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Abstract

The main objective of this research article is to summarize the study of the application of Lie symmetry reduction to the

fractional-order coupled nonlinear complex Hirota system of partial differential equations. By the efficient use of symmetries

and explicit solutions, this system reducing to nonlinear fractional ordinary differential equations (FODEs) with the application

of Erdyli-Kober (E-K) operators for fractional derivatives and integrals depending on real order. Investigating the convergent

series solution along with adjoint system and providing the conservation laws by Noether’s theorem.
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1. Introduction 

Fractional calculus is the theory of fractional integrals and derivatives of arbitrary order 

which is evolved towards the end of 17th century. Evidently, fractional calculus is old as 

classical calculus; many physicists and mathematicians [1, 3-5] like Lagranges, Euler, Abel, 

Gronwald, Letnikov, Riemann and Caputo have done great contribution on fractional-order 

derivatives. In the current research, there have been fast development in the field of fractional 

order systems involving in science, engineering and technology i.e. bioscience, fluid flow, 

electromagnetic, viscoelasticity, pandemic analysis, medicine, infectious modeling, drug therapy, 

image processing and diffusion wave equations [9, 10, 15, 16, 32]. 

Every researcher or mathematician has open challenge to overcome the difficulties and to 

find the exact solution of fractional-order systems. The person, who knows the utility of 

mailto:hemantgandhi1977@gmail.com
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fractional derivatives and integrals, is only authorized to work on such kind of fractional partial 

differential equations (FPDEs), because each definition has its own limitations and benefits. 

Frenandez et al. [42] represented the series analysis of fractional operators involving Mittag-

Leffler functions. Guariglia et al. [43] explained fractional derivatives of Riemann-Zeta function. 

Srivastava et al. [44] described the utility of fractional-order system in the biological population 

model with carrying capacity. The similarity analysis for strong shocks in non-ideal gas and 

numerical simulation of Ito coupled system have been analyzed by Arora et al. [11, 35]. Authors 

[6-8, 17, 18, 28, 30] suggested semi analytic and computational methodologies for obtaining the 

series and exact solutions of FODEs and FPDEs involving Laplace transform method, Sine-

Cosine technique, homotopy analysis, variation iteration method, homotopy perturbation 

method, reduced differential transform and power series technique but these methods are useful 

to provide numerical or approximate series solutions. In our recent work, we are interested in 

application of Lie symmetry analysis [2], which has capability to provide us explicit and exact 

solution of fractional and integer-order problems. Authors [19-23, 25, 26] have imposed the 

invariance analysis and E-K operators on system of FPDEs with R-Lfractional derivative 

approach. Nowadays, researchers are working on conservation laws analysis of the systems. 

Sneddon [24] explained the application of fractional E-K differ-integral operators in beautiful 

manner, which is capable to convert the system of time fractional FPDEs into FODEs. Noether's 

theorem [27, 31, 33] established a relation between conservation laws and symmetry of 

differential equations and applied on FPDEs without Lagrangian operators. Recently, authors 

[34, 36-39, 47] provided invariance structure, explicit exactsolutions with power series solution 

and conservation analysis of Boussinesq-Burger’s system, Drinfeld-Sokolov-Satsuma-Hirota 

coupled KdV and m-KdV equations via Lie symmetry analysis. Biswas et al. [12-14] have 

worked on dual dispersion, power laws, conservation laws and optimal quasi-solitons by Lie 

symmetry analysis. Chauhan and Arora [29] has obtained the complete analysis of time 

fractional Kupershmidt equation. Recently, Gandhi et al. [40, 41, 50] have applied symmetry 

reduction on multi-ordered time-fractional KdV equations and Hirota-Satsoma-coupled 

Korteveg-de-Vries equations to obtain the explicit solutions with convergence and conservation 

laws; he concluded that the fractional-order parameter   can control the output of solution of 

fractional mathematical models and in physical and mathematical aspects, the conservation laws 

play very crucial role to discuss the consistency of system. Zhang et al. [45] promoted the 
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conservation laws of Fokkar-Plank equation with power diffusion. Bruzon et al. [46] focused on 

the study of similarity solutions and application of new conservation theorem on Cooper-

Shepard-Sodano equation. New soliton solution of time-fractional Drinfeld-Sokolov-Satsuma-

Hirota system in dispersive water waves has been illustrated by Ray et al. [48], he claimed the 

analytical solution with Adomial polynomials and Tanh-method. A generalized two-component 

Hunter-Saxton system has been studied by Yang et al. [49]. Dubey et al. [51] has suggested the 

copulation of fractional homotopy perturbation and fractional homotopy analysis method with 

Sumudu transforms on local-fractional Laplace equation. The Hydon method has been used by 

Chatibi et al. [52] to construct discrete symmetries for a family of ordinary, partial, and fractional 

differential equations. Using the Lie point symmetry, the generalized invariant structure of the 

(2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation has been proposed by Chauhan et al. 

[53].  

In present article, a nonlinear time fractional complex Hirota system of partial differential 

equations in Riemann-Liouville (RL) definition is considered by Lie symmetry approach. The 

main goal of this work is to elaborate the utilization of symmetry analysis on nonlinear fractional 

system of four equations with their conservation analysis. Hirota equations have many 

applications in propagation of sound and optical pulses in water crystals waveguide along with 

single mode fibers study. The complex Hirota system [21] is explained as follows: 

( )

( )

3
2 21 1 1

1 23
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2 22 2 2

1 23
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z z z
z z
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where 
1 2( , ) ( , ) ( , ) ( , ) ( , ) ( , ),z x t u x t i v x t and z x t w x t i z x t= + = +  

and ( )2 2 2 2 2 2 2

1 2| | | | .z z u v w z u+ = + + + =  

The system reduced to: 
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here ut

 , vt

 , wt

  and zt

 are partial derivatives of u, v, w and z with fractional parameter 

(0 1)   and independent variables ‘x’ and ‘t’ respectively. In continuation, section 2 is 

dedicated to preliminaries and invariance study of the system with the systematic use of Lie 

symmetry approach to find explicit solution in section 3. Section 4 is devoted to application of 

Erdyli-Kober operators for conversion of system of FPDEs into FODEs. In section 5, power 

series solution processed with convergence analysis under implicit function theorem. Finally, 

adjoint system and conservation laws are studied via Noether’s theorem is proposed in section 6 

and section 7. The conclusion and remarks are presented with references at the end of work. 

2. Preliminaries 

In this part, author would like to design some fundamentals and definitions for the sake of 

understanding the methodologies and key points, concerned with local fractional real order 

derivatives and integrals and their applications in fractional calculus. 

 

Definition 2.1. The Caputo explained the fractional-order derivative of function F(t) as 
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Definition 2.2. The RL derived the definition of fractional-order derivative of F(t) as 
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Definition 2.3. Let the function ),( txu with variables ‘x’ and t > 0 then RL fractional partial order 

derivative is proposed as 
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Definition 2.4. The Leibnitz described the product rule under application of RL fractional-order 

derivatives in the form 
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Definition 2.5. The E-Kober generalized fractional differential operator ( ), ( )E    is given by 
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Definition 2.6.  E-Kober generalized fractional-order integral operator ))((
,




K is 

 

  








=

−
=




+−−




.0,)(

,0,)()1(
)(

1

))((
/1

1

)(1
,







 d

K    (8) 

 

3. Methodology 

In this section, authors would like to pursue the steps and process of fractional Lie symmetry 

reduction to coupled time fractional order system of FPDEs. 

 

Let us assume the system of FPDEs with fractional order   
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The infinitesimal transformations with single parametric notation in fractional Lie symmetry 

analysis is expressed as: 
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The vector field generated by infinitesimals is taken as: 

 

zwvuxtX +++++= 4321    (11) 

with 1 2 3 4

0 00 0 0 0

, , , , , .
dt d x du dv dw dz

d d d d d d    

     
     = == = = =

= = = = = =  

Here, ξ, τ, 1 2 3 4, , and    are obtained infinitesimals operators from (11), 
, , , ,

1 2 3 4, , andt t t t      

are the fractional extended infinitesimals of order   and 

1 1 1 2 2 2 3 3 3 4 4 4, , , , , , , , and , ,x xx xxx x xx xxx x xx xxx x xx xxx             are extended infinitesimals of integer-order 

described 
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where ‘Dx’ is total derivative operator defined as: 
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The extended infinitesimal function of  -th order 
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1


 concerned to RL fractional derivative is 

described by: 
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Using the generalized Leibnitz rule and chain rule (5) the term )(
tD  in (16) can be defined as 
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Finally, the expression for  -th order extended infinitesimal t,
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Similarly, expressions for t,
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 and t,

4


 are also obtained 
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For expressions 
i

 ; i=5, 6, 7…16 given by (23) vanishes. 

4. Lie symmetry reduction of nonlinear system of Hirota equations 

Applying prolongation on set of Hirota system of FPDEs (2), we obtain 
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Using above explained facts in the methodology, substituting the values of extended 

infinitesimals and solving system of obtained fractional PDEs, we obtain the following 

infinitesimals 
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where ( 1,2,...8)ip i = are components of standard basis of vector field 

.4321 zwvutxiX +++++=     (26) 

Lie algebra has the following vectors 
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We are interested to evaluate the optimal solution of system of equations by choosing first 

infinitesimal generator with the help of characteristic equation. 
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Explicit solution obtained with ‘α’ as similarity variable 
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5. Application of EK differ-integral operators 

Applying the R-L fractional derivative as: 
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Applying E-K integral operator then above expression found to be 
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Repeating above arguments (λ-1) times and applying E-K differential operator, we obtain 
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System of FPDEs is reduced to system of FODEs which is given by 
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6. Power series solution of system and its convergence: 
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From above equation, we obtained  
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Substituting n=0 in (36), we get 



















−
−

−
−=

−
−

−
−=

−
−

−
−=

−
−

−
−=

,
)3/2(!3

)3/42(

;
)3/2(!3

)3/42(

;
)3/2(!3

)3/42(

;
)3/2(!3

)3/42(

0103

0103

0103

0103

Sddd

Sccc

Sbbb

Saaa

















2 2 2 2

0 0 0 0 0where ,S a b c d= + + +  (38) 



14 
 

and  
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So the explicit power series solution of system is given by: 
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It is well known that for n < m, the expressions like 1
)(

)(






m

n
 and ‘M’ is maximum of the 

arbitrary coefficients involved in the set of equations with introduction of majorant series. Now, 

we introduce some another power series 

0 0 0 0
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where, pn=|an|, qn =|bn|, rn= |cn|, sn =|dn|, n = 1, 2, 3,…, then, we can have
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Assuming the implicit functions of system with independent variable χ. 
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(44) 

Here, U1, V1, W1 and Y1 are analytic in a neighborhood of (0, p0), (0, q0), (0, r0) and (0, s0) 

respectively, where U1(0, p0) = 0; V1(0,q0)= 0 , W1(0,r0) = 0 and Y1(0,s0) = 0 with 

0)),0(( 01 



pU

U
0)),0(( 01 




qV

V
0)),0(( 01 




rW

W
 and 0)),0(( 01 




sY

Y
then, with Implicit function 

theorem [40, 50], we reached at convergence of power series solution. 

7. Conservation laws 

The study of classical and fractional PDEs is incomplete without the discussion of conservation 

laws for consistency and stability of system. We obtained the distinct conserved vectors for 

distinct infinitesimal generators associated with system of time fractional PDEs due to existence 

of one-to-one correspondence between them. These laws can be evaluated with the aid of 

Noether’s theorem [31, 33]. For the sake of conservation laws, we should discuss the adjoint 

system along with Lagrangian and components of conserved vectors
t and 

x , which has the 

continuity equation as follows: 

.0)()( =+ x
x

t
t DD       (45) 

The Lagrangian of system of FPDEs with four new dependent variables P, Q, R and Sof 

independent variables t and x is in the form 
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With Euler-Lagranges (E-L) equations also known as adjoint equations described as: 
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and *)( 
tD represents the adjoint operator to 

tD , which is defined in right-sided Caputo time-

fractional derivative of order ‘ ’ as: 
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The adjoint system of equations formed by system of FPDEs  
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for two independent variables x and t with dependents u, v, w and z respectively, the components 

of conserved vectors 
t and 

x are expressed as 
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Here tjxjjj uuW  −−= ,   is defined above in (46) and ‘I’ is integral defined as 
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Case 1: For X1, Lie characteristic functions are txtx v
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Case 2: For X2, ,,, 321 xxx wWvWuW −=−=−= and xzW −=4 , we have  
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Case 3: For X3, ,0,, 321 =−== WuWvW and 04 =W , we have 
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Case 4: For X4, ,,0, 321 uWWwW −=== and 04 =W , we have 
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Case 5: For X5, ,0,0, 321 === WWzW and uW −=4 , we have 
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Case 6: For X6, ,,,0 321 vWwWW −=== and 04 =W , we have 
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Case 7: For X7, ,0,,0 321 === WzWW  and vW −=4 , we have 
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Case 8: For X8, ,,0,0 321 zWWW === and wW −=4 , we have 
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 (62) 

8. Conclusions 

The invariance analysis for fractional-order nonlinear coupled Hirota system of PDEs has 

been done successfully by the application of Lie symmetry reduction. The obtained 

infinitesimals and generators are used for reduction of the system into nonlinear FODEs via 

validity of E-K operators in R-L fractional derivative sense. The power series solution and its 

convergence are discussed by imposition of majorant series and Implicit function theorem. We 

applied Euler-Lagranges operators to create the adjoint system of the system and conservation 

analysis with the use of Noether’s theorem for stability and consistency of system. This work 
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may be applicable to fractional fluid flow, propagation of sound, single mode fiber study and 

other nonlinear evolution problems. 
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