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Abstract

This paper is devoted to the study of existence, uniqueness, continuous dependence, general decay of solutions of an initial

boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state

and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get

an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally,

under suitable conditions to obtain the global solution, we prove the general decay property with positive initial energy for this

global solution.
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1 Introduction

In this paper, we study the following Dirichlet problem for a wave equation with strong damping
and nonlinear memory8>>>>><>>>>>:

utt � �utxx �
@2

@x2
(�(x; t; u(x; t))) +

Z t

0
g(t� s) @

2

@x2
(��(x; s; u(x; s))) ds

= f(x; t; u; ut; ux; utx); 0 < x < 1; 0 < t < T;

u(0; t) = u(1; t) = 0;

u(x; 0) = ~u0(x); ut(x; 0) = ~u1(x);

(1.1)

where � > 0 is given constant and f; g; �; ��; ~u0; ~u1 are given functions.
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Prob. (1.1) is a type of viscoelastic problems, the Volterra integral in the �rst equation of (1.1) is
a memory term, so called viscoelastic term, responsible for viscoelastic damping. The wave equations
with memory terms are arised in studies about viscoelastic materials, which possess a capacity of
storage and dissipation of mechanical energy. The dynamic properties of viscoelastic materials are
great importance and interest as they appear in many applications to natural sciences, for literatures
on this topic, we can �nd in [9]-[12] and references therein.

The viscoelastic problem of the form (1.1) has been studied by many authors, for example, we
refer to [3], [17], [18], [22]-[24], [26] - [30], [32], [34]. By using di¤erent methods together with various
techniques in functional analysis, several results concerning the existence/global existence and the
properties of solutions of viscoelastic problems such as blow-up, decay, stability have been established.

For more details, there have been a lot of investigations dedicated to the following viscoelastic
wave equation

utt ��u+
Z t

0
g(t� s)�u(x; s)ds� ��ut + h (ut) = F(x; t; u): (1.2)

In general, the most common forms of the nonlinear damping h and the source F in Eq. (1.2) are
exponential types, especially h = jutjm�2 ut and F = jujp�2 u. In [3], Cavalcanti et al. proved that, as
� = 0;  = 0; F = 0 and together with nonlinear boundary damping, the energy of solutions of the
corresponding problem went uniformly to zero at in�nity. In [29], Messaoudi considered Eq. (1.2) with
� = 0;  = 0; F = jujp�2 u; and showed that, for certain class of relaxation functions and certain initial
data, the solution energy decayed at a similar rate of decay of the relaxation function, which was not
necessarily decaying in a polynomial or exponential fashion. In [28], Messaoudi studied Eq. (1.2) in
case of � = 0; h = a jutjm�2 ut; F = b jujp�2 u, and proved a blow-up result for solutions with negative
initial energy if p > m and a global existence result for p � m: Latterly, Ka�ni and Messaoudi [22]
also obtained a blow-up result of a Cauchy problem for a nonlinear viscoelastic equation in the form
(1.2) with m = 2. In [27], Mesloub and Boulaaras studied a viscoelastic equation for more general
decaying kernels and established some general decay results, from which the usual exponential and
polynomial rates are only special cases. In the presence of the strong damping ��ut and the linear
damping ut (m = 2), Li and He [24] proved the global existence of solutions and established a general
decay rate estimate for the corresponding problem given by

utt ��u+
Z t

0
g(t� s)�u(x; s)ds��ut + ut = u jujp�2 : (1.3)

On the other hand, the �nite-time blow-up results of solutions with both negative initial energy
and positive initial energy were also obtained. In [23], with addition the dispersion ��utt, Ka�ni
and Mustafa also investigated Eq. (1.3) on whole space Rn, and the authors proved a blow up result
by imposing conditions on the kernel g: For more results related to Eq. (1.2) and Eq. (1.3) such as
general decay or blow up in �nite time, we can see in [17], [18], [30], [34].

In [26], Long et al. studied a speci�c form of Eq. (1.2) with � = 0;  = 1; h = jutjm�2 ut; i.e., the
authors considered the following viscoelastic equation

utt � uxx +
Z t

0
g(t� s)uxx(x; s)ds+ � jutjp�2 ut = F(x; t; u); (1.4)

associated with mixed nonhomogeneous conditions. Under a certain local Lipschitzian condition on
the source F and certain class of relaxation functions and suitable initial datum, a global existence
was proved and an asymptotic behavior of solutions as t ! 1 was studied. Recently, Quynh et al.
[34] has considered Eq. (1.4), in which, an N -order recurrent sequence has been established and its
convergence to the unique solution of (1.4) satisfying an estimation of convergent rate in N order
has been proved. Furthermore, by using �nite-di¤erence approximation, the authors constructed an
algorithm to �nd numerical solutions via the 2-order iterative scheme (as N = 2).
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However, to the best of our knowledge, there are relatively few works devoted to the study of
partial di¤erential equations with nonlinear memory, for example, we can see [6], [7], [20], [21], [32],
[35]. In the paper published in 1985 [20], Hrusa considered a one-dimensional nonlinear viscoelastic
equation of the form

utt � cuxx +
Z t

0
g(t� s) ( 	 (ux(x; s)))x ds = f(x; t); (1.5)

the author established several global existence results for large data and proved an exponential decay
result for strong solutions when g(s) = e�s and 	 satis�es some conditions. In [35], Shang and
Guo proved the existence, uniqueness, and regularity of the global strong solution and gave some
conditions of the nonexistence of global solution to the one-dimension pseudoparabolic equation with

the nonlinear memory term
Z t

0
g(t� s) ( � (u(x; s); ux(x; s)))x ds: In [32], Ngoc et al. proved the local

existence of the wave equation with strong damping and nonlinear viscoelastic term as follows

utt � �uxxt �
@

@x

h
�1

�
x; t; u(x; t); ku(t)k2 ; kux(t)k2

�
ux

i
+

Z t

0
g(t� s) @

@x

h
�2

�
x; s; u(x; s); ku(s)k2 ; kux(s)k2

�
ux(x; s)

i
ds

= F
�
x; t; u; ux; ut; ku(t)k2 ; kux(t)k2

�
; 0 < x < 1; 0 < t < T;

(1.6)

associated with Robin-Dirichlet boundary conditions and initial conditions, where � > 0 is a constant,
and �1; �2; g; f are given functions which satisfy some certain conditions. Moreover, the authors
established an asymptotic expansion of solutions, i.e., the solutions of (1.6) can be approximated by a
N�order polynomial in small parameter. Recently, Kaddour and Reissig [21] have proved the global
(in time) well-posedness results for Sobolev solutions to the following Cauchy problem for a damped
wave equation with nonlinear memory on the right-hand side8<: utt ��u+ (1 + t)rut =

Z t

0
(t� �)� ju(� ; x)jp d� ; (t; x) 2 (0;1)� Rn;

u(0; x) = u0(x); ut(0; x) = u1(x); x 2 Rn;
(1.7)

where r 2 (�1; 1) and  2 (0; 1). Moreover, for another investigation of (1.7) given in [21], they also
have proved a blow-up result for local (in time) Sobolev solutions.

On the other hand, it seems that there are no results relating to continuous dependence and
general decay of solutions of initial boundary value problems with nonlinear memory term. The topic
of continuous dependence on datum has received important attention since 1960, with the earlier works
of Douglis [8] and Fritz [12]. After that, P. Benilan and M.G. Crandall [1] discussed the continuous
dependence on the nonlinearities of solutions of the Cauchy problem for the equation�

ut ���(u) = 0; in Rn � R+;
u(x; 0) = u0(x); x 2 Rn:

(1.8)

The authors de�ned the continuous dependence of solutions in sense (see [1], p. 162)

kun(t)� u1(t)kL1(Rn) ! 0; as �n ! �1;

where �n : R ! R are continuous and nondecreasing functions, �n(0) = 0, and un are solutions of
the Cauchy problem (1.8). In [33], Pan proved the following estimation which showed the continuous
dependence of solutions for the parabolic equation with exponential nonlinearityZ 1

0

Z 1

0
ju(x; t;m)� u(x; t;m0)j � C� jm�m0j ;

3



where u is solution of the proposed problem, 0 < m; m0 � 1 and C� is a explicit constant. Recently,
Bayraktar and Gür [14] have studied the continuous dependence of solutions on dispersive � and r
and dissipative b coe¢ cients of the damped improved Boussinesq equation

utt � b�u� ��utt � r�ut = �(�u jujp�2);

in which the e¤ects of small perturbations of parameters on solutions have been obtained. For similar
results, we refer to [4], [13].

Motivated by the above-mentioned inspiring works, in this paper, we consider Prob. (1.1) and
we �rst prove existence, uniqueness of solutions for this problem (Theorem 3.5) by applying the
linearization method together with Faedo-Galerkin method and the weak compact method. Next,
we consider the continuous dependence of solutions on the nonlinearities of Prob. (1.1). Precisely, if
u = u(�; ��; f; g) and uj = u(�j ; ��j ; fj ; gj) are the solutions of Prob. (1.1) respectively depending on
the datum (�; ��; f; g) and (�j ; ��j ; fj ; gj), such that8>>>>><>>>>>:

sup
M>0

max
j�j�3

D��j �D��

C0(AM )

! 0; as j !1,

sup
M>0

max
j�j�3

D���j �D���

C0(AM )

! 0; as j !1,

sup
M>0

max
j�j�1

kD�fj �D�fkC0( ~AM) ! 0; as j !1,

kgj � gkH1(0;T �) ! 0; as j !1,

(1.9)

where T � is �xed positive constant; AM ; ~AM are compact sets depending on a positive constant M ;
D�f are partial derivatives with order less than or equal j�j, then uj converges to u in W1(T ), as
j !1 (Theorem 4.1).

Finally, we consider a speci�c case of Prob. (1.1) with � = �(t; u); �� = u; f = ��1ut + f(u) �
1

2
D2
2�(t; u)u

2
x+F (x; t), and we prove the general decay of solutions of Prob. (1.1) in this case (Theorem

5.6). It is well known that, in order to assure the general decay of solutions, the essential assumption
for the relaxation function g usually satis�es a relation of the form

g0(t) � ��(t)g(t); (1.10)

where � is a di¤erentiable nonincreasing positive function, see [10], [17], [31]. Recently, the condition
(1.10) have been relaxed by Mesloub and Boulaaras [27], Boumaza and Boulaaras [2], Conti and Pata
[5], in which the kernel g haven�t been necessarily decreasing. In the present paper, the relaxation
function g also satis�es (1.10), however, it is necessary to set some assumptions for the nonlinear
quantity �; we shall give an example in which � satis�es a relatively wide class of C3-functions.

We note more that the decay property is a form of asymptotic behavior/stability in which the
energy of solutions tends to zero at in�nity. For topic on asymptotic behavior of solutions, there have
been many interesting results for models related to (1.1) with memory term, for example, we refer to
[16], [19], [24] and the references therein.

The paper consits of �ve sections. In Section 2, we present some preliminaries. In Section 3, we
state and prove the theorem of existence and uniqueness of Prob. (1.1). Sections 4 and 5 are devoted
to the continuous dependence and the general decay of solutions of Prob. (1.1). The results obtained
here may be considered as relative generalizations of those in [28] -[31], [34].

2 Preliminaries

In this section, we present some notations and materials in order to present main results. Let

 = (0; 1); QT = (0; 1)� (0; T ) and we de�ne the scalar product in L2 by

hu; vi =
Z 1

0
u(x)v(x)dx;

4



and the corresponding norm k�k, i.e., kuk2 = hu; ui. Let us denote the standard function spaces by
Cm(
), LP = Lp(
) and Hm = Hm(
) for 1 � p � 1 and m 2 N. Also, we denote that k�kX is
a norm in a Banach space X, and Lp(0; T ;X); 1 � p � 1; is the Banach space of real functions
u : (0; T )! X measurable with the corresponding norm k�kLp(0;T ;X) de�ned by

kukLp(0;T ;X) =
�Z T

0
ku(t)kpX dt

�1=p
<1 for 1 � p <1;

and
kukL1(0;T ;X) = ess sup

0<t<T
ku(t)kX for p =1:

On H1; we use the following norm

kvkH1 =
�
kvk2 + kvxk2

�1=2
: (2.1)

The following lemma is known.
Lemma 2.1. The imbeddings H1 ,! C0(
) and H1

0 ,! C0(
) are compact and

(i) kvkC0(
) �
p
2 kvkH1 for all v 2 H1;

(ii) kvkC0(
) � kvxk for all v 2 H1
0 :

(2.2)

Remark 2.2. By (2.1) and (2.2), it is easy to prove that, on H1
0 , two norms v 7! kvkH1 and

v 7! kvxk are equivalent.
Throughout this paper, we write u(t); u0(t) = ut(t) = _u(t); u00(t) = utt(t) = �u(t); ux(t) =

5u(t); uxx(t) = �u(t); to denote u(x; t); @u@t (x; t);
@2u
@t2
(x; t); @u@x(x; t);

@2u
@x2
(x; t); respectively. With

f 2 Ck([0; 1] � [0; T �] � R4); f = f(x; t; y1; � � � ; y4); we de�ne D1f = @f
@x ; D2f =

@f
@t ; D2+if =

@f
@yi
;

i = 1; � � � ; 4 and D�f = D�1
1 � � �D�6

6 f ; � = (�1; � � � ; �6) 2 Z6+; j�j = �1 + � � � + �6 � k; D(0;��� ;0)f =

f: Similarly, with � 2 Ck([0; 1]� [0; T �]�R); � = �(x; t; y); we de�ne D1� =
@�
@x ; D2� =

@�
@t ; D3� =

@�
@y

and D�� = D
�1
1 � � �D�3

3 �; � = (�1; � � � ; �3) 2 Z3+; j�j = �1 + � � �+ �3 � k; D(0;��� ;0)� = �:

3 Local existence and uniqueness

In this section, we consider the local existence and uniqueness of Prob. (1.1). By using the
linearization method together with Faedo-Galerkin method, we prove that there exists a recurrent
sequence which converges to the weak solution of (1.1). Let T � > 0; we make the following assumptions:

(H1) ~u0; ~u1 2 H2 \H1
0 ;

(H2) �; �� 2 C3([0; 1]� [0; T �]� R) and
D3�(x; t; y) � �� > 0; for all (x; t; y) 2 [0; 1]� [0; T �]� R;

(H3) g 2 H1(0; T �);

(H4) f 2 C1([0; 1]� [0; T �]� R4); such that
(i) f(0; t; 0; 0; y3; y4) = f(1; t; 0; 0; y3; y4) = 0; for all (t; y3; y4) 2 [0; T �]� R2;
(ii) There exists a positive constant � such that

� <

p
���

3
p
2
; with ��� = min f1; ��; 2�g ; and

kD6fkC0( ~AM ) � �; 8M > 0;

where ~AM = [0; 1]� [0; T �]� [�M;M ]2 � [�
p
2M;

p
2M ]2:

Concerning the function f satisfying the assumption (H4), we take

5



f(x; t; y1; � � � ; y4) = f1(x; t; y1; � � � ; y3) +
�y21
1 + y21

sin y4; (x; t; y1; � � � ; y4) 2 [0; 1]� [0; T �]� R4;

where f1 2 C1([0; 1]� [0; T �]� R3); such that

f1(0; t; 0; 0; y3) = f1(1; t; 0; 0; y3) = 0; 8(t; y; y3) 2 [0; T �]� R;

and 0 < � <

p
���

3
p
2
; with ��� = min f1; ��; �g :

One can easily verify that f 2 C1([0; 1]� [0; T �]� R4) and ((H4); (i)) is ful�lled.
By

jD6f(x; t; y1; � � � ; y4)j =
�y21
1 + y21

jcos y4j � �; 8(x; t; y1; � � � ; y4) 2 ~AM ; 8M > 0;

it follows that kD6fkC0( ~AM ) � �; 8M > 0: Then, the condition (H4)� (ii) also holds.
A function u is called a weak solution of the initial-boundary value problem (1.1) if

u 2WT = fu 2 L1(0; T ;H2 \H1
0 ) : u

0 2 L1(0; T ;H2 \H1
0 ); u

00 2 L2(0; T ;H1
0 ) \ L1(0; T ;L2)g;

and u satis�es the variational equation

hu00(t); vi+ �hu0x(t); vxi+ a(t;u(t); v) =
Z t

0
g(t� s)�a(s;u(s); v)ds+ hf [u](t); vi ; (3.1)

for all v 2 H1
0 ; a.e. t 2 (0; T ); together with the initial conditions

u(0) = ~u0; u
0(0) = ~u1; (3.2)

where

f [u](x; t) = f(x; t; u(x; t); u0(x; t); ux(x; t); u
0
x(x; t));

a(t;u(t); v) =

�
@

@x
(�(t; u(t))) ; vx

�
= hD1�(t; u(t)) +D3�(t; u(t))ux(t); vxi ;

�a(t;u(t); v) =

�
@

@x
(��(t; u(t))) ; vx

�
= hD1��(t; u(t)) +D3��(t; u(t))ux(t); vxi :

Let T � > 0 be �xed. For M > 0; we put8>>>>>>>>>><>>>>>>>>>>:

KM (�) = k�kC3(AM ) = max
j�j�3

D��

C0(AM )

;

KM (��) = k��kC3(AM ) = max
j�j�3

D���

C0(AM )

;

~KM (f) = kfkC1( ~AM) = max
j�j�1

kD�fkC0( ~AM) ;

k�kC0(AM ) = sup
(x;t;y)2AM

j�(x; t; y)j ;

kfkC0( ~AM) = sup
(x;t;y1;��� ;y4)2 ~AM

jf(x; t; y1; � � � ; y4)j ;

where AM = [0; 1]� [0; T �]� [�M;M ] and ~AM = [0; 1]� [0; T �]� [�M;M ]2 � [�
p
2M;

p
2M ]2:

For any T 2 (0; T �], we consider the set

VT = fv 2 L1(0; T ;H2 \H1
0 ) : v

0 2 L1(0; T ;H2 \H1
0 ); v

00 2 L2(0; T ;H1
0 )g;

then VT is a Banach space with respect to the norm (see Lions [25])

kvkVT = maxfkvkL1(0;T ;H2\H1
0 )
;
v0

L1(0;T ;H2\H1
0 )
;
v00

L2(0;T ;H1
0 )
g:

6



Also, we de�ne the sets�
W (M;T ) = fv 2 VT : kvkVT �Mg;
W1(M;T ) = fv 2W (M;T ) : v00 2 L1(0; T ;L2)g: (3.3)

In the following, we shall establish a linear recurrent sequence fumg by choosing the �rst iteration
u0 � ~u0; and suppose that

um�1 2W1(M;T ); (3.4)

then we shall �nd um in W1(M;T ) satis�ng the following problem8>><>>:
hu00m(t); vi+ �hu0mx(t); vxi+ am(t;um(t); v)

=

Z t

0
g(t� s)�am(s;um(s); v)ds+ hFm(t); vi ; 8v 2 H1

0 ;

um(0) = ~u0; u
0
m(0) = ~u1;

(3.5)

in which

Fm(x; t) = f [um�1](x; t) = f(x; t; um�1(x; t); u
0
m�1(x; t);rum�1(x; t);ru0m�1(x; t));

am(t;u; v) = hD1�(t; um�1(t)) +D3�(t; um�1(t))ux; vxi ;
�am(t;u; v) = hD1��(t; um�1(t)) +D3��(t; um�1(t))ux; vxi ; u; v 2 H1

0 :

Note that am(t;u; v); �am(t;u; v) can be rewritten in form of

am(t;u; v) = Am(t;u; v) + h�1m(t); vxi ;
�am(t;u; v) = �Am(t;u; v) + h��1m(t); vxi ; u; v 2 H1

0 ;

where

Am(t;u; v) = h�3m(t)ux; vxi ; �Am(t;u; v) = h��3m(t)ux; vxi ; u; v 2 H1
0 ;

�3m(x; t) = D3�(x; t; um�1(x; t)); �1m(x; t) = D1�(x; t; um�1(x; t));

��3m(x; t) = D3��(x; t; um�1(x; t)); ��1m(x; t) = D1��(x; t; um�1(x; t)):

Then, Prob. (3.5) is equivalent to8>><>>:
hu00m(t); vi+ �hu0mx(t); vxi+Am(t;um(t); v)

=

Z t

0
g(t� s) �Am(s;um(s); v)ds+

D
F̂m(t); v

E
; 8v 2 H1

0 ;

um(0) = ~u0; u
0
m(0) = ~u1;

(3.6)

where F̂m(t) : H1
0 ! R is a linear continuous functional on H1

0 , which is de�ned byD
F̂m(t); v

E
= hFm(t); vi � h�1m(t); vxi+

Z t

0
g(t� s) h��1m(s); vxi ds; v 2 H1

0 : (3.7)

The existence of um is assured by the following theorem.

Theorem 3.1. Under assumptions (H1)� (H4); there exist positive constants M; T such that, for
u0 � ~u0; there exists a recurrent sequence fumg �W1(M;T ) de�ned by (3.4), (3.6) and (3.7).

Proof of Theorem 3.1. The proof consists of several steps.
Step 1 . The Galerkin approximation. Consider a special orthonormal basis fwjg on H1

0 : wj(x) =p
2 sin(j�x); j 2 N; formed by the eigenfunctions of the Laplacian �� = � @2

@x2
: Put

u(k)m (t) =
Xk

j=1
c
(k)
mj(t)wj ;

7



where the coe¢ cients c(k)mj satisfy the following system of linear integrodi¤erential equations8>>><>>>:
h�u(k)m (t); wji+ �h _u(k)mx(t); wjxi+Am(t;u(k)m (t); wj)

=

Z t

0
g(t� s) �Am(s;u(k)m (s); wj)ds+

D
F̂m(t); wj

E
; 1 � j � k;

u
(k)
m (0) = ~u0k; _u

(k)
m (0) = ~u1k;

(3.8)

in which (
~u0k =

Pk
j=1 �

(k)
j wj ! ~u0 strongly in H2 \H1

0 ;

~u1k =
Pk
j=1 �

(k)
j wj ! ~u1 strongly in H2 \H1

0 :
(3.9)

Using Banach�s contraction principle, it is not di¢ cult to prove that the system (3.8) admits a
unique solution u(k)m (t) on interval [0; T ] ; so let us omit the details.

Step 2. A priori estimate. Put

S(k)m (t) =
 _u(k)m (t)2 +  _u(k)mx(t)2 + p�3m(t)u(k)mx(t)2 + p�3m(t)�u(k)m (t)2
+�
� _u(k)m (t)2 + 2�Z t

0

� _u(k)mx(s)2 + � _u(k)m (s)2� ds+ 2Z t

0

�u(k)mx(s)2 ds;
then it follows from (3.8) that

S(k)m (t) = S(k)m (0) + 2 h�3mx(0)~u0kx;�~u0ki+ 2
�
@

@x
(�3m(0)~u0kx) ;�~u1k

�
(3.10)

+

Z t

0
ds

Z 1

0
�03m(x; s)

����u(k)mx(x; s)���2 + ����u(k)m (x; s)���2� dx
+2

Z t

0
g(t� s) �Am(s;u(k)m (s); u(k)m (t))ds

+2

Z t

0
g(t� s)

�
@

@x

�
��3m(s)u

(k)
mx(s)

�
;�u(k)m (t) + � _u

(k)
m (t)

�
ds

�2g(0)
Z t

0

�
@

@x

�
��3m(s)u

(k)
mx(s)

�
;�u(k)m (s) + � _u

(k)
m (s)

�
ds

�2g(0)
Z t

0

�Am(s;u
(k)
m (s); u

(k)
m (s))ds

�2
Z t

0
d�

Z �

0
g0(� � s) �Am(s;u(k)m (s); u(k)m (�))ds

�2
Z t

0
d�

Z �

0
g0(� � s)

�
@

@x

�
��3m(s)u

(k)
mx(s)

�
;�u(k)m (�) + � _u

(k)
m (�)

�
ds

+2

Z t

0

�
@

@s

�
�3mx(s)u

(k)
mx(s)

�
;�u(k)m (s)

�
ds

+2

Z t

0

�
@2

@x@s

�
�3m(s)u

(k)
mx(s)

�
;� _u(k)m (s)

�
ds

�2
D
�3mx(t)u

(k)
mx(t);�u

(k)
m (t)

E
� 2

�
@

@x

�
�3m(t)u

(k)
mx(t)

�
;� _u(k)m (t)

�
+2

Z t

0

D
F̂m(s); _u

(k)
m (s)

E
ds+ 2

Z t

0

D
F̂m(s);�� _u(k)m (s)

E
ds+ 2

Z t

0

D
F̂m(s);���u(k)m (s)

E
ds

= S(k)m (0) + 2 h�3mx(0)~u0kx;�~u0ki+ 2
�
@

@x
(�3m(0)~u0kx) ;�~u1k

�
+

14X
i=1

Ji:
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We shall estimate the terms Ji on the right-hand side of (3.10) as follows.
First, we need the following lemma whose proof is easy, hence we omit the details.
Lemma 3.2. Put

�S(k)m (t) =
 _u(k)m (t)2 +  _u(k)mx(t)2 + � _u(k)m (t)2 + u(k)mx(t)2 + �u(k)m (t)2 (3.11)

+

Z t

0

� _u(k)mx(s)2 + � _u(k)m (s)2� ds+ Z t

0

�u(k)mx(s)2 ds:
Then, the following estimations are admitted

(i) j�0im(x; t)j � (1 +M)KM (�); i = 1; 3;
(ii) k�0im(t)k � (1 +M)KM (�); i = 1; 3;
(iii) j�imx(x; t)j � (1 + 2M)KM (�); i = 1; 3;
(iv) k�imx(t)k � (1 +M)KM (�); i = 1; 3;
(v) j�0imx(x; t)j � (1 + 5M + 2M2)KM (�); i = 1; 3;
(vi) k�0imx(t)k � (1 + 3M +M2)KM (�); i = 1; 3;

(vii)
��� �Am(s;u(k)m (s); u(k)m (t))��� � KM (��)

u(k)mx(s)u(k)mx(t) ;
(viii)

�u(k)m (t) + � _u(k)m (t) � p2q �S
(k)
m (t);

(ix)
u(k)mx(t)2 � 2 k~u0kxk2 + 2T �Z t

0

�S
(k)
m (s)ds;

(x)

 @@x ��3m(t)u(k)mx(t)�
 � 2(1 +M)KM (�)

q
�S
(k)
m (t);

(xi)

 @@t ��3mx(t)u(k)mx(t)�
 � (2 + 7M + 2M2)KM (�)

q
�S
(k)
m (t);

(xii)

 @2

@x@t

�
�3m(t)u

(k)
mx(t)

� � 2(2 + 4M +M2)KM (�)

q
�S
(k)
m (t):

Moreover, the inequalities (i)-(xii) are also valid with replacing � by ��:
By Lemma 3.2, the terms J1 � J9 on the right-hand side of (3.10) are estimated as follows
Using the inequality

S(k)m (t) � ��� �S(k)m (t);

where ��� = min f1; ��; 2�g and

2ab � �a2 +
1

�
b2; 8a; b 2 R; with � = �� =

���
10
;

then the terms J1 � J9 are respectively estimated by

J1 =

Z t

0
ds

Z 1

0
�03m(x; s)

����u(k)mx(x; s)���2 + ����u(k)m (x; s)���2� dx (3.12)

� (1 +M)KM (�)

Z t

0

�S(k)m (s)ds = C1(M)

Z t

0

�S(k)m (s)ds;

J2 = 2

Z t

0
g(t� s) �Am(s;u(k)m (s); u(k)m (t))ds

� k~u0kxk2 +
�
T � + 2K2

M (��) kgk
2
L2(0;T �)

�Z t

0

�S(k)m (s)ds = k~u0kxk2 + C2(M)
Z t

0

�S(k)m (s)ds;

J3 = 2

Z t

0
g(t� s)

�
@

@x

�
��3m(s)u

(k)
mx(s)

�
;�u(k)m (t) + � _u

(k)
m (t)

�
ds

� �� �S
(k)
m (t) +

8

��
(1 +M)2K2

M (��) kgk
2
L2(0;T �)

Z t

0

�S(k)m (s)ds

9



= �� �S
(k)
m (t) + C3(M)

Z t

0

�S(k)m (s)ds;

J4 = �2g(0)
Z t

0

�
@

@x

�
��3m(s)u

(k)
mx(s)

�
;�u(k)m (s) + � _u

(k)
m (s)

�
ds

� 4
p
2(1 +M)KM (�) jg(0)j

Z t

0

�S(k)m (s)ds = C4(M)

Z t

0

�S(k)m (s)ds;

J5 = �2g(0)
Z t

0

�Am(s;u
(k)
m (s); u

(k)
m (s))ds

� 2 jg(0)jKM (��)

Z t

0

�S(k)m (s)ds = C5(M)

Z t

0

�S(k)m (s)ds;

J6 = �2
Z t

0
d�

Z �

0
g0(� � s) �Am(s;u(k)m (s); u(k)m (�))ds

� 2KM (��)
p
T �
g0

L2(0;T �)

Z t

0

�S(k)m (s)ds = C6(M)

Z t

0

�S(k)m (s)ds;

J7 = �2
Z t

0
d�

Z �

0
g0(� � s)

�
@

@x

�
��3m(s)u

(k)
mx(s)

�
;�u(k)m (�) + � _u

(k)
m (�)

�
ds

� 4
p
2(1 +M)KM (��)

p
T �
g0

L2(0;T �)

Z t

0

�S(k)m (s)ds = C7(M)

Z t

0

�S(k)m (s)ds;

J8 = 2

Z t

0

�
@

@s

�
�3mx(s)u

(k)
mx(s)

�
;�u(k)m (s)

�
ds

� 2(2 + 7M + 2M2)KM (�)

Z t

0

�S(k)m (s)ds = C8(M)

Z t

0

�S(k)m (s)ds;

J9 = 2

Z t

0

�
@2

@x@s

�
�3m(s)u

(k)
mx(s)

�
;� _u(k)m (s)

�
ds

� 4(2 + 4M +M2)KM (�)

Z t

0

�S(k)m (s)ds = C9(M)

Z t

0

�S(k)m (s)ds:

In order to estimate the terms J10; J11; we use the following lemma whose proof is easy, so we
omit the details.

Lemma 3.3. The following estimations are valid

(i)
�u(k)m (t) � k�~u0kk+ Z t

0

q
�S
(k)
m (s)ds;

(ii)
�3mx(t)u(k)mx(t) � k�3mx(0)~u0kxk+ (2 + 7M + 2M2)KM (�)

Z t

0

q
�S
(k)
m (s)ds;

(iii)

 @@x ��3m(t)u(k)mx(t)�
 �  @@x (�3m(0)~u0kx)

+ 2(2 + 4M +M2)KM (�)

Z t

0

q
�S
(k)
m (s)ds:

Using Lemma 3.3 and the inequality (a+ b)2 � 2a2 + 2b2; for all a; b 2 R; the terms J10; J11 are
estimated as follows

J10 = �2
D
�3mx(t)u

(k)
mx(t);�u

(k)
m (t)

E
(3.13)

� 2
�
k�3mx(0)~u0kxk2 + k�~u0kk2

�
+ 2T �

�
1 + (2 + 7M + 2M2)2K2

M (�)
� Z t

0

�S(k)m (s)ds

= 2
�
k�3mx(0)~u0kxk2 + k�~u0kk2

�
+ C10(M)

Z t

0

�S(k)m (s)ds;

J11 = �2 @
@x

�
�3m(t)u

(k)
mx(t)

�
;� _u(k)m (t)

10



� �� �S
(k)
m (t) +

2

��

 @@x (�3m(0)~u0kx)
2 + 8

��
(2 + 4M +M2)2K2

M (�)T
�
Z t

0

�S(k)m (s)ds

= �� �S
(k)
m (t) +

2

��

 @@x (�3m(0)~u0kx)
2 + C11(M)Z t

0

�S(k)m (s)ds:

The terms J12 � J14 are also estimated as below. By the fact thatD
F̂m(t); _u

(k)
m (t)

E
=
D
Fm(t); _u

(k)
m (t)

E
�
D
�1m(t); _u

(k)
mx(t)

E
+

Z t

0
g(t� s)

D
��1m(s); _u

(k)
mx(t)

E
ds;

we have ���DF̂m(t); _u(k)m (t)E��� �
�
~KM (f) +KM (�) +KM (��) kgkL1(0;T �)

�q
�S
(k)
m (t)

�
p
C12(M)

q
�S
(k)
m (t):

Then

J12 = 2

Z t

0

D
F̂m(s); _u

(k)
m (s)

E
ds � TC12(M) +

Z t

0

�S(k)m (s)ds: (3.14)

We also haveD
F̂m(t);�� _u(k)m (t)

E
=

D
Fm(t);�� _u(k)m (t)

E
�
D
�1m(t);�� _u(k)mx(t)

E
+

Z t

0
g(t� s)

D
��1m(s);�� _u(k)mx(t)

E
ds

=
D
Fm(t);�� _u(k)m (t)

E
�
D
�1mx(t);� _u

(k)
m (t)

E
+

Z t

0
g(t� s)

D
��1mx(s);� _u

(k)
m (t)

E
ds;

so ���DF̂m(t);�� _u(k)m (t)E���
�

�
kFm(t)k+ k�1mx(t)k+

Z t

0
jg(t� s)j k��1mx(s)k ds

� � _u(k)m (t)
�

h
~KM (f) + (1 +M)

�
KM (�) +KM (��) kgkL1(0;T �)

�iq
�S
(k)
m (t)

�
p
C13(M)

q
�S
(k)
m (t):

Then

J13 = 2

Z t

0

D
F̂m(s);�� _u(k)m (s)

E
ds � TC13(M) +

Z t

0

�S(k)m (s)ds: (3.15)

SimilarlyD
F̂m(t);���u(k)m (t)

E
=

D
Fm(t);���u(k)m (t)

E
�
D
�1m(t);���u(k)mx(t)

E
+

Z t

0
g(t� s)

D
��1m(s);���u(k)mx(t)

E
ds

=
D
Fmx(t); �u

(k)
mx(t)

E
� d

dt

D
�1mx(t);� _u

(k)
m (t)

E
+
D
�01mx(t);� _u

(k)
m (t)

E
+
d

dt

Z t

0
g(t� s)

D
��1mx(s);� _u

(k)
m (t)

E
ds� g(0)

D
��1mx(t);� _u

(k)
m (t)

E
�
Z t

0
g0(t� s)

D
��1mx(s);� _u

(k)
m (t)

E
ds;

11



thus

J14 = 2

Z t

0

D
F̂m(s);���u(k)m (s)

E
ds

= 2 h�1mx(0);�~u1ki+ 2
Z t

0

D
Fmx(s); �u

(k)
mx(s)

E
ds� 2

D
�1mx(t);� _u

(k)
m (t)

E
+2

Z t

0

D
�01mx(s);� _u

(k)
m (s)

E
ds+ 2

Z t

0
g(t� s)

D
��1mx(s);� _u

(k)
m (t)

E
ds

�2g(0)
Z t

0

D
��1mx(s);� _u

(k)
m (s)

E
ds� 2

Z t

0
d�

Z �

0
g0(� � s)

D
��1mx(s);� _u

(k)
m (�)

E
ds

= 2 h�1mx(0);�~u1ki+ q1 + � � �+ q6:

In order to estimate q1; � � � ; q6, we use the following inequalities

kFmx(s)k � (1 + 4M) ~KM (f);

k�1mx(t)k � k�1mx(0)k+
Z t

0

�01mx(s) ds � k�1mx(0)k+ T (1 + 3M +M2)KM (�):

Then

q1 = 2

Z t

0

D
Fmx(s); �u

(k)
mx(s)

E
ds

� 1

��
T (1 + 4M)2 ~K2

M (f) + �� �S
(k)
m (t) = T �q1(M) + �� �S

(k)
m (t);

q2 = �2
D
�1mx(t);� _u

(k)
m (t)

E
� �� �S

(k)
m (t) +

2

��
k�1mx(0)k2 +

2T

��
T (1 + 3M +M2)2K2

M (�)

= �� �S
(k)
m (t) +

2

��
k�1mx(0)k2 + T �q2(M);

q3 = 2

Z t

0

D
�01mx(s);� _u

(k)
m (s)

E
ds

� T (1 + 3M +M2)2K2
M (�) +

Z t

0

�S(k)m (s)ds = T �q3(M) +

Z t

0

�S(k)m (s)ds;

q4 = 2

Z t

0
g(t� s)

D
��1mx(s);� _u

(k)
m (t)

E
ds

� �� �S
(k)
m (t) +

1

��
T (1 +M)2K2

M (��) kgk
2
L2(0;T �) = �� �S

(k)
m (t) + T �q4(M);

q5 = �2g(0)
Z t

0

D
��1mx(s);� _u

(k)
m (s)

E
ds

� T jg(0)j (1 +M)2K2
M (��) +

Z t

0

�S(k)m (s)ds = T �q5(M) +

Z t

0

�S(k)m (s)ds;

q6 = �2
Z t

0
d�

Z �

0
g0(� � s)

D
��1mx(s);� _u

(k)
m (�)

E
ds

�
Z t

0

�S(k)m (�)d� + TT �(1 +M)2K2
M (��)

g02
L2(0;T �)

=

Z t

0

�S(k)m (�)d� + T �q6(M):

Thus, J14 is estimated by

J14 � 2 h�1mx(0);�~u1ki+
2

��
k�1mx(0)k2 + TC14(M) + 3�� �S(k)m (t) + 3

Z t

0

�S(k)m (s)ds; (3.16)
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where C14(M) =
6P
j=1

�qj(M):

Combining (3.12)�(3.16), it implies from (3.10) and (3.11) that

�S(k)m (t) � �S
(k)
0m + TD1(M) +D2(M)

Z t

0

�S(k)m (s)ds; (3.17)

where

�S
(k)
0m =

2

���
S(k)m (0) +

4

���
[h�3mx(0)~u0kx;�~u0ki+ h�1mx(0);�~u1ki] (3.18)

+
4

���

�
@

@x
(�3m(0)~u0kx) ;�~u1k

�
+
2

���
k~u0kxk2 +

4

���

�
k�3mx(0)~u0kxk2 + k�~u0kk2

�
+
40

��2�

  @@x (�3m(0)~u0kx)
2 + k�1mx(0)k2

!
;

S(k)m (0) = k~u1kk2 + k~u1kxk2 +
p�3m(0)~u0kx2 + p�3m(0)�~u0k2 + � k�~u1kk2 ;

D1(M) =
2

���
[C12(M) + C13(M) + C14(M) ] ;

D2(M) =
2

���

�
5 +

X11

j=1
Cj(M)

�
:

On the other hand, �1mx(x; 0) = D2
1�(x; 0; ~u0(x))+D3D1�(x; 0; ~u0(x))~u0x(x); �3m(x; 0) = D3�(x; 0; ~u0(x));

�3mx(x; 0) = D1D3�(x; 0; ~u0(x)) + D2
3�(x; 0; ~u0(x))~u0x(x); are independent of m; so it implies from

(3.18)1;2 that S
(k)
m (0) and �S(k)0m are also independent of m:

The convergences given by (3.18) show that there exists a positive constant M independent of k
and m such that

�S
(k)
0m �

M2

2
; for all m; k 2 N: (3.19)

The local existence is obtained by choosing T small enough as in the following lemma.
Lemma 3.4. Suppose that there exists a positive constant M satisfying (3.19). For any T 2

(0; T �]; put

kT = 3
q
D�
1(M;T ) exp (TD�

2(M)) ; (3.20)

where

D�
1(M;T ) =

2

���

�
� + 2

p
T ~KM (f)

�2
+
12T

��2�
(1 +M)2

�
K2
M (�) +K

2
M (��) kgk

2
L2(0;T �)

�
+
T

���
(1 +M)2

�
jg(0)j+

p
T �
g0

L2(0;T �)

�
KM (��);

D�
2(M) =

2

���

h
1 + (1 +M)KM (�) + 4

�
jg(0)j+

p
T �
g0

L2(0;T �)

�
KM (��)

i
+
12

��2�
K2
M (��)

g0
L2(0;T �)

:

Then, T can be chosen small enough such that8<:
�
M2

2
+ TD1(M)

�
eTD2(M) �M2;

kT < 1:
(3.21)
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Proof. By the assumption 0 < � <

p
���

3
p
2
; it is easy to get that

lim
T!0+

kT = lim
T!0+

3
q
D�
1(M;T ) exp (TD�

2(M)) = 3

s
2

���
� < 1;

and

lim
T!0+

�
M2

2
+ TD1(M)

�
eTD2(M) =

M2

2
< M2: �

It follows from (3.17) and (3.21) that

�S(k)m (t) �M2e�TD2(M) +D2(M)

Z t

0

�S(k)m (s)ds:

By using Gronwall�s Lemma, we deduce from the above inequality that

�S(k)m (t) �M2e�TD2(M)etD2(M) �M2;

for all t 2 [0; T ] ; for all m; k 2 N: Therefore, we have

u(k)m 2W1(M;T ); for all m and k 2 N: (3.22)

Step 3. Limiting process. By (3.22), there exists a subsequence of fu(k)m g with the same symbol,
such that 8>>><>>>:

u
(k)
m ! um in L1(0; T ;H2 \H1

0 ) weak*,

_u
(k)
m ! u0m in L1(0; T ;H2 \H1

0 ) weak*,

�u
(k)
m ! u00m in L2(0; T ;H1

0 ) weak,
um 2W (M;T ):

(3.23)

Passing to limit in (3.8) and (3.9), we have um satisfying (3.6) and (3.7) in L2(0; T ).
On the other hand, we deduce from (3.6)1 and (3.23)4 that

u00m = �u0mxx +
@

@x
(�1m(t) + �3m(t)umx(t))�

Z t

0
g (t� s) @

@x
(��1m(s) + ��3m(s)umx(s)) ds+ Fm

� ~Fm 2 L1(0; T ;L2):

Thus, um 2W1(M;T ): Theorem 3.1 is proved. �
By using Theorem 3.1 and the compact imbedding theorems, we shall prove the existence and

uniqueness of weak local solutions to Prob. (1.1). We �rst introduce the Banach space (see Lions [25])
as follows

W1(T ) =
�
u 2 C0([0; T ];H1

0 ) \ C1([0; T ];L2) : u0 2 L2(0; T ;H1
0 )
	
;

with respect to the norm

kukW1(T )
= kukC0([0;T ];H1

0 )
+
u0

C0(0;T ;L2)
+
u0

L2(0;T ;H1
0 )
:

Then we have the following theorem.
Theorem 3.5. Suppose that the assumptions (H1)�(H4) hold. Then the recurrent sequence fumg

de�ned by (3.8)-(3.9) strongly converges to u in W1(T ). Furthermore, u is a unique weak solution of
Prob. (1.1) and u 2W1(M;T ). On the other hand, the following estimation is valid

kum � ukW1(T )
� CTk

m
T ; for all m 2 N;

where kT 2 [0; 1) is de�ned as in (3.20) and CT is a constant depending only on T; f; g; �; ��; ~u0; ~u1:
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Proof of Theorem 3.5. First, we prove the local existence of Prob. (1.1). We begin by proving that
fumg (in Theorem 3.1) is a Cauchy sequence in W1 (T ) : Let wm = um+1 � um: Then wm satis�es the
variational problem8>><>>:

hw00m(t); vi+ �hw0mx(t); vxi+Bm(t; v)

=

Z t

0
g(t� s) �Bm(s; v)ds+ hFm+1(t)� Fm(t); vi ; 8v 2 H1

0 ;

wm(0) = w0m(0) = 0;

(3.24)

where

Bm(t; v) = am+1(t;um+1(t); v)� am(t;um(t); v);
�Bm(t; v) = �am+1(t;um+1(t); v)� �am(t;um(t); v); v 2 H1

0 :

Taking v = w0m(t) in (3.24)1 and then integrating in t, we get

��� �Sm(t) � 2

Z t

0



Fm+1(s)� Fm(s); w0m(s)

�
ds+

Z t

0
ds

Z 1

0
�03m+1(x; s)w

2
mx(x; s)dx (3.25)

�2
Z t

0


�
�3m+1(s)� �3m(s)

�
umx(s) + �1m+1(s)� �1m(s); w0mx(s)

�
ds

+2

Z t

0
g(t� s) �Bm(s; wm(t))ds� 2g(0)

Z t

0

�Bm(s; wm(s))ds

�2
Z t

0
d�

Z �

0
g0(� � s) �Bm(s; wm(�))ds =

X6

j=1
�Ij ;

where ��� = minf1; ��; �g and

�Sm(t) =
w0m(t)2 + kwmx(t)k2 + Z t

0

w0mx(s)2 ds: (3.26)

Next, the integrals on right-hand side of (3.25) are estimated as follows.
By the following inequalities

kFm+1(t)� Fm(t)k � 2 ~KM (f)
�
krwm�1(t)k+

w0m�1(t)�+ � rw0m�1(t)
� 2 ~KM (f) kwm�1kW1(T )

+ �
rw0m�1(t) ;�Z t

0
kFm+1(s)� Fm(s)k2 ds

�1=2
� 2

p
T ~KM (f) kwm�1kW1(T )

+ �

�Z t

0

rw0m�1(s)2 ds�1=2
� (2

p
T ~KM (f) + �) kwm�1kW1(T )

;���im+1(x; t)� �im(x; t)�� � KM (�) jwm�1(x; t)j � KM (�) kwm�1kW1(T )
; i = 1; 3;

the terms �I1; �I2; �I3 are estimated by

�I1 = 2

Z t

0



Fm+1(s)� Fm(s); w0m(s)

�
ds (3.27)

� (2
p
T ~KM (f) + �) kwm�1k2W1(T )

+

Z t

0

�Sm(s)ds;

�I2 =

Z t

0
ds

Z 1

0
�03m+1(x; s)w

2
mx(x; s)dx � (1 +M)KM (�)

Z t

0

�Sm(s)ds;

�I3 = �2
Z t

0


�
�3m+1(s)� �3m(s)

�
umx(s) + �1m+1(s)� �1m(s); w0mx(s)

�
ds

� 2(1 +M)KM (�) kwm�1kW1(T )

Z t

0

w0mx(s) ds
� ���

6
�Sm(t) +

6

���
T (1 +M)2K2

M (�) kwm�1k
2
W1(T )

:
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For the integral �I4; �I5; �I6; we note that

�Bm(s; wm(t)) = �am+1(s;um+1(s); wm(t))� �am(s;um(s); wm(t))
=



��3m+1(s)wmx(s); wmx(t)

�
+

�
��3m+1(s)� ��3m(s)

�
umx(s) + ��1m+1(s)� ��1m(s); wmx(t)

�
;

hence �� �Bm(s; wm(t))�� � KM (��)

�q
�Sm(s) + (1 +M) kwm�1kW1(T )

�q
�Sm(t):

Then

�I4 = 2

Z t

0
g(t� s) �Bm(s; wm(t))ds (3.28)

� 2KM (��)

Z t

0
jg(t� s)j

q
�Sm(s)

q
�Sm(t)ds

+2(1 +M)KM (��) kwm�1kW1(T )

Z t

0
jg(t� s)j

q
�Sm(t)ds

� ���
3
�Sm(t) +

6

���
T (1 +M)2K2

M (��) kgk
2
L2(0;T �) kwm�1k

2
W1(T )

+
6

���
K2
M (��) kgk

2
L2(0;T �)

Z t

0

�Sm(s)ds;

�I5 = �2g(0)
Z t

0

�Bm(s; wm(s))ds

� 2 jg(0)jKM (��)

Z t

0

�
�Sm(s) + (1 +M) kwm�1kW1(T )

q
�Sm(s)

�
ds

= 4 jg(0)jKM (��)

Z t

0

�Sm(s)ds+
1

2
T jg(0)jKM (��)(1 +M)

2 kwm�1k2W1(T )
;

�I6 = �2
Z t

0
d�

Z �

0
g0(� � s) �Bm(s; wm(�))ds � 2KM (��)

Z t

0
d�

Z �

0

��g0(� � s)��q �Sm(s)
q
�Sm(�)ds

+2(1 +M)KM (��) kwm�1kW1(T )

Z t

0
d�

Z �

0

��g0(� � s)��q �Sm(�)ds

� 4KM (��)
p
T �
g0

L2(0;T �)

Z t

0

�Sm(s)ds+
1

2
T (1 +M)2KM (��)

p
T �
g0

L2(0;T �)
kwm�1k2W1(T )

:

Combining the estimations (3.27) and (3.28), we deduce from (3.26) that

�Sm(t) � D�
1(M;T ) kwm�1k2W1(T )

+ 2D�
2(M)

Z t

0

�Sm(s)ds;

where D�
1(M;T ); D�

2(M) are de�ned as in Lemma 3.4.
Using Gronwall�s lemma, we get from (3.26) that

�Sm(t) � TD�
1(M) kwm�1k

2
W1(T )

exp (2TD�
2(M)) ; (3.29)

hence, it leads to
kwmkW1(T )

� kT kwm�1kW1(T )
; 8m 2 N;

where the constant kT 2 [0; 1) is de�ned as in (3.20), which implies that

kum+p � umkW1(T )
� M

1� kT
kmT ; 8m; p 2 N:
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It follows that fumg is a Cauchy sequence in W1 (T ) : Then there exists u 2W1 (T ) such that

um �! u strongly in W1 (T ) . (3.30)

Note that um 2W (M;T ), then there exists a subsequence
�
umj

	
of fumg such that8>><>>:

umj ! u in L1(0; T ;H2 \H1
0 ) weak*,

u0mj
! u0 in L1(0; T ;H2 \H1

0 ) weak*,
u00mj

! u00 in L2(0; T ;H1
0 ) weak,

u 2W (M;T ):

(3.31)

Since
kFm(t)� F [u](t)kL2(QT ) � (� + 2 ~KM (f)) kum�1 � ukW1(T )

; (3.32)

hence, by (3.30) and (3.32), we have

Fm �! f [u] strongly in L2(QT ): (3.33)

On the other hand, using the equality

am(t;um(t); v)� a(t;u(t); v) = h�3m(t)umx(t)� �3[u](t)ux(t) + �1m(t)� �1[u](t); vxi
= h�3m(t) [umx(t)� ux(t)] + [�3m(t)� �3[u](t)]ux(t); vxi

+ h�1m(t)� �1[u](t); vxi ;

and the inequality���im+1(x; t)� �im(x; t)�� � KM (�) jwm�1(x; t)j � KM (�) kwm�1kW1(T )
; i = 1; 3;

we get

jam(t;um(t); v)� a(t;u(t); v)j � KM (�)
h
kum � ukW1(T )

+ (1 +M) kum�1 � ukW1(T )

i
kvxk :

Hence
am(t;um(t); v) �! a(t;u(t); v) in L1 (0; T ) weak*, for all v 2 H1

0 . (3.34)

Similarly Z t

0
g(t� s)�am(s;um(s); v)ds �!

Z t

0
g(t� s)�am(s;um(s); v)ds; (3.35)

in L1 (0; T ) weak*, for all v 2 H1
0 .

Passing to limit in (3.8) and (3.9) as m = mj !1; it implies from (3.33), (3.34) and (3.35) that
there exists u 2W (M;T ) satisfying (3.1), (3.2).

On the other hand, we derive from (3.1) and (3.31)4 that

u00 = �u0xx +
@2

@x2
(�(t; u(t)))�

Z t

0
g(t� s) @

2

@x2
(��(s; u(s))) ds+ f [u]

� ~f 2 L1(0; T ;L2):

Thus u 2W1(M;T ):The proof of existence is completed.
Finally, we need to prove the uniqueness of solutions. Let u1; u2 2W1(M;T ) be two weak solutions

of Prob. (1.1). Then u = u1 � u2 satis�es the variational problem8>><>>:
hu00(t); vi+ �hu0x(t); vxi+B(t; v)

=

Z t

0
g(t� s) �B(s; v)ds+



�F1(t)� �F2(t); v

�
; 8v 2 H1

0 ;

u(0) = u0(0) = 0;

(3.36)
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where

B(t; v) = a(t;u1(t); v)� a(t;u2(t); v)
= h�3[u1](t)ux(t) + [�3[u1](t)� �3[u2](t)]u2x(t); vxi+ h�1[u1](t)� �1[u2](t); vxi;

�B(t; v) = �a(t;u1(t); v)� �a(t;u2(t); v)
= h��3[u1](t)ux(t) + [��3[u1](t)� ��3[u2](t)]u2x(t); vxi+ h��1[u1](t)� ��1[u2](t); vxi; v 2 H1

0 ;

�i[u](x; t) = Di�(x; t; u(x; t)); ��i[u](x; t) = Di��(x; t; u(x; t)); i = 1; 3;

�Fj(t) = f [uj ](t); j = 1; 2:

Taking v = u0(t) in (3.36)1 and integrating in time from 0 to t; we get

��� �Z(t) �
Z t

0
ds

Z 1

0
�03[u1](x; s)u

2
x(x; s)dx (3.37)

�2
Z t

0



[�3[u1](s)� �3[u2](s)]u2x(s); u0x(s)

�
ds� 2

Z t

0



�1[u1](s)� �1[u2](s); u0x(s)

�
ds

+2

Z t

0
g(t� s) �B(s; u(t))ds� 2g(0)

Z t

0

�B(s; u(s))ds

�2
Z t

0
d�

Z �

0
g0(� � s) �B(s; u(�))ds+ 2

Z t

0



�F1(s)� �F2(s); u

0(s)
�
ds;

where
�Z(t) =

u0(t)2 + kux(t)k2 + Z t

0

u0x(s)2 ds: (3.38)

Through similar calculations in Theorem 3.1, we obtain from (3.37), (3.38) that

�
��� � 2�2 � 2

�
�Z(t) � �(M;)

Z t

0

�Z(s)ds; (3.39)

for all  > 0; where

�(M;) = 1 + 16 ~K2
M (f) + (1 +M)KM (�)

+2(2 +M)KM (��)
�
jg(0)j+

p
T �
g0

L2(0;T �)

�
+
1



h
(1 +M)2K2

M (�) + (2 +M)
2K2

M (��) kgk
2
L2(0;T �)

i
:

Since 0 < � <

p
���

3
p
2
; it follows that ����2�2 > 0: Then, by choosing  > 0 such that ����2�2�2 > 0

and using Gronwall lemma, we deduce from (3.39) that �Z (t) � 0; i.e., u = u1 � u2 = 0.
Therefore, uniqueness is proved. The proof of Theorem 3.5 is done. �

4 Continuous dependence

In this section, we assume that � > 0 and ~u0; ~u1 2 H2 \H1
0 : By Theorem 3.5, Prob. (1.1) admits

a unique solution u depending on the datum �; ��; f; g

u = u(�; ��; f; g);

where �; ��; f; g satisfy the assumptions (H2)� (H4):
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First, we note that if the datum (�; ��; f; g), (�j ; ��j ; fj ; gj) satisfy (H2)� (H4) and in addition, the
following condition is ful�lled

d1(�j ; �) � sup
M>0

max
j�j�3

D��j �D��

C0(AM )

! 0; (4.1)

d1(��j ; ��) � sup
M>0

max
j�j�3

D���j �D���

C0(AM )

! 0;

~d(fj ; f) � sup
M>0

max
j�j�1

kD�fj �D�fkC0( ~AM) ! 0;

kgj � gkH1(0;T �) ! 0;

as j !1; then there exists j0 2 N (independent of M) such that8>>>><>>>>:

D��j

C0(AM )

� 1 +
D��


C0(AM )

; 8� 2 Z3+; j�j � 3; 8M > 0; 8j � j0;D���j

C0(AM )

� 1 +
D���


C0(AM )

;8� 2 Z3+; j�j � 3; 8M > 0; 8j � j0;

kD�fjkC0( ~AM) � 1 + kD
�fkC0( ~AM) ; 8� 2 Z

6
+; j�j � 1; 8M > 0; 8j � j0;

kgjkH1(0;T �) � 1 + kgkH1(0;T �) ; 8j � j0:

By setting the constants KM (�); KM (��); ~KM (f) and (H3), we deduce from the above estimation
that 8>><>>:

KM (�j) � 1 +KM (�); 8M > 0; 8j � j0;

KM (��j) � 1 +KM (��); 8M > 0; 8j � j0;
~KM (fj) � 1 + ~KM (f); 8M > 0; 8j � j0;
kgjkH1(0;T �) � 1 + kgkH1(0;T �) ; 8j � j0:

Therefore, the Galerkin approximation sequence fu(k)m g corresponding to (�; ��; f; g) = (�j ; ��j ; fj ; gj);
j � j0 also satis�es the priori estimates as in Theorem 3.1 and

u(k)m 2W1(M;T ); for all m and k 2 N;

where M; T are constants independent of j. Indeed, in the process, we can choose the positive
constants M and T as in (3.19) and (3.21) with replacing KM (�); KM (��); ~KM (f); jg(0)j ; j�1mx(0)j ;
j�3mx(0)j by 1+KM (�); 1+KM (��); 1+ ~KM (f); 1+ jg(0)j ; 1+ j�1mx(0)j ; 1+ j�3mx(0)j ; respectively.

Hence, the limitation uj of fu(k)m g; as k ! +1 and m! +1 later, is the unique weak solution of
Prob. (1.1) corresponding to (�; ��; f) = (�j ; ��j ; fj); j � j0 satisfying

uj 2W1(M;T ); for all j � j0:

Moreover, by the same argument used in Theorem 3.5, we can prove that the limitation u of fujg
as j ! +1, is the unique weak solution of Prob. (1.1) and u 2W1(M;T ):

Consequently, we have the following theorem.
Theorem 4.1. For any � > 0; ~u0; ~u1 2 H2 \ H1

0 ; suppose that (H2) � (H4) and the condition
(4.1) hold. Then, there exists a positive constant T such that the solution of Prob. (1.1) is continuous
dependence on the datum �; ��; f; g, i.e., if (�; ��; f; g) and (�j ; ��j ; fj ; gj) satisfy (H2) � (H4) and
(4.1), then

uj = u(�j ; ��j ; fj ; gj) �! u strongly in W1 (T ) ; as j !1:

Moreover, we have the estimation

kuj � ukW1(T )
� CT

�
d1(�j ; �) + d1(��j ; ��) +

~d(fj ; f) + kgj � gkH1(0;T �)

�
; 8j � j0;

where CT is a constant only depending on T; f; g; �; ��; ~u0 and ~u1:
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Proof of Theorem 4.1. Setting

~gj = gj � g;
~Fj(x; t) = fj [uj ](x; t)� f [u](x; t);

fj [uj ](x; t) = fj(x; t; uj(x; t); u
0
j(x; t); ujx(x; t); u

0
jx(x; t));

f [u](x; t) = f(x; t; u(x; t); u0(x; t); ux(x; t); u
0
x(x; t));

then wj = uj � u; satis�es the variational problem8>>>>><>>>>>:

hw00j (t); vi+ �hw0jx(t); vxi+ aj(t;uj(t); v)� a(t;u(t); v)

=

Z t

0
[gj(t� s)�aj(s;uj(s); v)� g(t� s)�a(s;u(s); v)] ds

+
D
~Fj(t); v

E
; 8v 2 H1

0 ;

wj(0) = w0j(0) = 0;

(4.2)

where

aj(t;uj(t); v) =


D3�j(t; uj(t))ujx(t); vx

�
+


D1�j(t; uj(t)); vx

�
;

a(t;u(t); v) = hD3�(t; u(t))ux(t); vxi+ hD1�(t; u(t)); vxi ;
�aj(t;uj(t); v) =



D3��j(t; uj(t))ujx(t); vx

�
+


D1��j(t; uj(t)); vx

�
;

�a(t;u(t); v) = hD3��(t; u(t))ux(t); vxi+ hD1��(t; u(t)); vxi :

On the other hand, by the following equalities

aj(t;uj(t); v)� a(t;u(t); v)
=



D3�j(t; uj(t))wjx(t); vx

�
+

�
D3�j(t; uj(t))�D3�(t; u(t))

�
ux(t); vx

�
+


D1�j(t; uj(t))�D1�(t; u(t)); vx

�
;

�aj(s;uj(s); v)� �a(s;u(s); v)
=



D3��j(s; uj(s))wjx(s); vx

�
+

�
D3��j(s; uj(s))�D3��(s; u(s))

�
ux(s); vx

�
+


D1��j(s; uj(s))�D1��(s; u(s)); vx

�
;

gj(t� s)�aj(s;uj(s); v)� g(t� s)�a(s;u(s); v)
= [gj(t� s)� g(t� s)] �aj(s;uj(s); v) + g(t� s) [�aj(s;uj(s); v)� �a(s;u(s); v)]
= [gj(t� s)� g(t� s)]

�

D3��j(s; uj(s))ujx(s); vx

�
+


D1��j(s; uj(s)); vx

��
+g(t� s)



D3��j(s; uj(s))wjx(s); vx

�
+g(t� s)


�
D3��j(s; uj(s))�D3��(s; u(s))

�
ux(s); vx

�
+g(t� s)



D1��j(s; uj(s))�D1��(s; u(s)); vx

�
;

we rewrite (4.2) by8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

hw00j (t); vi+ �hw0jx(t); vxi+


D3�j(t; uj(t))wjx(t); vx

�
=

Z t

0
g(t� s)



D3��j(s; uj(s))wjx(s); vx

�
ds

+

Z t

0
[gj(t� s)� g(t� s)]

�

D3��j(s; uj(s))ujx(s); vx

�
+


D1��j(s; uj(s)); vx

��
ds

+

Z t

0
g(t� s)


�
D3��j(s; uj(s))�D3��(s; u(s))

�
ux(s); vx

�
ds

+

Z t

0
g(t� s)



D1��j(s; uj(s))�D1��(s; u(s)); vx

�
ds

�

�
D3�j(t; uj(t))�D3�(t; u(t))

�
ux(t); vx

�
�


D1�j(t; uj(t))�D1�(t; u(t)); vx

�
+
D
~Fj(t); v

E
; 8v 2 H1

0 ;

wj(0) = w0j(0) = 0:

(4.3)
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Taking v = w0j(t) in (4.4)1 and then integrating in t, we get

��� �Sj(t) �
Z t

0
ds

Z 1

0

@

@s

�
D3�j(x; s; uj(x; s))

�
w2jx(x; s)dx (4.4)

+2

Z t

0
d�

Z �

0
g(� � s)



D3��j(s; uj(s))wjx(s); w

0
jx(�)

�
ds

+2

Z t

0
d�

Z �

0
[gj(� � s)� g(� � s)]



D1��j(s; uj(s)) +D3��j(s; uj(s))ujx(s); w

0
jx(�)

�
ds

+2

Z t

0
d�

Z �

0
g(� � s)



D1��j(s; uj(s))�D1��(s; u(s)); w0jx(�)

�
ds

+2

Z t

0
d�

Z �

0
g(� � s)


�
D3��j(s; uj(s))�D3��(s; u(s))

�
ux(s); w

0
jx(�)

�
ds

�2
Z t

0


�
D3�j(s; uj(s))�D3�(s; u(s))

�
ux(s); w

0
jx(s)

�
ds

�2
Z t

0



D1�j(s; uj(s))�D1�(s; u(s)); w0jx(s)

�
ds+ 2

Z t

0

D
~Fj(s); w

0
j(s)

E
ds

=

8X
j=1

Ij ;

where ��� = minf1; �; ��g and

�Sj(t) =
w0j(t)2 + kwjx(t)k2 + Z t

0

w0jx(s)2 ds:
We estimate the terms Ij on the right-hand side of (4.4) as follows.
Estimate of I1: By the estimation���� @@s �D3�j(x; s; uj(x; s))�

���� =
��D2D3�j(x; s; uj(x; s)) +D2

3�j(x; s; uj(x; s))u
0
j(x; s)

��
� KM (�j)

�
1 +

��u0j(x; s)��� � (1 +KM (�)) (1 +M) ;

we have

I1 =

Z t

0
ds

Z 1

0

@

@s

�
D3�j(x; s; uj(x; s))

�
w2jx(x; s)dx (4.5)

� (1 +KM (�)) (1 +M)

Z t

0
kwjx(s)k2 ds � (1 +KM (�)) (1 +M)

Z t

0

�Sj(s)ds:

Estimate of I2: By the estimation��D3��j(x; s; uj(x; s))�� � KM (��j) � 1 +KM (��);

we obtain

I2 = 2

Z t

0
d�

Z �

0
g(� � s)



D3��j(s; uj(s))wjx(s); w

0
jx(�)

�
ds (4.6)

� 2 (1 +KM (��))

Z t

0

w0jx(�) d�Z �

0
jg(� � s)j kwjx(s)k ds

� 2 (1 +KM (��))
q
�Sj(t)

p
T � kgkL2(0;T �)

�Z t

0
kwjx(s)k2 ds

�1=2
� � �Sj(t) +

1

�
(1 +KM (��))

2 T � kgk2L2(0;T �)
Z t

0
kwjx(s)k2 ds

� � �Sj(t) +
1

�
(1 +KM (��))

2 T � kgk2L2(0;T �)
Z t

0

�Sj(s)ds:
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Estimate of I3: Note thatD1��j(s; uj(s)) +D3��j(s; uj(s))ujx(s) � KM (��j)(1 + kujx(s)k) � (1 +KM (��)) (1 +M);

hence

I3 = 2

Z t

0
d�

Z �

0
[gj(� � s)� g(� � s)]



D1��j(s; uj(s)) +D3��j(s; uj(s))ujx(s); w

0
jx(�)

�
ds (4.7)

� 2 (1 +KM (��)) (1 +M)

Z t

0

w0jx(�) d�Z �

0
jgj(� � s)� g(� � s)j ds

� 2 (1 +KM (��)) (1 +M)
q
�Sj(t)

p
T � kgj � gkL2(0;T �)

� � �Sj(t) +
1

�
(1 +KM (��))

2 (1 +M)2T � kgj � gk2L2(0;T �) :

Estimate of I4: Using the estimation��D1��j(x; s; uj(x; s))�D1��(x; s; u(x; s))��
�

��D1��j(x; s; uj(x; s))�D1��(x; s; uj(x; s))��
+ jD1��(x; s; uj(x; s))�D1��(x; s; u(x; s))j

� sup
(x;t;y)2AM

��D1��j(x; s; y)�D1��(x; s; y)��+KM (��) juj(x; s)� u(x; s)j

� d1(��j ; ��) +KM (��)
q
�Sj(s);

we get

I4 = 2

Z t

0
d�

Z �

0
g(� � s)



D1��j(s; uj(s))�D1��(s; u(s)); w0jx(�)

�
ds (4.8)

� 2

Z t

0
d�

Z �

0
jg(� � s)j

D1��j(s; uj(s))�D1��(s; u(s))w0jx(�) ds
� 2

q
�Sj(t)

p
T � kgkL2(0;T �)

�Z t

0

D1��j(s; uj(s))�D1��(s; u(s))2 ds�1=2
� � �Sj(t) +

1

�
T � kgk2L2(0;T �)

Z t

0

D1��j(s; uj(s))�D1��(s; u(s))2 ds
� � �Sj(t) +

2

�
T � kgk2L2(0;T �)

Z t

0

�
d21(��j ; ��) +K

2
M (��)

�Sj(s)
�
ds

� � �Sj(t) +
2

�

�
T � kgkL2(0;T �)

�2
d21(��j ; ��) +

2

�
T �
�
kgkL2(0;T �)KM (��)

�2 Z t

0

�Sj(s)ds:

Estimate of I5: By the following inequality��D1��j(x; s; uj(x; s))�D1��(x; s; u(x; s))��
�

��D1��j(x; s; uj(x; s))�D1��(x; s; uj(x; s))��
+ jD1��(x; s; uj(x; s))�D1��(x; s; u(x; s))j

� sup
(x;t;y)2AM

��D1��j(x; s; y)�D1��(x; s; y)��+KM (��) juj(x; s)� u(x; s)j

� d1(��j ; ��) +KM (��)
q
�Sj(s);

we obtain �D3��j(s; uj(s))�D3��(s; u(s))�ux(s) �M

�
d1(��j ; ��) +KM (��)

q
�Sj(s)

�
:

22



Hence

I5 = 2

Z t

0
d�

Z �

0
g(� � s)


�
D3��j(s; uj(s))�D3��(s; u(s))

�
ux(s); w

0
jx(�)

�
ds (4.9)

� 2

Z t

0
d�

Z �

0
jg(� � s)j

�D3��j(s; uj(s))�D3��(s; u(s))�ux(s)w0jx(�) ds
� � �Sj(t) +

2

�

�
T �M kgkL2(0;T �)

�2
d21(��j ; ��) +

2

�
T �
�
M kgkL2(0;T �)KM (��)

�2 Z t

0

�Sj(s)ds:

Estimate of I6: Similarly, we verify that�D3�j(s; uj(s))�D3�(s; u(s))�ux(s) �M

�
d1(�j ; �) +KM (�)

q
�Sj(s)

�
;

so

I6 = �2
Z t

0


�
D3�j(s; uj(s))�D3�(s; u(s))

�
ux(s); w

0
jx(s)

�
ds (4.10)

� �

Z t

0

w0jx(s)2 ds+ 1

�

Z t

0

�D3�j(s; uj(s))�D3�(s; u(s))�ux(s)2 ds
� � �Sj(t) +

2

�
T �M2d21(�j ; �) +

2

�
M2K2

M (�)

Z t

0

�Sj(s)ds:

Estimate of I7: Repeating the estimation similarly to I6, we obtain��D1�j(x; s; uj(x; s))�D1�(x; s; u(x; s))��
�

��D1�j(x; s; uj(x; s))�D1�(x; s; uj(x; s))��+ jD1�(x; s; uj(x; s))�D1�(x; s; u(x; s))j
� sup

(x;t;y)2AM

��D1�j(x; s; y)�D1�(x; s; y)��+KM (�) juj(x; s)� u(x; s)j

� d1(�j ; �) +KM (�)
q
�Sj(s);

so it follows

I7 = �2
Z t

0



D1�j(s; uj(s))�D1�(s; u(s)); w0jx(s)

�
ds (4.11)

� �

Z t

0

w0jx(s)2 ds+ 1

�

Z t

0

D1�j(s; uj(s))�D1�(s; u(s))2 ds
� � �Sj(t) +

2

�

Z t

0

�
d21(�j ; �) +K

2
M (�) �Sj(s)

�
ds

� � �Sj(t) +
2

�
T �d21(�j ; �) +

2

�
K2
M (�)

Z t

0

�Sj(s)ds:

Estimate of I8: We note that

~Fj(t) = ~Fj(x; t) = Fj(x; t)� F (x; t)
= fj [uj ](x; t)� f [uj ](x; t) + f [uj ](x; t)� f [u](x; t):

Since

jfj [uj ](x; t)� f [uj ](x; t)j
=

��fj(x; t; uj(x; t); u0j(x; t);ruj(x; t);ru0j(x; t))� f(x; t; uj(x; t); u0j(x; t);ruj(x; t);ru0j(x; t))��
� kfj � fkC0( ~AM) �

~d(fj ; f);
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it follows

kf [uj ](t)� f [u](t)k � ~KM (f)
�
kwj(t)k+

w0j(t)+ kwjx(t)k�+ ~KM (f)
w0jx(t)

� 2 ~KM (f)
�w0j(t)+ kwjx(t)k�+ ~KM (f)

w0jx(t)
� 2

p
2 ~KM (f)

q
�Sj(t) + ~KM (f)

w0jx(t) :
Then  ~Fj(t) � kfj [uj ](t)� f [uj ](t)k+ kf [uj ](t)� f [u](t)k

� ~d(fj ; f) + 2
p
2 ~KM (f)

q
�Sj(t) + ~KM (f)

w0jx(t) :
Hence

I8 = 2

Z t

0

D
~Fj(s); w

0
j(s)

E
ds � 2

Z t

0

 ~Fj(s)w0j(s) ds (4.12)

� 2

Z t

0

�
~d(fj ; f) + 2

p
2 ~KM (f)

q
�Sj(s) + ~KM (f)

w0jx(s)�q �Sj(s)ds

� T � ~d2(fj ; f) +

Z t

0

�Sj(s)ds+ 4
p
2 ~KM (f)

Z t

0

�Sj(s)ds+ �

Z t

0

w0jx(s)2 ds+ 1

�
~K2
M (f)

Z t

0

�Sj(s)ds

� T � ~d2(fj ; f) +

Z t

0

�Sj(s)ds+ 4
p
2 ~KM (f)

Z t

0

�Sj(s)ds+ � �Sj(t) +
1

�
~K2
M (f)

Z t

0

�Sj(s)ds

= T � ~d2(fj ; f) + � �Sj(t) +

�
1 + 4

p
2 ~KM (f) +

1

�
~K2
M (f)

� Z t

0

�Sj(s)ds:

Finally, by choosing � =
���
14
; we get from (4.5)-(4.10) that

�Sj(t) � Rj(M) +DM

Z t

0

�Sj(s)ds;

where

Rj(M) =
2

���
T � ~d2(fj ; f) +

28

��2�
(1 +KM (��))

2 (1 +M)2T � kgj � gk2L2(0;T �)

+
56

��2�
T �
�
1 +M2

� �
d21(�j ; �) +

�
T � kgkL2(0;T �)

�2
d21(��j ; ��)

�
;

DM =
2

���

�
1 + 4

p
2 ~KM (f) + (1 +KM (�)) (1 +M) +

14

���
~K2
M (f)

�
+2
28

��2�
(1 +KM (��))

2 T � kgk2L2(0;T �)

+
56

��2�

�
1 +M2

� �
K2
M (�) + T

� kgk2L2(0;T �)K
2
M (��)

�
:

Using Gronwall�s lemma, we have

�Sj(t) � Rj(M) exp(TDM ):

This derive that

kuj � ukW1(T )
� 3

q
exp(TDM )Rj(M)

� CT

�
d1(�j ; �) + d1(��j ; ��) +

~d(fj ; f) + kgj � gkH1(0;T �)

�
; 8j � j0;
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where

CT = 3
p
exp(TDM )max

(s
2

���
T �;

2
p
7T �

���
(1 +KM (��)) (1 +M);

2
p
14

���

p
T � (1 +M2);

2
p
14

���

p
T � (1 +M2)T � kgkL2(0;T �)

)
:

Theorem 4.1 is proved. �
Remark 4.2. We give here an example, in which the condition (4.1) is satis�ed.
(i) Considering ffjg de�ned by

fj(x; t; y1; � � � ; y4) = f(x; t; y1; � � � ; y4) +
x2t2y21

j
�
1 + y21

� ; (x; t; y1; � � � ; y4) 2 [0; 1]� [0; T �]� R4;
where f 2 C1([0; 1]� [0; T �]� R4) satis�es (H4).

It is easy to check that fj 2 C1([0; 1]� [0; T �]� R4) also satis�es (H4) and

~d(fj ; f) � sup
M>0

�
max
j�j�1

kD�fj �D�fkC0( ~AM)

�
! 0:

Indeed, for all (x; t; y1; � � � ; y4) 2 ~AM = [0; 1] � [0; T �] � [�M;M ]2 � [�
p
2M;

p
2M ]2, we can

estimate that

kfj � fkC0( ~AM) �
(T �)2M2

j (1 +M2)
� (T �)2

j
; 8M > 0:

Similarly, we have

kD1fj �D1fkC0( ~AM) � 2 (T �)2M2

j (1 +M2)
� 2 (T �)2

j
; 8M > 0;

kD2fj �D2fkC0( ~AM) � 2T �M2

j (1 +M2)
� 2T �

j
; 8M > 0;

kD3fj �D3fkC0( ~AM) � (T �)2

j
; 8M > 0;

kDifj �DifkC0( ~AM) = 0; i = 4; 5; 6;

then
~d(fj ; f) � sup

M>0
max
j�j�1

kD�fj �D�fkC0( ~AM) �
2

j
max

n
(T �)2 ; T �

o
! 0; as j !1:

(ii) Considering f�jg de�ned by

�j(x; t; y) = �(x; t; y) +
xty2

j (1 + y2)
; (x; t; y) 2 [0; 1]� [0; T �]� R;

where � 2 C3([0; 1]� [0; T �]� R) satis�es (H2).
It is easy to check that �j 2 C3([0; 1]� [0; T �]� R) also satis�es (H2) and

d1(�j ; �) � sup
M>0

�
max
j�j�3

D��j �D��

C0(AM )

�
� 1

j
max f5; 18T �g ! 0; as j !1:

(iii) It is similar to give f��jg and fgjg; we omit here. �
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5 Global existence and general decay

In this section, we investigate the general decay of solutions to Prob. (1.1) in the speci�c case

� = �(t; u); ��(u) = u; f = ��1ut + f(u) � 1

2
D2
2�(t; u)u

2
x + F (x; t). Precisely, we shall consider the

following problem8>>>>>>><>>>>>>>:

utt + �1ut � �utxx �
@2

@x2
�(t; u(x; t)) +

Z t

0
g(t� s)uxx(x; s))ds

= f(u)� 1
2
D2
2�(t; u)u

2
x + F (x; t); 0 < x < 1; 0 < t < T;

u(0; t) = u(1; t) = 0;

u(x; 0) = ~u0(x); ut(x; 0) = ~u1(x);

(5.1)

where � > 0; �1 > 0 are given constants and �; g; f; F; ~u0; ~u1 are given functions satisfying the
following assumptions.

We �rst note that, by Theorem 3.5, under the assumptions corresponding to this special case,
Prob. (5.1) has a unique local weak solution u such that

u 2 C([0; T ];H2 \H1
0 ) \ C1([0; T ];H1

0 ) \ L1(0; T ;H2 \H1
0 );

u0 2 C([0; T ];H1
0 ) \ L1(0; T ;H2 \H1

0 );

u00 2 L2(0; T ;H1
0 ) \ L1(0; T ;L2);

for T chosen small enough. Furthermore, using the standard arguments of density, we can propose
the assumptions to get the local existence and uniqueness of a weak solution for Prob. (5.1) with less
smoothness as follows.

( �H1) (~u0; ~u1) 2 H1
0 � L2;

(Ĥ2) � 2 C3 (R+ � R) and there exists the positive constant �� such that
(i) D2�(t; z) � �� > 0; for all (t; z) 2 R+ � R;
(ii) D1D2�(t; z) � 0; for all (t; z) 2 R+ � R;

( �H3) g 2 C1 (R+) ;
( �H4) f 2 C1 (R) ; such that f(0) = 0 and yf(y) > 0; for all y 2 R;
(Ĥ5) F 2 L2 ((0; 1)� R+) :
We then obtain the following theorem.
Theorem 5.1. Let ( �H1); (Ĥ2); ( �H3); ( �H4); (Ĥ5) hold. Then, there exist T > 0 and a unique

solution of Prob. (5.1) such that

u 2 C0([0; T ];H1
0 ) \ C1([0; T ];L2); u0 2 L2(0; T ;H1

0 ): (5.2)

We now prove the existence of global solution and the energy of the solution decays as t ! +1.
For this purpose, we strengthen the following assumptions.

( �H1) (~u0; ~u1) 2 H1
0 � L2;

(Hd
2 ) � 2 C3 (R+ � R) and there exist the positive constants ��; �1�; �2� such that

(i) D2�(t; z) � �� > 0; for all (t; z) 2 R+ � R;
(ii) D1D2�(t; z) � 0; for all (t; z) 2 R+ � R;
(iii)

1

2
zD2

2�(t; z) +D2�(t; z) � �1� > 0; for all (t; z) 2 R+ � R;
(iv) zD2

2�(t; z) � ��2�; for all (t; z) 2 R+ � R;
(Hd

3 ) g 2 C1 (R+) \ L1 (R+) such that
(i) L� = �� � �g (1) > 0;
(ii) there exists a function � 2 C1(R+) such that

�0(t) � 0 < �(t); for all t � 0,
Z 1

0
� (s) ds =1; and

g0 (t) � ��(t)g (t) < 0; for all t � 0;
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where �g (t) =

Z t

0
g (s) ds; �g (1) =

Z 1

0
g (s) ds;

(Hd
4 ) f 2 C1 (R) ; f(0) = 0; yf(y) > 0; for all y 2 R

and there exist the constants �; �; d2; �d2 > 0; with � > 2; � > 2; such that

(i) yf(y) � d2

Z y

0
f(z)dz; for all y 2 R;

(ii)
Z y

0
f(z)dz � �d2

�
jyj� + jyj�

�
; for all y 2 R;

(Hd
5 ) F 2 L1

�
R+;L2

�
\ L1

�
R+;L2

�
; and there exist two positive constants C0; 0 such that

kF (t)k2 � C0 exp (�0t) ; for all t � 0;

(Hd
6 ) p > max f2; d2g ; �� >

p

2d2
�2� +

�
1 +

p

d2

�
�g (1) :

We next prove that if
Z 1

0
D2�(0; ~u0(x))~u

2
0x(x)dx�p

Z 1

0
dx

Z ~u0(x)

0
f(z)dz > 0; and if the initial energy

and kF (t)k are small enough, then the solution is globally extended in time and its energy decays to
zero, as t tends to in�nity. To achieve this goal, we �rst construct the Lyapunov functional in the
form

L(t) = E(t) + � (t); (5.3)

where � is a positive constant suitably chosen and

E (t) =
1

2

u0 (t)2 + �1
2
� 1
p

�
[(g � u) (t) +N(u)] + 1

p
I(t); (5.4)

 (t) = hu0(t); u(t)i+ �1
2
ku(t)k2 + �

2
kux(t)k2; (5.5)

with (g � u) (t) =
Z t

0
g (t� s) kux(t)� ux(s)k2 ds and

I(t) = (g � u) (t) +N(u)� p
Z 1

0
F(u(x; t))dx; (5.6)

N(u) =

Z 1

0
D2�(t; u(x; t))u

2
x(x; t)dx� �g(t) kux (t)k

2 ;

F(y) =

Z y

0
f(z)dz:

Lemma 5.2. If ( �H1); (Hd
2 )� (Hd

6 ) hold and u is the solution of (5.1), then the energy functional
E(t) satis�es

(i) E0 (t) � 1

2
kF (t)k+ 1

2
kF (t)k

u0 (t)2 ; (5.7)

(ii) E0 (t) � �
�
�1 �

"1
2

�u0 (t)2 � � u0x (t)2 � 12�(t) (g � u) (t) + 1

2"1
kF (t)k2 ;

for all "1 > 0:
Proof. Multiplying (5.1) by u0(x; t) and integrating over [0; 1]; we get

E0 (t) = ��1
u0 (t)2 � � u0x (t)2 + 12 �g0 � u� (t)� 12g(t) kux (t)k2 (5.8)

+
1

2

Z 1

0
D1D2�(t; u(x; t))u

2
x(x; t)dx+



F (t); u0 (t)

�
:

27



Using the assumptions (Hd
2 ); (H

d
3 ); (H

d
5 ), we obtain

1

2

Z 1

0
D1D2�(t; u(x; t))u

2
x(x; t)dx � 0; (5.9)

1

2

�
g0 � u

�
(t) � �1

2
�(t) (g � u) (t) ;

so
E0 (t) � hF (t); u0(t)i � 1

2
kF (t)k+ 1

2
kF (t)k

u0 (t)2 :
This assures (5.7)-(i).
By applying Cauchy-Schwartz inequality, we have

hF (t); u0(t)i � 1

2"1
kF1 (t)k2 +

"1
2

u0 (t)2 ; for all "1 > 0: (5.10)

Then, by using (5.8), (5.9) and (5.10), it is easy to see (5.7)-(ii) holds. Lemma 5.2 is proved. �
Lemma 5.3. If (Hd

2 )� (Hd
6 ) hold and (~u0; ~u1) 2 H1

0 � L2 such that I(0) > 0 and

�� � �� � �g(1)� p �d2
�
R��2� +R��2�

�
>

p

2d2
�2� +

p

d2
�g (1) ; (5.11)

where R� =
�

2pE�
(p� 2)L�

�1=2
; E� =

�
E(0) +

1

2
�1

�
exp (�1) ; �1 =

Z 1

0
kF (t)k dt; L� = ����g(1) > 0:

Then I(t) � 0; for all t � 0:
We note more that the condition (5.11) holds if �g (1) ; E� are chosen small enough and �� > 0 is

suitably large.
Proof. By the continuity of I(t) and I(0) > 0; there exists ~T > 0 such that

I(t) = I(u(t)) > 0; 8t 2 [0; ~T ]:

From (5.4) and (5.6), we get

E(t) � 1

2

u0(t)2 + �1
2
� 1
p

�
[(g � u) (t) +N(u)] (5.12)

� 1

2

u0(t)2 + �1
2
� 1
p

�h
(g � u) (t) + L� kux(t)k2

i
� 1

2

u0(t)2 + p� 2
2p

(g � u) (t) + (p� 2)L�
2p

kux(t)k2 ; 8t 2 [0; ~T ]:

Combining (5.7)-(i) and (5.12) and using Gronwall�s inequality, we obtain

kux(t)k2 +
p

(p� 2)L�
u0(t)2 + 1

L�
(g � u) (t) (5.13)

� 2pE(t)

(p� 2)L�
� 2pE�
(p� 2)L�

� R2�; 8t 2 [0; ~T ]:

Then, it follows from (Hd
4 )-(ii) and (5.13) that

p

Z 1

0
F (u (x; t)) dx � p �d2

�
ku(t)k�L� + ku(t)k

�
L�

�
� p �d2

�
kux(t)k� + kvx(t)k�

�
� p �d2

�
R��2� +R��2�

�
kux(t)k2 :

Thus
I (t) � (g � u) (t) + �� kux(t)k2 � 0; 8t 2 [0; ~T ]; (5.14)
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where the positive constant �� is de�ned as in (5.11).

Next, we prove that I (t) > 0; 8t � 0: Put T1 = sup
n
~T > 0 : I(t) > 0; 8t 2 [0; ~T ]

o
, we have to

show that T1 = +1: Indeed, if T1 < +1 then, by the continuity of I(t); we have I(T1) � 0:
In case of I(T1) > 0; by the same arguments as above, we can reduce that there exists ~T1 > T1

such that I(t) > 0; 8t 2 [0; ~T1]: This is contrary to the de�nition of T1:
In case of I(T1) = 0; it implies from (5.14) that

0 = I(T1) � (g � u) (T1) + �� kux(T1)k2 � 0:
Therefore

ku(T1)k = (g � u) (T1) = 0:
Due to the function s 7�! g (T1 � s) kux(T1)� ux(s)k2 is continuous on [0; T1] and g (T1 � s) >

0; 8s 2 [0; T1] ; we have

(g � u) (T1) =
Z T1

0
g (T1 � s) kux(s)k2 ds = 0;

it follows that kux(s)k2 = 0; 8s 2 [0; T1] : Thus, u (0) = 0: This is contrary to I(0) > 0:
Consequently, T1 = +1; i.e. I(t) > 0; 8t � 0: Lemma 5.3 is proved. �
It is clear to see that Lemmas 5.2, 5.3 assure a global existence of the solution for Prob. (5.1).
Next, we put

E1(t) =
u0(t)2 + kux(t)k2 +N(u) + (g � u) (t) + I(t): (5.15)

In order to discuss general decay, we need more the following lemmas.
Lemma 5.4. If the assumptions of Lemma 5.3 hold, there exist the positive constants �1; ��1; �2;

��2 such that

(i) �1E1(t) � L(t) � �2E1(t); for all t � 0; (5.16)

(ii) ��1E1(t) � E(t) � ��2E1(t); for all t � 0;
for � is small enough.

Proof. It is easy to see that

L(t) =
1

2

u0 (t)2 + p� 2
2p

(g � u) (t) + p� 2
2p

N(u) +
1

p
I(t)

+�hu0(t); u(t)i+ �

2

�
�1 ku(t)k2 + � kux(t)k2

�
:

Using Cauchy-Schwartz inequality, we get the estimations��hu0(t); u(t)i�� � 1

2

u0(t)2 + 1
2
kux(t)k2 ;

N(u) � L� kux(t)k2 :
Then

L(t) � 1

2

u0 (t)2 + p� 2
2p

(g � u) (t) + p� 2
2p

N(u) +
1

p
I(t)� �

 
ku0(t)k2 + kux(t)k2

2

!
� 1

2

u0 (t)2 + p� 2
2p

(g � u) (t) + p� 2
2p

h
"�N(u) + (1� "�)L� kux(t)k2

i
+
1

p
I(t)

��
 
ku0(t)k2 + kux(t)k2

2

!

=
1� �
2

u0 (t)2 + p� 2
2p

(g � u) (t) + (p� 2)"�
2p

N(u) +

�
(p� 2)(1� "�)L�

2p
� �

2

�
kux(t)k2

+
1

p
I(t) � �1E1(t);
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where

0 < "� < 1; �1 = min

�
1� �
2

;
(p� 2)"�
2p

;
1

p
;

�
(p� 2)(1� "�)L�

2p
� �

2

��
;

and � > 0 are chosen small enough such that

0 < � < min

�
1;
(p� 2)(1� "�)L�

p

�
:

On the other hand

L(t) � 1

2

u0 (t)2 + p� 2
2p

(g � u) (t) + p� 2
2p

N(u) +
1

p
I(t)

+�

 
ku0(t)k2 + kux(t)k2

2

!
+
�

2

�
�1 kux(t)k2 + � kux(t)k2

�
� 1 + �

2

u0 (t)2 + p� 2
2p

(g � u) (t) + p� 2
2p

N(u) +
1

p
I(t)

+
�

2
(1 + �1 + �) kux(t)k2 � �2E1(t);

where �2 = max
�
1 + �

2
;
p� 2
2p

;
�

2
(1 + �+ �1)

�
: Thus, the estimation (5.16)-(i) holds. Similarly, we

verify that (5.16)-(ii) also holds.
Lemma 5.4 is proved completely. �
Lemma 5.5. If the assumptions of Lemma 5.3 hold, then the functional  (t) de�ned by (5.5)

satis�es the following estimation

 0 (t) �
u0 (t)2 + 1

2"2
kF (t)k2 +

�
d2
p
+

1

2"2

�
(g � u) (t) (5.17)

��1d2
p
I(t)�

�
1� d2

p
� ��

�
N(u)

�
�
d2
p
(1� �1)�� + ���1� �

1

2
(1� ��)�2� �

"2
2
�
�
1 +

"2
2

�
�g (1)

�
kux(t)k2 ;

for all "2 > 0; ��; �1 2 (0; 1):
Proof. Multiplying (5.1)1 by u(x; t) and integrating over [0; 1]; we obtain

 0 (t) =
u0 (t)2 � 1

2



D2
2�(t; u(t))u

2
x(t); u(t)

�
� hD2�(t; u(t))ux(t); ux(t)i+ hF (t); u(t)i

+

Z t

0
g (t� s) hux (s) ; ux (t)i ds+ hf(u(t)); u(t)i

=
u0 (t)2 + hF (t); u(t)i+ Z t

0
g (t� s) hux (s) ; ux (t)i ds

���
Z 1

0

�
1

2
u(x; t)D2

2�(t; u(x; t)) +D2�(t; u(x; t))

�
u2x(x; t)dx

�(1� ��)
Z 1

0

�
1

2
u(x; t)D2

2�(t; u(x; t)) +D2�(t; u(x; t))

�
u2x(x; t)dx+ hf(u(t)); u(t)i:

Using Cauchy-Schwartz inequality, we have

hF (t); u(t)i � "2
2
kux(t)k2 +

1

2"2
kF (t)k2 ; (5.18)Z t

0
g (t� s) hux (s) ; ux (t)i ds �

�
1 +

"2
2

�
�g (t) kux (t)k2 +

1

2"2
(g � u) (t) ;

I(t) � �� kux(t)k2 ;
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for all "2 > 0:
By asumption (Hd

2 )-(iii) and (H
d
2 )-(iv), we get

���
Z 1

0

�
1

2
u(x; t)D2

2�(t; u(x; t)) +D2�(t; u(x; t))

�
u2x(x; t)dx � ����1� kux(t)k

2 ; (5.19)

�(1� ��)
Z 1

0

�
1

2
u(x; t)D2

2�(t; u(x; t)) +D2�(t; u(x; t))

�
u2x(x; t)dx (5.20)

= �1
2
(1� ��)

Z 1

0
u(x; t)D2

2�(t; u(x; t))u
2
x(x; t)� (1� ��)

Z 1

0
D2�(t; u(x; t))u

2
x(x; t)dx

= �1
2
(1� ��)

Z 1

0
u(x; t)D2

2�(t; u(x; t))u
2
x(x; t)� (1� ��)

h
N(u) + �g(t) kux (t)k2

i
� 1

2
(1� ��)�2� kux(t)k2 � (1� ��)N(u):

On the other hand, by asumption (Hd
4 )-(i) and de�nition of I(t) given by (5.6), we obtain

hf(u(t)); u(t)i � d2

Z 1

0
F (u (x; t)) dx (5.21)

=
d2
p
[(g � u) (t) +N(u)� �1I(t)� (1� �1)I(t)]

� d2
p

h
(g � u) (t) +N(u)� �1I(t)� (1� �1)�� kux(t)k2

i
:

Then, it follows from (5.18)-(5.21) that the inequality (5.17) is valid.
Lemma 5.5 is proved completely. �
Using Lemmas 5.2 - 5.5, we state and prove our main result in this section as follows.
Theorem 5.6. If (Hd

2 ) � (Hd
6 ) hold and (~u0; ~u1) 2 H1

0 � L2 satisfy I(0) > 0 and (5.11). Then,
there exist positive constants �C; � such thatu0(t)2 + kux(t)k2 � �C exp

�
��
Z t

0
� (s) ds

�
; for all t � 0: (5.22)

Proof of Theorem 5.6.
First, due to the de�nition of L(t) and the inequalities (5.7)-(ii), (5.17), we deduce that

L0(t) � �
�
�1 �

"1
2
� �
�u0 (t)2 � 1

2
�(t) (g � u) (t) + 1

2

�
1

"1
+

�

"2

�
kF (t)k2 (5.23)

+�

�
d2
p
+

1

2"2

�
(g � u) (t)� ��1d2

p
I(t)� ��1N(u)� ��2 kux(t)k2 :

where

�1 = �1 (��) = 1�
d2
p
� ��;

�2 = �2 (��; �1; "2) =
d2
p
(1� �1)�� + ���1� �

1

2
(1� ��)�2� �

"2
2
�
�
1 +

"2
2

�
�g (1) :

Clearly

lim
��!0+

�1 (��) = 1� d2
p
> 0;

lim
��!0+; �1!0+; "2!0+

�2 (��; �1; "2) =
d2
p
�� � 1

2
�2� � �g (1) > 0:
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Then, we can choose ��; �1 2 (0; 1) and "2 > 0 small enough such that

�1 = �1 (��) > 0; �2 = �2 (��; �1; "2) > 0:

Moreover, we also choose "1 > 0; � > 0 small enough and satisfying

��1 = �1 �
"1
2
� � > 0; 0 < � < min

�
1;
(p� 2)(1� "�)L�

p

�
:

Putting

��� = min

�
��1; ��1; ��2;

��1d2
p

�
; ��3 = �

�
d2
p
+

1

2"2

�
; (5.24)

we get from (5.23) and (5.24) that

L0(t) � ����
hu0 (t)2 + kux(t)k2 + I(t) +N(u)i (5.25)

+��3 (g � u) (t) +
1

2

�
1

"1
+

�

"2

�
kF (t)k2

= ����E1(t) +
�
��� + ��3

�
(g � u) (t) + 1

2

�
1

"1
+

�

"2

�
kF (t)k2 :

Combining (5.7)-(ii) and (5.25), we obtain

�(t)L0(t) � �����(t)E1(t) +
�
��� + ��3

�
�(t) (g � u) (t) + 1

2

�
1

"1
+

�

"2

�
�(0) kF (t)k2 (5.26)

� �����(t)E1(t) + 2
�
��� + ��3

� �
�E0 (t) + 1

2"1
kF (t)k2

�
+
1

2

�
1

"1
+

�

"2

�
�(0) kF (t)k2

= �����(t)E1(t)� 2
�
��� + ��3

�
E0 (t) +

���� + ��3
"1

+
1

2

�
1

"1
+

�

"2

��
�(0) kF (t)k2

� �����(t)E1(t)� 2
�
��� + ��3

�
E0 (t) + �C0e

�0t;

where �C0 =
���� + ��3

"1
+ 1

2

�
1

"1
+

�

"2

��
�(0)C0:

Setting the functional
L(t) = �(t)L(t) + 2

�
��� + ��3

�
E(t);

then we have
L(t) �

�
�(0)�2 + 2

�
��� + ��3

�
��2
�
E1(t) � �̂2E1(t);

and

L0(t) = �0(t)L(t) + �(t)L0(t) + 2
�
��� + ��3

�
E0(t)

� �����(t)E1(t) + �C0e
�0t � �

���

�̂2
�(t)L(t) + �C0e

�0t:

By choosing 0 < � < min

(
���

�̂2
;
0
�(0)

)
; we get

L0(t) + ��(t)L(t) � �C0e
�0t:

Integrating the above inequality, we deduce

L(t) �
�
L(0) +

�C0
0 � ��(0)

�
exp

�
��
Z t

0
�(�)d�

�
: (5.27)
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On the other hand

L(t) = �(t)L(t) + 2
�
��� + ��3

�
E(t) � 2

�
��� + ��3

�
��1E1 (t) (5.28)

� 2
�
��� + ��3

�
��1

�u0(t)2 + kux(t)k2� :
Then, by (5.27) and (5.28), we get (5.22). Theorem 5.6 is proved completely. �
Remark 5.7. We also give here an example, in which � satis�es the assumption (Hd

2 ). We shall
consider the function

�(t; z) = ��z + ���e
�t jzjk�1 z;

where �� > 0; ��� > 0; k > 3 are constants. By the direct computations, we have

D2�(t; z) = �� + k���e
�t jzjk�1 � �� > 0;

D1D2�(t; z) = �k���e�t jzjk�1 � 0;
zD2

2�(t; z) = k(k � 1)���e�t jzjk�1 � 0 > ��2�;
1

2
zD2

2�(t; z) +D2�(t; z) =
1

2
(k � 1) [D2�(t; z)� ��] +D2�(t; z)

� D2�(t; z) � �� = �1� > 0:

This claims that (Hd
2 ) holds. �
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