      

   
                              (62) 

2 [2( 1)]
Im ( , ) 1 sin( 0.5 1.1)

1 [2( 1)]

Exp x t
U x t x t

Exp x t

  
      

   
                              (63)                                         
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Fig. 7: The Re. part Eq. (62) in 2D and 3D with values: 0 1 
 
*

1 2 0 1 1 2 11, 0.5, 1, 3, 2, 1, 0, 1 , 1v k k A A w a c B B A b i b i                   
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Fig. 8: The Im. part Eq. (63) in 2D and 3D with values: 0 1 

 
*

1 2 0 1 1 2 11, 0.5, 1, 3, 2, 1, 0, 1 , 1v k k A A w a c B B A b i b i                   

By the same steps we can draw the other solutions. 

 

4. The SWAM algorithm 

From point of view of the SWAM [38, 42] the solution can be proposed in the form, 

  1 ( , )
( , ) ( , )

iR x t
U x t x t e                                                                                       (64)                                                                 

Where ( , )x t and ( , )R x t are the amplitude portion and the phase portion of soliton 

respectively. Hence, via simple calculation of Eq.(2) we get the following relations,   
1

1( )
iR

t t tU i R e                                                                                                 (65)                                                                                                                                              

  1

1( )
iR

x x xU i R e                                                                                                 (66)                                                                                      

    12

1 1 1( 2 )
iR

xx xx x x xx xU i R i R R e                                                                      (67)                                                       

12

1 1 1( 2 )
iR

yy yy y y yy yU i R i R R e                                                                      (68) 

The two parts in equation (2) are the same when U V and can be converted to  

2 2 2 * 22( ) 0t xx yyiU U U a U c U b U b U U                                             (69) 

Via inserting the relations (61-65) into the above equation the following real and imaginary 

parts, 
2 2 * 3

1 1( ) 2( ) 0xx yy x yR R a c b b                                                    (70) 

1 12 2 0t x x y yR R                                                                                              (71) 

The bright solutions according to the proposed method [35-38] can be extracted as follow, 

  1

1 1 1 1( , ) sech , ( ) ( , )
R

x t A t where t B x y wt and R x t kx y t                (72)              

     1

1 1 1 1 1sech tanh
R

t A Bw R t t                                                                                     (73)                                                      

       1

1 1 1 1sech tanh
R

x A BR t t                                                                                          (74) 

1 122 2 2

1 1 1 1 1 1 1(1 )sech sech
R R

xx A B R R t A B R t 
                                                     (75) 

1 122 2 2

1 1 1 1 1 1 1(1 )sech sech
R R

yy A B R R t A B R t 
                                                    (76) 

By inserting the relations (72-76) into the real and imaginary parts equations (70), (71) we 

obtain 



 

1 1

1 1

22 2 2

1 1 1 1 1 1

32 2 * 3

1 1 1 1

( ) sech 2 (1 )sech

2 sech 2( ) sech 0

R R

R R

k A t A B R R t

A B R t a c b b A t

 
   

     
                                           (77) 

1 1

1 1 1 1 1 1 1 1 1sech tanh 2( ) sech tanh 0
R R

A Bw R t t k A BR t t                               (78) 

When equivalence operation is implemented for the higher of 1

1sech
nR t in the real part this 

implies 1 1R    

2 2 2 2 3 * 3

1 1 1 1( 2 ) sech [4 2 ( )]sech 0k B A t A B A a c b b t                      (79) 

From which we obtain these relations 

2
2 2 2 2

1 *

2
2 ,

B
k B A

a c b b



    

  
 

Moreover, the imaginary part implies 1 2( )w k    . When we take the same values of 

parameters like that chooses for the above two methods we get,  

 

14, 1, 4, 1, 1, 3A w B k a c                                                  (80) 

 

Thus the bright solution in the framework of these parameters is 
( 4 )( , ) sech[ 4 ] i x y tU x t x y t e                                                                         (81) 

 Re ( , ) sech[ 4 ] cos( 4 )U x t x y t x y t                                                   (82) 

 Im ( , ) sech[ 4 ] sin( 4 )U x t x y t x y t                                                    (83) 

 

We will draw only the positive one  
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Fig. 9: The Bright soliton Re. part Eq. (82) in 2D and 3D with values:
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Fig. 10: The Bright soliton Im. part Eq. (83) in 2D and 3D with values:

 *

1 2 11, 4, 1, 4, 1, 3 1, 3, 1 , 1v k k B k A w a c a c b i b i                       

 

The dark solutions according to the proposed method [35-38] can be extracted as follow, 



 

   2

2 2 2 2 2( , ) tanh where ( )and ( , , )
R

x t A t t B x y w t R x y t kx y t                  (84) 

    2 21 1

2 2 2 2 2[tanh tanh ]
R R

t A w BR t t  
                                                            (85)           

       2 21 1

2 2 2 2[tanh tanh ]
R R

x A BR t t  
                                                                (86) 

 2 2 22 22 2 2 2

2 2 2 2 2 2 2 2 2 2 2( 1) tanh 2 tanh ( 1) tanh
R R R

xx A R R B t A R B t A R R B t  
           (87) 

2 2 22 22 2 2 2

2 2 2 2 2 2 2 2 2 2 2( 1) tanh 2 tanh ( 1) tanh
R R R

yy A R R B t A R B t A R R B t  
           (88) 

By inserting the relations (84-88) into the real and imaginary parts equations (70), (71) we 

obtain 
2 2

2 2

22 2 2 2 2

2 2 2 2 2 2 2

2 32 * 3

2 2 2 2 2 2

( 4 ) tanh 2 ( 1) tanh

2 ( 1) tanh 2( ) tanh 0

R R

R R

k R B A t A R R B t

A R R B t a c b b A t

 



    

      
                          (89) 

2 2 2 21 1 1 1

2 2 2 2 2 2 2 2 2[tanh tanh ] 2( ) [tanh tanh ] 0
R R R R

A w BR t t k A BR t t   
         (90) 

When equivalence operation is implemented for the higher of 2

2tanh
nR t in the real part this 

implies 2 1R  hence the real and imaginary parts will be  

2 2 2 2 3 * 3 3

2 2 2 2 2 2( 4 ) tanh 4 tanh 2( ) tanh 0k B A t A B t a c b b A t            (91) 

2 2

2 2 2 2 2[tanh 1] 2( ) [1 tanh ] 0A w B t k A B t                                                        (92) 

Consequently, from the real part we get 
2 2 24k B    ,

2
2

2 *

2

( )

B
A

a c b b




  
and the 

imaginary part implies 2 2( )w k   . 

From which we can get 2 4w  , 6  ,
2

2 1A  and the dark solution is 

( 6 )( , ) tanh[ 4 ] i x y tU x t x y t e                                                                     (93) 

 Re ( , ) tanh[ 4 ] cos( 6 )U x t x y t x y t                                             (94) 

 Im ( , ) tanh[ 4 ] sin( 6 )U x t x y t x y t                                              (95) 
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Fig. 11: The dark soliton Re. part Eq. (94) in 2D and 3D with values:
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1 2 11, 6, 1, 4, 1, 3 1, 3, 1 , 1v k k B k A w a c a c b i b i                       
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Fig. 12: The dark soliton Im. part Eq. (95) in 2D and 3D with values:

 *

1 2 11, 6, 1, 4, 1, 3 1, 3, 1 , 1v k k B k A w a c a c b i b i                       



 

 

5. Conclusion 

From the point of view for three various manners which are the EDAM, the ESEM and the 

SWAM we detected new impressive expectations of solitons for the generalized (2+1) 

nonlinear Schrödinger equation with four waves mixing. The three manners have been 

applied for the first time to construct these new various solitons of this model. We success to 

determine the speed and propagation direction of the resultant solitons, reduce the interactions 

between two or more of two propagating waves via the four waves mixing. Furthermore, 

through this article we establish many new impressive visions for solitons arising from the 

suggested model via EDAM figures [1-4], ESEM figures [5-8] and the SWAM figures [9-12]. 

The novelty of our new achieved solitons for this model is clear when it compared with that 

obtained previously [26-30] who applied different techniques. 
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