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1. Introduction

Fractional calculus is the theory of fractional integrals and derivatives of arbitrary order
which is evolved towards the end of 17th century. Evidently, fractional calculus is old as
classical calculus; many physicists and mathematicians [1, 3-5] like Lagranges, Euler, Abel,
Gronwald, Letnikov, Riemann and Caputo have done great contribution on fractional-order
derivatives. In the current research, there have been fast development in the field of fractional
order systems involving in science, engineering and technology i.e. bioscience, fluid flow,
electromagnetic, viscoelasticity, pandemic analysis, medicine, infectious modeling, drug therapy,

image processing and diffusion wave equations [9, 10, 15, 16, 32].

Every researcher or mathematician has open challenge to overcome the difficulties and to

find the exact solution of fractional-order systems. The person, who knows the utility of
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fractional derivatives and integrals, is only authorized to work on such kind of fractional partial
differential equations (FPDESs), because each definition has its own limitations and benefits.
Frenandez et al. [42] represented the series analysis of fractional operators involving Mittag-
Leffler functions. Guariglia et al. [43] explained fractional derivatives of Riemann-Zeta function.
Srivastava et al. [44] described the utility of fractional-order system in the biological population
model with carrying capacity. The similarity analysis for strong shocks in non-ideal gas and
numerical simulation of 1to coupled system have been analyzed by Arora et al. [11, 35]. Authors
[6-8, 17, 18, 28, 30] suggested semi analytic and computational methodologies for obtaining the
series and exact solutions of FODEs and FPDEs involving Laplace transform method, Sine-
Cosine technique, homotopy analysis, variation iteration method, homotopy perturbation
method, reduced differential transform and power series technique but these methods are useful
to provide numerical or approximate series solutions. In our recent work, we are interested in
application of Lie symmetry analysis [2], which has capability to provide us explicit and exact
solution of fractional and integer-order problems. Authors [19-23, 25, 26] have imposed the
invariance analysis and E-K operators on system of FPDEs with R-Lfractional derivative
approach. Nowadays, researchers are working on conservation laws analysis of the systems.
Sneddon [24] explained the application of fractional E-K differ-integral operators in beautiful
manner, which is capable to convert the system of time fractional FPDEs into FODEs. Noether's
theorem [27, 31, 33] established a relation between conservation laws and symmetry of
differential equations and applied on FPDEs without Lagrangian operators. Recently, authors
[34, 36-39, 47] provided invariance structure, explicit exactsolutions with power series solution
and conservation analysis of Boussinesg-Burger’s system, Drinfeld-Sokolov-Satsuma-Hirota
coupled KdV and m-KdV equations via Lie symmetry analysis. Biswas et al. [12-14] have
worked on dual dispersion, power laws, conservation laws and optimal quasi-solitons by Lie
symmetry analysis. Chauhan and Arora [29] has obtained the complete analysis of time
fractional Kupershmidt equation. Recently, Gandhi et al. [40, 41, 50] have applied symmetry
reduction on multi-ordered time-fractional KdV equations and Hirota-Satsoma-coupled
Korteveg-de-Vries equations to obtain the explicit solutions with convergence and conservation
laws; he concluded that the fractional-order parameter # can control the output of solution of
fractional mathematical models and in physical and mathematical aspects, the conservation laws

play very crucial role to discuss the consistency of system. Zhang et al. [45] promoted the



conservation laws of Fokkar-Plank equation with power diffusion. Bruzon et al. [46] focused on
the study of similarity solutions and application of new conservation theorem on Cooper-
Shepard-Sodano equation. New soliton solution of time-fractional Drinfeld-Sokolov-Satsuma-
Hirota system in dispersive water waves has been illustrated by Ray et al. [48], he claimed the
analytical solution with Adomial polynomials and Tanh-method. A generalized two-component
Hunter-Saxton system has been studied by Yang et al. [49]. Dubey et al. [51] has suggested the
copulation of fractional homotopy perturbation and fractional homotopy analysis method with
Sumudu transforms on local-fractional Laplace equation. The Hydon method has been used by
Chatibi et al. [52] to construct discrete symmetries for a family of ordinary, partial, and fractional
differential equations. Using the Lie point symmetry, the generalized invariant structure of the
(2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation has been proposed by Chauhan et al.
[53].

In present article, a nonlinear time fractional complex Hirota system of partial differential
equations in Riemann-Liouville (RL) definition is considered by Lie symmetry approach. The
main goal of this work is to elaborate the utilization of symmetry analysis on nonlinear fractional
system of four equations with their conservation analysis. Hirota equations have many
applications in propagation of sound and optical pulses in water crystals waveguide along with

single mode fibers study. The complex Hirota system [21] is explained as follows:

%z, 0%z oz

Wl 8731+6(| 2, [ +]|z, |2)a—xl=o,

'z, 0%z For @)
8t6’2 + axaz +6(I z, [ +]z, Iz)a—xz=0,

where z,(x,t) =u(x,t) +iv(x,t) and z,(x,t) =w(x,t) +iz(x,t),
and (|z, [ +]z, )=’ +v* + W +2° =Y 0’

The system reduced to:



ou+u,, +6u, (> u?)=0,
OV +V,, +6v, (3 u?) =0,
YW+ W, +6w, (Y u*)=0,
07+ 12,, +62,(Du%)=0,

)

here o/u,o/v,o/w and o/zare partial derivatives of u, v, w and z with fractional parameter

0 (0 < #<1)and independent variables ‘x’ and ‘t” respectively. In continuation, section 2 is
dedicated to preliminaries and invariance study of the system with the systematic use of Lie
symmetry approach to find explicit solution in section 3. Section 4 is devoted to application of
Erdyli-Kober operators for conversion of system of FPDEs into FODEs. In section 5, power
series solution processed with convergence analysis under implicit function theorem. Finally,
adjoint system and conservation laws are studied via Noether’s theorem is proposed in section 6

and section 7. The conclusion and remarks are presented with references at the end of work.

2. Preliminaries

In this part, author would like to design some fundamentals and definitions for the sake of
understanding the methodologies and key points, concerned with local fractional real order

derivatives and integrals and their applications in fractional calculus.

Definition 2.1. The Caputo explained the fractional-order derivative of function F(t) as

t
#J.(t—p)’l_g_ll:i(p)dp for A-1<@<A;1eN;t>0. (3)
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Definition 2.2. The RL derived the definition of fractional-order derivative of F(t) as

1 d/lt

0 - @ -
DY (F ) = 07— g1

—p) O R (p)dp for A-1<0<A;1eN;t>0. (4)



Definition 2.3. Let the function u(x,t) with variables ‘x’and t > 0 then RL fractional partial order

derivative is proposed as

1 5/1 . A-6-1
————[(t-p) u(p,x)dp for A-1<6< A, 1eN,
C(A—p) ot* g (5)
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A

Definition 2.4. The Leibnitz described the product rule under application of RL fractional-order

derivatives in the form

0 20 oz A . . (0)  (-1)"0T(n-6)
DYUV) = z(ﬂ)q (U).DA(V) :6 >0 with (z}‘ra—e)r(eu)'

(6)

A=0

Definition 2.5. The E-Kober generalized fractional differential operator(Ea“”co)(g“ )is given by

-1
(Eg'ﬂw)(g) = T‘[(r+/1—%zdij(Kg“"m‘“w)(z) with £ >0,0>0and u>0;
A=0 z
()
. [1]+1, ueN
e, pmeN

Definition 2.6. E-Kober generalized fractional-order integral operator (K,"*@)(<) is

T o (e A e E T LRV @
(&) , u=0.

3. Methodology

In this section, authors would like to pursue the steps and process of fractional Lie symmetry

reduction to coupled time fractional order system of FPDEs.

Let us assume the system of FPDEs with fractional order &



0 :
Ofu = F(t, X, U, V,W,U,,V,,W,, Z,, Uy, Vo, Wy, Zyyo--);

[ .
07V = F, (6, X, U, V, W, Uy, Vo, Wy, Zy Uy, Vi, Wy Zyy o)

9)

BPW = Fy(t, X, U, V, W, Uy, Vi, Wy, Zyy Uy Vs Wy Zygonn);

0P7 = Fy(t, X, U, V, W, Uy, Vi, Wy, Zy, U, Vi Wags Zyen); 0 < 0 <1

The infinitesimal transformations with single parametric notation in fractional Lie symmetry

analysis is expressed as:

t=1t(xtuVv,wze)=t+er(Xt,uv,w,z)+o(e?);
)_<=>_((x,t,u,v,w,z;g)=x+g§(x,t,u,v,w, ) +0(e?);
U=u(X,tuv,w,ze)=u+en(xtu,v,w,z)+o(e?); (10)
V=V(XtU,V,W,Z &) =V+ed(Xt,u,v,W,2z) +0(g);
W=wW(Xt UV, W,z &) =W+ eu(X, t,u,v,w, z) +o(e?);
7=7(Xt,U,V,W,Z;&) =z +eu(X,t,u,v,w,z) +0(e?).
The vector field generated by infinitesimals is taken as:
X:Tat+§8x+7718u+7728V+7738W+77482 (11)
: dt dx du dv dw dz
WlthT:d_ 1§:d_ ' 1:d_ , 2:d_ ’773:d_ '774:d_ :
¢ =0 & =0 ¢ =0 & =0 le=0 €le=o

Here, & 7, 1,,1,,n, and ;,are obtained infinitesimals operators from (11), n”*,no", 7" and n)*
are the fractional extended infinitesimals of order 0 and
Ty s s and gy, ;) " are extended infinitesimals of integer-order

described



m =D, (m)-u,D, (&) —uD,(7) ;
m"=D,(m)-u,D(&)-u,D,(7) ;
=D (") = Uy, D, (&) —u,, D, (7)
1, =D, (17,)-v,D,(£) -Vv,D,(7) ;
1, =D, (1;) =V D, (&) -, D, (7);
1, =D (17,") =V, D, (&) =V, Dy (7)

(12)

15 = Dy (1) ~W,D, (&) — WD, (7) ;

1y =D, (m3) —w, D, (&) —w, D, (7) ;

157 =Dy (157) = Wi D, (£) = Wi D, (7)

1y =D, (1,)—2,0,(8) - zD,(7) ;

1 =D, (1) = 2,D,(£) — 2, D, (7);

My =D,(15") = 26D, () = 2,,, D, (2),
where ‘Dy’ is total derivative operator defined as:
DX:g+uxi+uxxi+...+vxi+vxxi+ ..... + W, 0 +Wxxi+ ..... (13)

OX ou ou,, ov, OV, OW, OW,,

The extended infinitesimal function of @-th order 7,”'concerned to RL fractional derivative is

described by:
m”t =D () +£Df (uy) - DY (Euy) + DY (D, (r)u) - DY (zu) + 2.0 (u).  (14)
Also, D7 (f (t)) = D? (D, (f (1)), then above expression simplified to
m” =D (m) +£D{ (u,) - Df (¢u,) + 7.0 (u) - DY (z u,). (15)

Applying the generalized Leibnitz rule on (15), we obtain

2 =0 -00 @ 20— 3 b @prtwy- 37 bt one w.ae
1 t V) =00 e nlt t oA 2+ t .

A=1

Using the generalized Leibnitz rule and chain rule (5) the term D/ () in (16) can be defined as
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at’ a’ ot tot” oot ot at
e Ry RN - R SO
g(i] ala(?j“”) DY (w) +g(z] 618(312) D/ *(z) + o0, +0,+0,+0,,
where,
S et S
73355 tﬁ“w;—w“%’
w3285 feraeat Y E e R
Finally, the expression for & -th order extended infinitesimal »,”* of the form
=L 00 e, 20 E0),
2200 (o 22,00
e

+

i( Ja (nlw DH l( ) Z[ ja (7712 DH /1()

1

=
Z( ]Df (E)D*(u) +0,+0,+0,+0,
A=1

Similarly, expressions for »,”* n,”*and 7,’" are also obtained
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|0V Joreor w3 or
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+Z(}J (773\/ 01() Z( j (773z ta *(z) -
A=l A=1
= 9 A 9-1
Z 2 D7 ($)D; (W) + 04 + 0y + 0y + 03,
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atﬁ 4v atﬂ at&
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Lt (n, eo())ae - 89(’742){ GHU_UOH(%)}

>

ﬂ]D (f)DH /1(2 )+ 0y + 0y, + 0 + 0y

(20)

(21)

(22)



_oo/lmk—lei k tA-? _ram kraﬂerkn
_zzzmzmzzrzg)[i][mj(rj KIT'(A +1—¢9)( u) o™ (u )6t’1 mauX (23)

For expressions o, ; i=5, 6, 7...16 given by (23) vanishes.

4. Lie symmetry reduction of nonlinear system of Hirota equations
Applying prolongation on set of Hirota system of FPDEs (2), we obtain

XXX

)
+772iii+6772(2u2;+12v U771+V772+W773+Z774) 0; 24)
)

+773 +6773(Zu2 +12w U771+V772+W773+Z774)

XXX

0;
0.

Using above explained facts in the methodology, substituting the values of extended

infinitesimals and solving system of obtained fractional PDEs, we obtain the following

infinitesimals
t —pu
5—%4- Py T —%' m= 31 + PV+ pWH P52,
M, =—PU— pé + PeW+ P, 2,
oW (25)
=P PV T+ e,
My =—PsU—P,V— ng_p?l
where p; (i =1,2,...8) are components of standard basis of vector field
Xi = éax + z-at + 7718u + 7728v + ’738W + 77482' (26)

Lie algebra has the following vectors

10



Xl =§8X +£8t —Eau _Xav _ﬂaw_iﬁz’
3 0 3 3 3 3
X,=0,, X,=Vvo, -ud,, X, =Wo, —ud,, (27)

Xy =120,-U0d,, Xs=W0,-V0,,
X, =10,-V0,, Xg=10,—W0,.

We are interested to evaluate the optimal solution of system of equations by choosing first

infinitesimal generator with the help of characteristic equation.

3dx @t —-3du —-3dv —-3dw —3dz

b = = = _ (28)
X t u v w z
Explicit solution obtained with ‘o’ as similarity variable
u=t"f(a), v=t?*g(a), w=t"*n(a), z =t "*k(a) and a = xt . (29)
5. Application of EK differ-integral operators
Applying the R-L fractional derivative as:
o%u = ot —5)* 0157035 (xs3)ds | q=t/s
=l — 5 jt-9 (xs™")ds | g
l 29 ( _ﬁ j (30)
:a/l l o- 1 3 f 013
tru wfm (eq”"")dg

Applying E-K integral operator then above expression found to be

0 B 2-200 1.9 59
olu=of|t 3|k, 3 flal (31)
0
6

_b_
Also, using to, f (a) =tx(—§jt 3 '(a):—gadi(f(a))in above equation (31), we obtain
o

11



2-20( 1.9 50
olu =of atlt 3[1('33 fla
0
2-20 4 1-2 50
=0/t 3 [i—ﬁ—gaij k33 flal
3 3 da) ,

Repeating above arguments (A-1) times and applying E-K differential operator, we obtain

(32)

20 460
p 221
ofu =t 3{P3 3 f]a. (33)

0
System of FPDEs is reduced to system of FODEs which is given by

40

P, ¢ f}a+ t (@) +6f ()X 12)=0;

0

0;

wy o
P, * " gla+g (a)+6g (@)X 1?)
’ (34)

hle+h"(@)+6h ()X 12)=0;

0,

k}a +k "(ar) + 6k (@)X £2)

1—ﬁ,6’
P, 3
0
1-49 4
P, 3
6
whereY f2 = f2+ g% +h*+k?,

6. Power series solution of system and its convergence:
Set  f(a)=Yaa" g(a)=ba", h(@)=ca" f(@)=3da" (35)
n=1 n=1 n=1 n=1

From above equation, we obtained

12



”Zj a,a" +§(n +3)(n+2)(n+1)a, " +6[§(n +1)an+1a”j[S] =0,
3
n

b,a" + i (n+3)(n+2)(n+1b,.a" +6(i (n +1)bn+1a"j[5] =0;

n=0

n=0

zw: 5 c,a" +i(n+3)(n+2)(n +1)c,, " +6[§:(n +1)Cn+10‘n][5]=0;
n=0 1—‘(2_3+nJ n=0

n=0

a+ i (n+3)(n+2)(n+1)d, " +6(i (n+1d,.,a" J[S] =0,

n=0

» 2 » 2 © 2 © 2
where S = (Zana”j +[ana“j +[cha”j +(Zdna”j :
n=1 n=1 n=1 n=1

Substituting n=0 in (36), we get

s =

3=

_ T(2-4913)
—_L@2-4013)

AT(2-013)

AT(2-013)
_T@-4019

0~ 90,

bo - bls()y
where S, =a,> +b,” +¢,” +d,?,

C, = C,—C ;
3T 3r@e-g/3) ° 0

__T(2-49/3)
Ar(2-61/3)

do - dls()!

13
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and

40 no
L "33 6 L 2 2 2 2
e a, - a,,, \a2, +bZ, +c2, +d
" (n+3)! r(z_ﬁﬂ“ﬂ e T PICERL FRL SRR
3 3
n! F(2_439+n:f) 6 n
= ’ b — b a2 b2 C2 dz
n+3 (I’]+3)! F(z_e nej n (n+3)(n+2) kgo n+1—k( n-k TPk T Crk + n—k)
3 3
" F(Z—?+rf) 6 ]
- 2 2 2 2
= Ch— C a, +by  +c,, +d
n+3 (n+3)! F(2_9+m9) n (n+3)(n+2) kgo n+1—k( n—k n—k n-k n—k)
3 3
" F[Z—Af+rfj 6 )
= d — d a’, +b?, +c2, +d?
n+3 (n+3)! F(2_0+nej n (n+3)(n+2) IZ:O n+1—k( n—k n—k n—k n—k)
3 3
(39)
So the explicit power series solution of system is given by:
fla)=a, + 3‘~1(Xt_9/3)Jr a, (Xt_m)z {—%% —also}(xt‘m)3 + r;i:lam(xt“g’?’)n+3
- 013 ['(2-4613) _o13B & /33
g(a)=b0+b1(xt 0/3)+b2(xt 0/3) {_mbo_blso}(xt 9/3) +n§bn+3(xt 9/3) o
_ 013\ I'(2-40/3) YIS o33
h(a):c0+c1(xt 9/3)+c2(xt 0/3) “{_mco—cﬁo}(ﬂ 9/3) +nZ::1C“+3(Xt 9/3)

k(a)=d, + dl(xt‘9’3)+ dz(xt‘9’3)2 J{

I'(2-4613) PR s
-2 g —d,S, [Ixt S (x
Ir@-60/3) ° 0}( f nZ:l wslxt )

14



r(z 9, nej
|an3| 3 3 |an| 0 ||n n+1k(ank+bnk+cnk+dnk;
* (n+3)l (2 0 nej (n+3)(n+2)||k:0
3 3
L)
3 3 I 2 1
b b +b +c2, +d2, |
| n+3| (n +_3)| [2 0 né?j | n | |(n +_3)(n+ 2)"k =~ n+1— k( n—k -k n—-k n—k
3 3
L i)
|Cris |5 3 3 |n|| 0 "n n+lk( k+b k+C k+dnk;
+ (n+3)| (2 0 naj (n+390+2)|%
3

r(z ‘
= d >d +b +c2 +d
| n+3| (n+3)| (2 ‘l n |(n+3)(n+2)||k0 n+1- k(nk -k n—-k

(41)

It is well known that for n < m, the expressions like <1 and ‘M’ is maximum of the

()
r'(m

arbitrary coefficients involved in the set of equations with introduction of majorant series. Now,

we introduce some another power series

U =2 p2" V()=20.1" W(x)=2 rx"and Y(x)=> s.2", (42)
n=0 n=0 n=0 n=0
where, pn=|an|, gn =|bn|, = |Cx|, Sn =|dn|, n =1, 2, 3,..., then, we can have

pn+3 l:pn+zpn+1 k(pn k+qn k+ k+5n k):|

n
Oniz =M |:qn + an+1—k(p§—k + qr%—k + rnz—k + Sﬁ—k)}
k=0 (43)

fo=M|r+ Sy ( 2 2 4?2 452 )
n+3 — n + kz n+1-k pn—k + qn—k + n—k + n-k /|
=0

n

2 2 2 2
Sh43z = M l:sn + kz Sn+1—k(pn—k +0n_k t ok T Sh_k )j|
=0

Assuming the implicit functions of system with independent variable y.

15



n
U (7, U)=U(x)— Py — Pt — Pox” — Pax’ - M{pn +k§0pn+1k(p§k N D sr?k)}

V,(xV)=V(¥)=0y -7 -0z’ -0z’ —M C (2 2 2 2 )
(e NV)=V() o — Uy —Uox” — sy qn+k20qn+1_k Phok +0nk + Tk +Sh k)|
) (44)

WAy WY =W () -1 — Ly — o v? — v — M : ( 2 2 2 2 ) :
1(;(' ) - (Z) r0 rlZ rz)( r3;( rn + kz rn+1—k pn—k + c1n—k + rn—k + Sn—k ’
=0

Vol Y)Y =Y () =S —S 7 —5 72 —5.v% — M S ( 2 2 2 2 )
1(7(’ ) - (Z) So =S¥ =S¥ S3X Sp + kz Sni1-k\Pnk T Onk Tk +Shk /|
=0

Here, U1, V1, W1 and Y are analytic in a neighborhood of (0, po), (0, go), (0, ro) and (O, o)
respectively, where U1(0, po) = 0; Vi(0,q0)= 0 , W1(0,r0) = 0 and Y1(0,50) = 0 with

0 o d o : - .
a_U(Ul(O’ p,)) %0 a—v(vl(o,qo));to aW(vvl(o,ro));to and a—Yo(l(o,sO))q:othen, with Implicit function

theorem [40, 50], we reached at convergence of power series solution.
7. Conservation laws

The study of classical and fractional PDEs is incomplete without the discussion of conservation
laws for consistency and stability of system. We obtained the distinct conserved vectors for
distinct infinitesimal generators associated with system of time fractional PDEs due to existence
of one-to-one correspondence between them. These laws can be evaluated with the aid of

Noether’s theorem [31, 33]. For the sake of conservation laws, we should discuss the adjoint

system along with Lagrangian and components of conserved vectors o'and @, which has the

continuity equation as follows:
D, (@") + D, (0*) = 0. (45)

The Lagrangian of system of FPDEs with four new dependent variables P, Q, R and Sof

independent variables t and x is in the form

(= P(@fu +o3u+ 66Xu(2u2))+ Q(@fv + O3V + 66Xv(2u2))+

R(afw+ 3w+ 68Xw(2u2 ))+ S(@fz +037+ 66Xz<2u2 )) )

With Euler-Lagranges (E-L) equations also known as adjoint equations described as:
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. ) 0 o\x O 0 0 0
with E-L operators — =—+(D;) ———-D,| —— |+ Dy| —— |- Dy| —— || (48
P ar ~au TP opfu' (au'xj Xx(au'xxj X"X(au'xxxj (48)

(47)

and (D) represents the adjoint operator to D/, which is defined in right-sided Caputo time-

fractional derivative of order ‘¢’ as:

(DY) =$Dfu = FE 12;)[( —t)"Dlu(v, x)dv; n=[6]+1  (49)

The adjoint system of equations formed by system of FPDEs

(D7) P —P,, +6P, (> u*)-12P (> uu, ) =0;
(D7) Q-Qu +6Q, (2 u*)-12Q(Xuu, )=
(D/)R=R,, +6R, (Y u*)-12R(> uu, )

(D7)'S =S, +6S, (D u*)-125 (> uu, ) =0,

where D u® =u?+Vv? +w? + 2%, (50)

and D" uu, =uu, +Ww, +Ww, +2z,,

for two independent variables x and t with dependents u, v, w and z respectively, the components

t
of conserved vectors @ and @™ are expressed as

o fot ), oo o o
sl gyl ool ool ol ]

o' =1 +D’" l(W) or +|(wj, Dt%}

0]
aDu! D/ u

Here W; =n; —&;u, —7;u,, ¢ is defined above in (46) and ‘I’ is integral defined as

T f(s,¥)9(x, X)d,uds. (52)

0.9~ r gy bl
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u_x, t vV X t
Case 1: For X, Lie characteristic functions are W, =———-—u, ——u, W, =————

V__
3 3% 0 3 3% 0

WX t z X t :
Wy=————w, —— =-373 zZ, 2 z, and components of conserved vectors obtained as

w, W
3 3% @' % 3

given below:
o =50+ -4-Fu - Su Jer(zu) ] (ZU _t_j
3 3 3 % 3 3 6

P
u Xu tu vV X
-P ﬂ_kﬂ_ﬂ + ____V +
2Vx XV XX tvtx Vxx XVxxx 1:vt w X t 2
— XXX, X Q) X —_ W, —— 6R R
+QX( 3 ) A3 T e STl e awt[ (Zu)s XX](53)
2W,  XW tw W, XW. tWi, Z X t
+R | S D g | Rl oy T —=-Z7,——1z7,|6S(>u?)+S
X[s 3 9) (3 3 j(ssxetj[(z)“
( z

0
2 X+&+ﬁJ—S[Z Zxxx tZt><xj
3 3 0

af u X t u X t af vVoX t
o' = PD/ 1(—§—§ux—5utj+ I(_E_EUX_EU“P‘}FQD‘H 1(—§—§vx—gvt)+
v ox_ ot a4 WX t WX t
|(—§—§Vx evt,Qthr RD/ 1(—5——Wx—gwtj+ I(— 2 —§Wx—5WpRtj+ (54)
SDf‘(—é—ﬁzx—%th+I(—%—izx—%zt,st)

Case 2: For Xo,W; =—u,, W, =-v,, W; =-w,, and W, =-z,, we have

" = f—Ux[6PZU2 + PxxJ_uxx(Px) _uxxxP _VX[GQZUZ +QXXJ_VXX(QX) _uxxe

(55)
_Wx[6R2u2+ Rxx]_wxx(Rx)_WxxxR_ZX[GSZUZ+Sxx] xx(S ) xxx
o' =—PDf ™ (uy) + 1(-u,, R) QD (v,) + 1 (~v,, Q) (56)
—RD?H(w,) + 1 (-w,,R)—SDf }(z,) + 1 (~2,,S,).
Case 3: For X3, W, =v,W, =-u, W; =0,and W, =0, we have
& =V[6P(Xu? )+ Py |-V, Py + Py ~ul6Q(Z 0% )+ Qi [+ 1,Q, + Quy, -

@' =PD (V) +1(v,R)-QD{ ™ (u) + 1 (-u, Q).
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Case 4: For X4, W, =w, W, =0, W; =—-u, and W, =0, we have

o~ = w[6P(Zu2)+ PXXJ— W, P, + Pw,, —u[6R(Zu2)+ RXXJ+ u,R, +Ru,,,

(58)
o' =PD (W) + I (w,R)—RD?™(u) + 1 (-u,R)).
Case 5: For Xs, W, =z, W, =0, W; =0,and W, =-u, we have
o = z[GP(ZuZ)Jr PXXJ— z,P + Pz, —u[68(2u2)+ SXXJ+ u,S, + Su,,, (59)
o' =PD{ Y (2)+1(z,R)-SD{ (u) + 1(-u,S,).
Case 6: For Xs, W, =0, W, =w, W; =-v,and W, =0, we have
ot = w[GQ(Zu2)+ QXXJ— w,Q, +Qw,, —v[6R(Zu2)+ RXXJ+ V,R, +Rv,,, (60)
@' =QD{ (W) + 1 (W, Q) —RDI™(v) + 1 (-v, Ry).
Case 7: For X7, W, =0, W, =z, W; =0, and W, =—v, we have
0 = z[GQ(ZUZ)Jr QXXJ— 2,Q, +Qz,, —Vl6S(Zu2)+ SXXJ+ V, S, + SV, (61)
@' =QDI (W) + 1 (W,Q,) —SD (v) + 1 (-, S,).
Case 8: For Xg, W; =0, W, =0, W; = z,and W, =—w, we have
o~ = z[6R(Zu2)+ RXXJ—WX R, +Rw,, —W[68(2u2)+ SXXJ+ W, S, + SW,,, (62)

o' =RD(z)+1(z,R,)—SD (W) + 1 (—w, S,).
8. Conclusions

The invariance analysis for fractional-order nonlinear coupled Hirota system of PDEs has
been done successfully by the application of Lie symmetry reduction. The obtained
infinitesimals and generators are used for reduction of the system into nonlinear FODEs via
validity of E-K operators in R-L fractional derivative sense. The power series solution and its
convergence are discussed by imposition of majorant series and Implicit function theorem. We
applied Euler-Lagranges operators to create the adjoint system of the system and conservation

analysis with the use of Noether’s theorem for stability and consistency of system. This work
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may be applicable to fractional fluid flow, propagation of sound, single mode fiber study and

other nonlinear evolution problems.
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