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Abstract

This study is aimed to perform Lie symmetry analysis of the nonlinear fractional-order conduction-diffusion Buckmaster model

(BM), which involves the Riemann-Liouville (R-L) derivative of fractional-order ‘β’. We are going through symmetry reduction

to convert the fractional partial differential equation into a fractional ordinary differential equation. The fractional derivatives

of the converted differential equations are evaluated with the help of Erdelyi-Kober (E-K) fractional operators. The power

series solution and its convergence are analyzed with Implicit theorem. Conservation laws of the physical model are obtained

for consistency of system by Noether’s theorem.
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Abstract: This study is aimed to perform Lie symmetry analysis of the nonlinear fractional-

order conduction-diffusion Buckmaster model (BM), which involves the Riemann-Liouville (R-

L) derivative of fractional-order ‘β’. We are going through symmetry reduction to convert the 

fractional partial differential equation into a fractional ordinary differential equation. The 

fractional derivatives of the converted differential equations are evaluated with the help of 

Erdelyi-Kober (E-K) fractional operators. The power series solution and its convergence are 

analyzed by using Implicit function theorem. Conservation laws of the physical model are 

obtained for consistency of system by Noether’s theorem. 
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1. Introduction 

The study of fractional systems as a generalization of classical systems has attracted much 

attention of the scientists and mathematicians to know exact description of nonlinear 

phenomenon in fluid dynamics, mechanics, biological modelling, physics, engineering and 

areas of medical and tool science etc. Podlubny [1], Oldham [2], Debnath [3] and Kilbas et al. 

[4] has been described the importance and applications of local generalized derivatives or 

fractional order derivatives in real phenomenon. The nonlinear convection-diffusion equations 

have great contribution to model of the evolution of thermal waves in plasma (Rosenau and 
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Kamin [5]). The movement caused with in a fluid by propensity of hotter or less dense 

material to become colder, denser material to sink under impact of gravity, which in 

consequence shows in transfer of heat is called convection. The action of distributing matter 

by natural movement of particles is called diffusion. The classical nonlinear convection-

diffusion equation is given by Edward [6]. 

 

[ ( ) ] ( ) ,t x x xv D v v C v v= +                            (1) 

 

where ),( txv represents the density of particles and D (v) is diffusive term, C (v) is convective 

term; both D (v) and C (v) are non-zero terms. In present article, the nonlinear time fractional 

convection-diffusion equation is formed by replacing classical derivative by fractional derivative 

in equation (1). 

          

    ' 2( ) ( )( ) ( ) .t xx x xu D v v D v v C v v = + +        (2) 

 

We have considered special case of conduction-dispersion phenomenon, when D (v) = 4v3 and 

C (v) = 3v2 in equation (2), which is known as Buckmaster Model (BM) and it is extremely 

effective and relevant to explore the propagation of sound, electricity and electrodynamics in 

physical systems. As we know that buckling is the process of uncertainty that originates in thin 

materials due to pressure exceeds and makes the material bend out of plane. The BM equation 

(2) is also meant for dynamical modelling of thin sheet fluid flows to draw buckling, suggested 

by Buckmaster [7]. Mathematicians have been discussed the relevance of classical and fractional 

order systems in real dynamical problems with the various application of methodologies. 

Wazwaz [8-9] applied the variation iterative method, Tanh method and sine-cosine analysis to 

linear and nonlinear systems. Gardner equation have been solved Lin et al. [10] with imposition 

of tanh-coth method and Iyiola et al. [11-12] have described applications of Caputo fractional 

derivatives in different nonlinear time-fractional homogeneous and non-homogeneous models. 

Jafari et al. [16] explored the numerical scheme to study the system of fractional PDEs. Gandhi 

et al. [30-34] provided the explicit solution of fifth-order and fourth-order fractional systems by 

Lie symmetry analysis. He has been discussed about brain cancer tumor growth model and its 

analytic solution by the application of fractional reduced differential transform method on 
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Burgess equation. Recently, application of homotopy analysis has been imposed on linear and 

nonlinear fractional Newell-Whitehead-Segel Equation and ordinary differential equations to 

obtain the exact and approximate solutions.  

It is well known that the Lie symmetry theory plays significant role in invariant analysis of 

differential equations. The basic observation of methodology is that infinitesimal transformation 

leaves the set of manifold considered differential equations invariant. This method is given by 

Sophus Lie, which involves lengthy symbolic process but systematically unifies and extends well 

known techniques to construct the explicit solutions to nonlinear problems. Olver [13] 

emphasized on wide range applications of Lie group symmetries analysis to partial differential 

equations (PDEs). Bakkyaraj & Sahadevan [14] illustrated on Lie group transformation to solve 

the fractional-order system. Moyo & Leach [15] presented the mathematical cancer model by 

symmetry analysis. The time-fractional Korteweg-de-Varies equations have been solved by 

Zhang [17]. Biswas et al. [18-19] organised multiple objectives like solitons, bifurcation 

analysis, conservation analysis, dual dispersion, and nonlinearity laws of Boussinesq equation. 

Bansal et al. [20] has designed optical perturbation, Lie group invariants to Fokas-Lenells 

equation. The symmetry reduction has been applied to clarify the soliton solution of time 

fractional KdV and K(m,n) equations by Wang et al. [21-22]. The Harry-Dym equation with 

Riemann-Liouville fractional derivative has been studied by Huang et al. [23]. Garrido et al. [24] 

suggested Lie point symmetry along with travelling wave solution to generalised Drinfeld-

Sokolov system, Bokhari et al. [25] illustrated fundamentals of symmetries to time fractional 

tumour growth in brain. Liu et al. [26] and Singla et al. [27] declared that the Lie symmetry 

reduction is robust and authentic technique to solve higher order nonlinear systems. The 

extensive use of Erdelyi–Kober fractional operators are helpful in converting FPDEs into 

fractional ODEs has been stated by Sneddon [28]. Balsar et al. [29] attempted sum ability of the 

series solution of PDEs with constant coefficients. Shi et al. [36] and Razborova et al. [41] 

explained the additional conservation laws and exact solution to Boussinesq-Burgers system and 

Rosenau-KdV-RLW equation with nonlinearity by Lie symmetry. The study of diffusion and 

sub-diffusion wave equations with conservation laws has been concluded by Lukashuk et al. 

[42]. Anco et al. [43] focused on direct construction of conservation laws of linear and nonlinear 

PDEs. The concept of nonlinear self-adjointness to time-fractional Kompaneets equation has 

been obtained by Gazizov et al. [44]. In addition, recently, Gandhi et al. [45] focused on 
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invariant analysis, exact series solution, convergence of solution by Implicit theorem and 

conservation laws by Noether’s theorem on fractional-order Hirota-Satsuma Coupled KdV 

system. The comparative study for solving Laplace fractional equation has been produced by 

Dubey et al. [46]. Chatibi et al. [47] has done the discrete symmetry analysis of some global and 

local systems. The invariant solution of generalized fractional order (2+1)-Dimensional Date-

Jimbo-Kashiwara-Miwa equation has been evaluated by Chauhan et al. [48]. Zhang et al. [49] 

imposed power diffusion and conservation analysis to Fokkar-Planck equation. Bruzon et al. [50] 

found similarity solution of the Cooper-Shepard-Sodano equation along with utilization of 

conservation analysis. Using Lie group theory, the exact solutions for certain time‐fractional 

evolution equations and modified Khokhlov–Zabolotskaya–Kuznetsov equation are presented by 

Bira et al. [51] and Satapathy et al. [52] respectively.  

Our research article is organized as: some basic definitions in section 2, Lie symmetry 

methodology algorithm for BM is explained in part 3 and infinitesimal generators have been 

deduced by using symmetry reduction in section 4, followed by reduction of FPDEs into FODEs 

with utilization of Erdelyi-Kober operators in section 5, the power series solutions of respective 

FODE of BM and their convergence have been studied in subsequent sections 6 and 7 

respectively and finally conservation laws have been defined in section 8, which impart great 

information about physical BM system. 

 

2. Preliminaries  

Here, we explained the basic definitions of fractional derivatives and integrals. There are 

many ways to define fractional derivatives like Grunwald-Letnikov (GL), Riemann-Liouville 

(RL), Caputo definitions. Each has great advantages and sometimes disadvantages under 

different circumstance but we are interested in RL fractional derivative to explore symmetry 

reduction and the exact solution of FPDEs. Some of the required definitions are explained under: 

 

2.1. Definition: The R-L fractional partial derivative of order ‘β > 0’ for arbitrary function v(x,t) 

with time variable ‘t’ is given as 
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2.2. Definition: The R-L integrals of fractional order ‘β > 0’and ‘0 < t < T’ are defined as 
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some important results associated with above operators and applicable in this paper are: 

;
)1(

)1(
)( 



 −

+−

+
= ttDt      (6) 

;
)1(

)1(
)( 



 +

++

+
= ttJ t

     (7)

 

;1;
!

)0(
)())(((

1

0

)(







 −−= 
−

=

k

k

k

tt t
k

ttDJ

  

(8) 

.1;))(())(( nntgJDtgD n
t

n
tt −= − 

   (9) 

 

3. Methodology: 

We can impose distinct techniques for obtaining nearly exact or exact solutions of linear and 

nonlinear FPDEs but Lie symmetry reduction method is supposed to be best procedure to 

evaluate conservation laws and exact solutions of wide range of class of the symmetries of 

FPDEs, since symmetry reduction can also be schemed to solve problems by transforming them 

into fractional ODEs.  

 

Let us assume a FPDE is in following manner 

( , , , , ,...) ; (0,1)t x xxv F x t v v v  =         (10)  

Lie group of infinitesimal transformations is invariant under one-parameter ‘ε’ and it satisfies  



6 
 

),(),;(

);(),;(

);(),;(

);(),;(

);(),;(

);(),;(

222

211

2,

2

2

2















Otxvvv

Otxvvv

Otxvvv

Otxvvv

Otxvxx

Otxvtt

xx
tt

x
tt

t
tt

++=

++=

++=

++=

++=

++=

    (11)  

where τ, ξ and η are required infinitesimals ηx , ηxx  are extended infinitesimals and ηβ,t is 

extended infinitesimal of  fractional parameter of order ‘β’ associated to Lie algebra of (10) is 

spanned by vector fields 
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Prolongation to (10) carried  
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The expressions for extended infinitesimals are given as 
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As ‘η’ is linear function of ‘v’ then μ→0 
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Finally, we use equations (14-19) in prolonged equation (13), split the coefficients of vx 

and vxx and equate to zero then solve the obtained system linear or nonlinear fractional PDEs and 

ODEs. 

 

4. Fractional-Order Convection-Diffusion Buckmaster Model 

Applying Lie symmetry method on BM (2), using Lie symmetry analysis to obtain following set 

of PDEs 
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In order to solve set of equations (20-25), infinitesimals in explicit form with arbitrary constants 

‘p’ and ‘q’ are given by 
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The set {S1, S2} forms Lie Algebra of obtained infinitesimal generators with the Lie braces 

operator YXXYYX −=],[ as we have explained in all above cases. The characteristic equation for 

S2 is 
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Solving (28), we obtain similarity transformation 
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and related FODE with time fractional conduction-diffusion buckmaster equation is 
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5. Applications of Erdelyi-Kober Operators:  
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Theorem: Under the similarity transformations (29) for vector field X2 the reduced FODE (30) is 
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Reconsider similar arguments (λ-1) times, to get 
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Finally, FODE becomes 
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6. Power Series Solution of BM: 

Now for further solution of FODEs, we want to explore the explicit power series solution 

[30, 31], which can be applied to solve FODE (37). 

Set the power series   ,)(
0




=

=
n

n
naJ       (38) 

substituting (38) in (37), it yields 

.).1(3..)1(12

.)1.()2(4..
)23(

)2(

0 0 0
1

0 0 0

1
22

0 0 0
2

0

  

  



= = =
++−



= = =

−+−



= = = =
−+−−



=

+−+−++

−+−+=
−−

−−

n

n

k

k

i

n
kniki

n

n

k

k

i

n
kniki

n

n

ok

k

i

i

j

n
knjiiki

n
n

n

aaaknaaakn

aaaaknkna
n

n








(39) 

Put n = 0 in (25) and comparing coefficients of n , we get 
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.0,3.12
)23(

)2()21(

8

1
101

2
0

2
1

2
00

0
32 








−−

−

−−
−= aandaaaaaa

a
a




 



















−+−

+−+−
+−

+−+−

++
=

 

 



= = =
−+−



= = =

−+−

+

0 0 0
1

0 0 0

1
2

32

).1(3

)1)(1(12
))2(3(

))1(2()21(

)4)(2)(1(

1

n

n

k

k

i
kniki

n

n

k

k

i

knikin

n

n

aaaki

aaaikia
n

nn

ann
a





As 

,)()()()(
1

2
2

2
210 



=

+
++++=

n

n
naaaaJ   

.),(
1

3/)2(2
2

3/22
2

3/
10 



=

+−+
+

−− +++=
n

nn
n txatxaxtaatxv 

  (40) 

Hence, we found the exact power series solution (40). 

Now we are expecting the convergence of solution of BM, so 2+na  in equation (39) taken as 

.

||||||3

||||||12||
))2(3(

))2(2()21(

||

1
||

0 0 0
1

0 0 0

1
2

2





















+

+
+−

+−+−



 

 



= = =
−−+



= = =

−+−

+

n

n

k

k

i
ikkni

n

n

k

k

i

knikin

n

aaa

aaaa
n

nn

d
a





(41) 

We can find 1
)22(

))1(2()21(


+−

−−+−





n

nn
, for large arbitrary value of n. 

  

;||||||||||||||||
0 0 0

1
0 0 0

1
2

2 







++   



= = =
−+−



= = =
−−++

n

n

k

k

i
kniki

n

n

k

k

i
ikkninn aaaaaaaMa (42) 

where
1 12 3

greatest , ,
| | | | | |

M
d d d

 
=  

 
.

 Introduce another majorant series 

...,3,2,1,0,||;)(
0

=== 


=

iaccG ii
n

n
n     (43) 

where 

..
0 0 0

1
0 0 0

1
2

3 







++=   



= = =
−+−



= = =

−+−+
n

n

k

k

i
kniki

n

n

k

k

i

knikinn cccccccMc   (44) 

It can observe that ...,2,1,0;|| = nca nn      

Further, the series function G (ζ) has non-negative convergence radius and it presents 
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.)( 2

1 0 0 0 0
1

2
1

2
210

+


= = = = =
+−−−+−   







+++++= n

n

n

k

k

i

n

k

k

i
knikiknikin cccccccMcccG  (45) 

Now, implicit function system is defined with the variable ζ. 

.),( 2

1 0 0 0 0
1

2
1

2
210

+


= = = = =
+−−−+−   







++−−−−= n

n

n

k

k

i

n

k

k

i
knikiknikin cccccccMcccGGI   (46) 

As I (ζ, G) is regular in vicinity of (0, c0) and I (0, c0) = 0 with 0),0( 0 



cI

G
, by implicit 

function theorem explained in Rudin [35]. We observed that G (ζ) is regular in the vicinity of the 

point (0, c0) and have real positive radius and the series solution (40), converges in the vicinity of 

the (0, c0). 

 

7. Construction of Conservation Laws for BFM: 

In physical and mathematical vision, conservation laws plays key role in the analysis of time 

fractional PDEs. To obtain the conservation laws of convection-diffusion BM, we are 

generalizing the Noether’s theorem suggested by Ibragimov [37-38], which have been discussed 

in Bourdin et al. [39] and Malinowaska et al. [40]. The applications of conservation laws in 

FPDEs are almost alike to the application of these laws in classical order PDEs. These 

conservation laws can be extended from PDEs to FDEs. 

Let us define a conserved vector for BM (2), where 
t and 

x are components of vector 

),,( xt  =       (47) 

which satisfy the continuity or conservation equation given by  

.0|)()( 0=+ =
x

x
t

t DD      (48) 

A formal Lagrangian form with ‘u’ as new independent variable described as  

 ,3124 2223
xxxxt vvvvvvvu −−−=     (49) 

where v /  is Euler-Lagrangian operator, is defined as 

1 2

1 2 3

*

1

( ) ( 1) ... ,
( ) , , ...k

k

k

t i i i

kt i i i i

D D D D
v v D v v











=

  
= + + −
  

   (50) 

where 
*)( 

tD is adjoint of R-L fractional differential operator )( 
tD . 

Adjoint equation of (2), is given by 
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,0;)()1()( ** ===−= −

v
DDJD T

c
t

n
t

n
Tt

n
t



 
     (51) 

where −n

Tt J is right-handed fractional integral of order (n-β) and 
T

c

t D is Caputo right handed 

derivative operator of fractional order β. 

The idea of physical property of self-adjointness for establishing these laws have been 

discussed in [44] and this concept can also be applied and expanded to fractional PDEs. Here (2) 

will be self-adjoint if the adjoint equation (51) is well pleased for obtained solution of system 

(2). 

For further discussion the basic Noether expression defined as 

),()()()( x
x

t
txt NDND

v
WDDX ++=++



     (52) 

where Nt and Nx are noether operators. As Nx in (2) doesn’t have the non-integer or fractional 

derivatives with variable ‘x’ so, general expression is 

,)( 













+














−




+=

xx

x

xx

x

x

x

v
WD

v
D

v
WN     (53) 

and Nt involves fractional derivative so, this can be expressed by RL derivatives as 

  

,
)(

,)1()(
)(

)1( 1
1

0

















−−




−+= −−

−

=


vD

DWIWD
vD

DN
t

n
t

nj
t

t

j
t

n

j

jt






   (54) 

X  is prolongation of symmetry reduction with characteristic of the vector field W= η – τ vt – ξ vx 

in (52) and operator I in (54) is described as the following integral 

.
)(

),(),(

)(

1
),(

0

 
−−

=
t

T

t
dd

xfxg

n
fgI 






     (55) 

Apply Lagrangian operator ‘  ’ on both sides of (52) for any vector X of (2) and its solution, 

after that we observed  

0( ) ( ) | 0, also 0.t xX D D
v


 


=+ + = =     (56) 

Thus, we obtained the conservation law of (2) 

.0)()( =+  x
x

t
t NDND     (57) 

The components λt and λx of conserved vector fields in (31) can be expressed by 
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.)(

,
)(

,)1()(
)(

)1( 1
1

0















+














−




+==


















−−




−+== −−

−

=



xx

x

xx

x

x

xx

t

m
t

mj
t

t

j
t

m

j

jtt

v
WD

v
D

v
WN

vD
DWIWD

vD
DN
















  (58) 

The adjoint equation for (2) is found as 

0

43)(

)4()3()24(62412)(

32*

322222**

=

−+=

−++−−−=

vuvuvD

uvDuvDvuvDuvvuvvvuvvD

xxxt

xxxxxxxxt





 (59) 

If adjoint equation (59) satisfied for all solutions of (2), is said to be nonlinear self adjoint. It 

shows 

 .312443)( 222332*

xxxxtxxxt vvvvvvvvuvuvD −−−=−+     (60) 

Substituting 0)()(),( == xtxtu  represents the nonlinear self adjointness of (2). By using 

above (60), we obtain 

.0)(4)(3

,0))(())((

32

**

=−

==

vxvx

tDtD

xxx

t
c
tt



 

 

Which implies that Cxtv == ),(  , C is arbitrary constant.    

So, Lagrangian operator for (2) is  xxxxt vvvvvvvC 2223 3124 −−−=   

Now, we proceed with the calculation of conservation laws of BM by using (58). 

 

Case 1. For
x

S



= 1,10  , the Lie characteristic is xvW −=1 , so the components of 

conserved vectors are as follows 

),4123(.

)4)(())(4.3.24(

)(

22

3322

11

xxxx

xxxxx

xx

x

xxx

x
x

vvvvvc

cvvDvvcDvcvvc

v
WD

vv
DW

++=

−−−+=















+














+




−+=




  (61) 

).(.

)0,()(.

1

1

xt

xxt
t

vDc

vIvDc

−

−

−=

−+−=




      (62) 
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Case 2. For
v

v
t

t

x
xS




+




−




=


2  the Lie characteristic is xt xvv

t
vW +−=


2 , so the 

components of conserved vectors are as follows 

2 2

2 2 3 3

2 3

( )

( )( 24 3 ( 4 )) 4 ( )

3 (4 1)( ) 4 ( ),

x

x x

xx x xx

t x x x x t x

x t x x tx x xx

W D D W
v v v

t t
v v xv cv v cv D cv cv D u v xv

t t
cv v v v xv cv v v v xv

 

 

 

     
= + − + +   

     

= + − − − − − − + −

= − + + − − − − −

 (63) 

1
1

2 2

0

1

1

( 1) ( ) ( 1) ,
( ) ( )

( ) ( ,0)

( ).

n
t k k k n n

t t t

k t t

t t x t x

t t x

D D W I W D
D v D v

t t
c D v v xv I v v xv

t
c D v v xv



 







 



−
− −

=

−

−

  
= − − −  

  

= + − + + −

= + −



  (64) 

8. Conclusions: 

In this article, we have utilized the symmetry reduction to fractional-order convection-diffusion 

Buckmaster model. The Lie point infinitesimal generators and Lie algebra have been constructed 

and the Erdelyi-Kober operators are used to transform the fractional-PDE into fractional-ODE. 

Finally, the power series solutions of model obtained with its convergence by implicit function 

theorem. Also, Ibragimov’s method and Noether’s theorem have been used for construction of 

conservation laws of the model.  
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