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Abstract

This paper is devoted to the stability of a viscoelastic problem with Balakrishn\ˆ{a}n-Taylor damping and time delay involving

variable-exponent nonlinearity. Under some assumptions on the relaxation function, we establish the general decay estimate

for the energy via suitable Lyapunov functionals. The problem considered is novel and meaningful because the presence of the

flutter panel equation and the spillover problem with memory and variable exponents time delay control. Our result generalizes

and improves previous conclusion in the literature.
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Abstract. This paper is devoted to the stability of the following viscoelastic

problem with Balakrishnân-Taylor damping and time delay involving variable-
exponent nonlinearity

utt −M
(
‖∇u‖22

)
∆u+ α (t)

∫ t

0
g (t− s) ∆u (s) ds+ µ1 |ut|p(.)−2 ut

+µ2 |ut (t− τ)|p(.)−2 ut (t− τ) = 0 in Ω× R+,

where Ω is a bounded domain of Rn, p (.) : Ω → R is a measurable function,
g > 0 is a memory kernel that decay exponentially, α ≥ 0 is the potential, and

M
(
‖∇u‖22

)
= a+ b ‖∇u (t)‖22 + σ

∫
Ω
∇u∇utdx

for some constants a > 0, b ≥ 0, σ > 0. Under some assumptions on the

relaxation function, we establish the general decay estimate for the energy via
suitable Lyapunov functionals.

The problem considered is novel and meaningful because the presence of

the flutter panel equation and the spillover problem with memory and variable
exponents time delay control. Our result generalizes and improves previous

conclusion in the literature.

1. Introduction

In recent years, many authors have paid attention to the equations with variable
exponents of nonlinearities. This is partially due to the large employment of these
equations to model several physical phenomena such as flows of electro-rheological
fluids or fluids with temperature-dependent viscosity, nonlinear viscoelasticity, filtra-
tion processes through porous media, and image processing gives rise to equations

E-mail address: zuojiabin88@163.com (*Corresponding author: Jiabin Zuo),

abitamaths@gmail.com (Co-author: Abita Rahmoune ).
Key words and phrases. Viscoelasticity wave equation, Balakrishnân–Taylor damping, Delay

source, General energy decay result, Lebesgue and Sobolev spaces with variable exponents.
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2 A NONLINEAR VISCOELASTIC WAVE EQUATION

with nonstandard growth conditions. These models include hyperbolic, parabolic
or elliptic equations that are nonlinear in the gradient of the unknown solution
and with variable exponents of nonlinearity. The study of these systems is based
on the use of the Lebesgue and Sobolev spaces with variable exponents (see for
instance [15, 14, 40]). More details on these problems can be found in previous
studies [30, 34, 32, 31, 33, 35, 36, 38, 37, 43, 44, 45] and references therein.

In this paper, we are concerned with the asymptotic behavior of weak solutions
to a weakly damped viscoelastic wave equation with Balakrishnân–Taylor damping
and delay term involving the variable-exponent nonlinearities

utt −M
(
‖∇u‖22

)
∆u+ α(t)

∫ t

0

g(t− s)∆u(s)ds

+µ1 |ut|p(x)−2
ut + µ2 |ut (t− τ)|p(x)−2

ut (t− τ) = 0 in Ω× (0,∞)

u(x, t) = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

ut(x, t) = j0(x, t− τ) in Ω× (0, τ),

(1.1)

where M
(
‖∇u‖22

)
= a+ b ‖∇u (t)‖22 + σ

∫
Ω
∇u∇utdx, a > 0, b ≥ 0, σ > 0, µ1 ≥ 0,

µ2 is a real number, τ > 0 is the time delay, g > 0 is a memory kernel, α ≥ 0 is the
potential, ∆ stands for the Laplacian with respect to the spatial variables. A great
deal of attention has been given to model several phenomena such as vibrations of
elastic strings and plates, as in the case where, g = 0, µ1 = µ2 = 0, equation (1.1))
is described by Kirchhoff’s original equation

ρh
∂2u

∂t2
=

{
p0 +

Eh

2L

∫ L

0

(
∂u

∂x

)2

dx

}
∂2u

∂x2
+ f, 0 ≤ x ≤ L, t ≥ 0, (1.2)

which was first introduced in 1883 by Kirchhoff [29], to the study of the oscillations
of stretched strings and plates and called the wave equation of Kirchhoff type, where
u = u(x, t) is the lateral deflection, E is Young’s modulus, ρ is the mass density, h
is the cross-section area, L is the length, p0 is the initial axial tension, and f is the
external force. There are large discussions concerning the Kirchhoff equation. In
the sequel, we would like to mention some considerable efforts on this topic.

The local solutions in time, well-posedness, and solvability of the Kirchhoff type
equation (1.2), has been well-studied in general dimensions and domains by various
authors (see, for examples, [17, 16, 18, 19, 20, 21, 25, 23, 28] and the references
therein).

In the presence of the Balakrishnân-Taylor damping term (σ > 0), problem (1.1)
in the case when p > 1 is constant, is related to the flutter panel equation and the
spillover problem with memory and time delay control. Balakrishnân and Taylor [5]
and Bass and Zes [6] introduced Balakrishnân–Taylor damping which arises from a
wind tunnel experiment at supersonic speeds, see [7, 23, 8, 24, 26].

Time delays arise in many physical, chemical, biological, thermal and economic
phenomena because these phenomena depend not only on the present state but
also on the past history of the system in a more complicated way (see, for example,
[9, 11, 10])

Regarding the viscoelastic wave equation with delay several authors discussed
on existence and stability of the solutions under appropriate conditions on µ1, µ2,
and g (see e.g. [1]). For the related problems, we also refer [2, 12, 3, 4, 27, 13].
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The terminology variable exponents comes from the fact that p(.) is a function

, not a real number. This term µ1 |ut|p(.)−2
ut + µ2 |ut (t− τ)|p(.)−2

ut (t− τ) is a
generalization of µ1ut + µ2ut (t− τ), which corresponds to p(.) > 1. As a matter
of fact, (1.1) can be cast as an extension to the variable case of the second-order
viscoelastic wave equation with variable growth conditions

utt−M
(
‖∇u‖22

)
∆u+α (t)

∫ t

0

g (t− s) ∆u (s) ds+µ1ut+µ2ut (t− τ) = 0 in Ω×R+,

(1.3)

which is obtained when considering µ1 |ut|p(.)−2
ut + µ2 |ut (t− τ)|p(.)−2

ut (t− τ) .
Equation (1.3) is a well-known appears in the treatment of fluid dynamics, a model
for electrorheological fluids [41]. On the other hand, results for the viscoelastic
wave equation with Balakrishnân–Taylor damping, delay term, and variable growth
conditions are limited and rare, and the literature on these equations is much less
extended see [22]. In particular, in [2], the authors considered this class of equations
under some suitable assumptions, they showed that the general decay exponentially,
see similar work in [27].

The purpose of this paper is to generalize previous some results. In particular,
we will establish in this case with the relaxation function and specified initial data
by using special Lypunouv functionals a general decay estimate for the energy,
which depends on the behavior of the relation function, and which is not necessarily
decaying in a polynomial or exponential shape.

This paper is composed of two sections in addition to the introduction. In Section
2, we recall the definitions of the variable-exponent Lebesgue and Sobolev spaces
and present some of their relevant properties. We also state there our main results.
In Section 3, we prove our result showing the general decay of a solution to (1.1)
with a small initial value (u0, u1).

2. Functional setting and main results

In this section, we describe the functional setting in which we shall work and
state our main results.

Let us start by introducing the Lebesgue and Sobolev spaces with variable
exponent. Here we refer mainly to [14, 39, 42].

Throughout the rest of the paper, we assume that Ω is a bounded open domain
of Rn, n ≥ 1, with smooth boundary Γ. Moreover, in what follows, if not stated
differently, we will always assume that p : Ω→ (1,+∞) is a measurable function
and we will denote

p− := ess inf
x∈Ω

[ p (x)] and p+ := ess sup
x∈Ω

[ p (x)].

We then define the variable-exponent space Lp(.)(Ω) as

Lp(.)(Ω) =

{
v : Ω→ R measurable

∣∣∣ %p(.),Ω(v) :=

∫
Ω

|v (x)|p(x)
dx < +∞

}
,

which is a Banach space equipped with the Luxemburg norm

‖u‖p(.),Ω := inf

{
λ > 0

∣∣∣ ∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.
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Variable-exponent Lebesgue spaces are similar to classical Lebesgue spaces in many
aspects (see for instance [42]). In particular, it follows directly from the definition
of the norm that

min
(
‖u‖p

−

p(.) , ‖u‖
p+

p(.)

)
≤ %p(.),Ω(u) ≤ max

(
‖u‖p

−

p(.) , ‖u‖
p+

p(.)

)
. (2.1)

In this section, we outline the variational framework for problem (1.1) and give
some preliminary Lemmas.

Given a measurable function p : Ω→ [p−, p+] ⊂ (2,∞) , p± = const, we define
the Lebesgue space with variable exponent

Lp(.)(Ω) =


u : Ω→ R : u measurable functions on Ω,∫

Ω

|u (x)|p(x)
dx <∞.


equipped with the Luxemburg norm,

‖u‖p(.) = inf

λ > 0,

∫
Ω

∣∣∣u
λ

∣∣∣p(x)

dx ≤ 1


is a Banach space. We also assume that p satisfies the following Zhikov–Fan uniform
local continuity condition :

|p (x)− p (y)| ≤ M

|log |x− y||
, for all x, y in Ω with |x− y| < 1

2
, M > 0. (2.2)

We denote ‖.‖q and ‖.‖H1(Ω) to the usual Lq(Ω) norm and H1(Ω) norm, respectively.
To achieve our result, we need the following Lemma:

Lemma 2.1. ([14])

(1) If

2 ≤ p− := ess inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := ess sup
x∈Ω

p(x) <∞,

then

min
{
‖u‖p

−

p(.), ‖u‖
p+

p(.)

}
≤
∫

Ω

|u(.)|p(x)dx ≤ max
{
‖u‖p

−

p(.), ‖u‖
p+

p(.)

}
for any u ∈ Lp(.)(Ω).

(2) Let p, q, r : Ω→ (1,+∞) be measurable functions such that

1

p(.)
=

1

r(.)
+

1

q(.)
.

Then, for all functions u ∈ Lr(.)(Ω) and v ∈ Lq(.)(Ω), we have uv ∈ Lp(.)(Ω)
with

‖uv‖p(.) ≤ C ‖u‖r(.) ‖v‖q(.) .

(3) If p : Ω→ [p−, p+] ⊂ [1,+∞) is a measurable function and p∗ > ess sup
{x∈Ω}

p (x)

with p∗ ≤ 2n
n−2 , then the embedding H1

0 (Ω) = W 1,2
0 (Ω) ↪→ Lp(.)(Ω) is con-

tinuous and compact, there is a constant c∗ = c∗(Ω, p
±) such that

‖u‖p(.) ≤ c∗‖∇u‖2 for u ∈ H1
0 (Ω).
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For the relaxation function g and the potential α, we have the following assump-
tions

Hypothesis g, α:g, α : R+ → R+ are nonincreasing differentiable functions
satisfying

g(s) ≥ 0, l0 =

∫ ∞
0

g(s)ds <∞, α(t) > 0, a− α(t)

∫ t

0

g(s)ds ≥ l > 0. (H1)

Hypothesis ξ: There exist a positive differentiable functions ξ satisfying

g′(t) ≤ −ξ(t)g(t), for t ≥ 0, lim
t→∞

−α′(t)
ξ(t)α(t)

= 0. (H2)

Hypothesis p (.): The function p (.) satisfies

p− ≥ 2, if n = 1, 2, 2 < p− ≤ p (x) ≤ p+ <
n+ 2

n− 2
if n ≥ 3. (H3)

Hypothesis µ1 and µ2 : The constants µ1 and µ2 satisfy

|µ2| < p−µ1. (H4)

it is easy, by differentiating the term α (t) (g ◦ u) (t) with respect to t, to show that

α(t)

∫ t

0

g(t− s)
∫

Ω

u(s)dsut(t)dx

= − d

dt

[
α(t)

2
(g ◦ u)(t)− α(t)

2
‖u(t)‖22

∫ t

0

g(s)ds

]
− α(t)

2
g(t)‖u(t)‖22

+
α(t)

2
(g′ ◦ u) (t) +

α′(t)

2
(g ◦ u)(t)− α′(t)

2
‖u(t)‖22

∫ t

0

g(s)ds,

(2.7)

where

(g ◦ u)(t) =

∫ t

0

g(t− s)‖u(t)− u(s)‖22ds.

In order to deal with the delay feedback term, motivated by [12, 11], we introduce
the following new dependent variable,

z(x, ρ, t) = ut(x, t− τρ), x ∈ Ω, ρ ∈ (0, 1), t > 0. (2.8)

By computation we have

τzt(x, ρ, t) + zp(x, ρ, t) = 0, in Ω× (0, 1)× (0,∞).

Therefore, problem (1.1) can be transformed into

utt −M
(
|∇u (t)|2

)
∆u+ α (t)

∫ t

0

g (t− s) ∆u (s) ds

+ µ1 |ut|p(x)−2
ut + µ2 |z (1, t)|p(x)−2

z (1, t) = 0 in Ω× R+,

τzt(ρ, t) + zρ(ρ, t) = 0, in (0, 1)× (0,∞),

z (0, t) = ut, in (0,+∞) ,

z (ρ, 0) = j0 (−ρτ) , in (0, 1) ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(2.9)

Relying on Faedo–Galerkin method, we can give the following well-posedness theorem
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Theorem 2.2. Let (H1)-(H4) hold. Then, for every (u0, u1) ∈ H1
0 (Ω) × L2(Ω),

j0 ∈ L2((Ω)× (0, 1)), there exists a unique local solution u of the problem (1.1) in
the class

u ∈ C
(
[0, T ];H1

0 (Ω)
)
∩C1

(
[0, T ];L2(Ω)

)
, ut ∈ C

(
[0, T ];H1

0 (Ω)
)
∩L2([0, T ]×(Ω)).

3. Main asymptotic theorem

The purpose of this paper is to give a theorem that concerns the asymptotic
stability of solutions for the problem (1.1). For this aim, we need the following
technical Lemmas

3.1. Technical lemmas. In this subsection, we present for rather technical Lemmas
that we need to the proof of Theorem (3.8). Let define the modified energy functional
E associated with problem (2.9) by

E(t) =
1

2
‖ut(t)‖22 +

1

2

(
a− α (t)

∫ t

0

g (s) ds

)
‖∇u‖22 +

b

4
‖∇u‖42

+ ξ

∫
Ω

1

p (x)

∫ t

t−τ
eλ(s−t) |ut(x, s)|p(x)

dsdx+
1

2
α (t) (g ◦ ∇ (u)) (t) ,

(3.1)

where ξ and λ are positive constants in which

µ1p
− − |µ2| > ξ > |µ2| p+ p

+ − 1

p−
, λ <

1

τ1

∣∣∣∣ln µ2p
+ (p+ − 1)

ξp−

∣∣∣∣ . (3.2)

Let us check the following three Lemmas, which are essential to prove the main
result given in Theorem (3.8)

Lemma 3.1. Let u be a solution of problem (2.9). Then,

E′(t) ≤− σ
(

1

2

d

dt
‖∇u‖22

)2

+
1

2
α(t) (g′ ◦ ∇u) (t)− 1

2
α′(t)‖∇u‖22

∫ t

0

g(s)ds

− 1

2
α(t)g(t)‖∇u‖22 +

1

2
α′(t)(g ◦ ∇u)(t)−

(
µ1 −

ξ

p−
− |µ2|

p−

)∫
Ω

|ut|p(x)
dx

−
(
ξ

p+
e−λτ − |µ2|

p+ − 1

p−

)∫
Ω

|z(1, t)|p(x)
dx

− λξ
∫

Ω

1

p (x)

∫ t

t−τ
eλ(s−t) |ut(x, s)|p(x)

dsdx.

(3.3)

Proof. Multiplying the first equation in (2.9) by ut, integrating over Ω, and multi-
plying the second equation by ζze−λτρ and integrating over (0, 1)× Ω with respect
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to ρ and x, after summing them up we obtain

E′(t) =− σ
(

1

2

d

dt
‖∇u‖22

)2

+
α(t)

2
(g′ ◦ ∇u) (t)− 1

2
α′(t)‖∇u‖22

∫ t

0

g(s)ds

− α(t)

2
g(t)‖∇u‖22 +

α′(t)

2
(g ◦ ∇u)(t)− µ1

∫
Ω

|ut|p(x)
dx

− ξ
∫

Ω

1

p (x)
e−λτ |ut(x, t− τ)|p(x)

dx− µ2

∫
Ω

|z(1, t)|p(x)−2z(1, t)utdx

+ ξ

∫
Ω

1

p (x)
|ut(x, t)|p(x)

dx− λξ
∫

Ω

1

p (x)

∫ t

t−τ
eλ(s−t) |ut(x, s)|p(x)

dsdx.

(3.4)
Using Young’s inequality and the fact that z(1, t) = ut (t− τ), we get

−µ2

∫
Ω

|z(1, t)|p(x)−2z(1, t)utdx ≤ |µ2|
p+ − 1

p−

∫
Ω

|z(1, t)|p(x)dx+
|µ2|
p−

∫
Ω

|ut|p(x)
dx.

(3.5)
By (2.8), we have

−ξ
∫

Ω

1

p (x)
e−λτ |ut(x, t− τ)|p(x)

dx ≤ − ξ

p+
e−λτ

∫
Ω

|z(1, t)|p(x)
dx.

Combining (3.4), and (3.5), we obtain

E′(t) ≤− σ
(

1

2

d

dt
‖∇u‖22

)2

+
α(t)

2
(g′ ◦ ∇u) (t)− 1

2
α′(t)‖∇u‖22

∫ t

0

g(s)ds

− α(t)

2
g(t)‖∇u‖22 +

α′(t)

2
(g ◦ ∇u)(t)−

(
µ1 −

ξ

p−
− |µ2|

p−

)∫
Ω

|ut|p(x)
dx.

−
(
ξ

p+
e−λτ − |µ2|

p+ − 1

p−

)∫
Ω

|z(1, t)|p(x)
dx

− λξ
∫

Ω

1

p (x)

∫ t

t−τ
eλ(s−t) |ut(x, s)|p(x)

dsdx.

Letting

c0 = µ1 −
ξ

p−
− |µ2|

p−
and c1 =

ξ

p+
e−λτ − |µ2|

p+ − 1

p−
,

and using condition (3.2), we get the desired inequality (3.3). �

Remark 3.2. As − 1
2α
′ (t) ‖∇u(t)‖22

∫ t
0
g (s) ds ≥ 0, E(t) may not be non-increasing.

Lemma 3.3. Let u be a solution of problem (2.9). Then,

‖∇u‖22 ≤
2E(0)

l
e

l0
l α(0), t ≥ 0. (3.6)

Proof. From (3.3), and (3.1) we have

E′(t) ≤ −1

2
α′(t)‖∇u‖22

∫ t

0

g(s)ds ≤ −1

2
l0α
′(t)‖∇u‖22 ≤ −

l0
l
α′(t)E(t).

Integrating this over (0, t), we conclude that

E(t) ≤ E(0)e−
l0
l α(t)+

l0
l α(0) ≤ E(0)e

l0
l α(0),

consequently (3.6) remains valid. �
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Now, let us define the modified energy by

L(t) = NE(t) + ε1α (t)ϕ(t) + ε2α (t)ψ(t), (3.7)

in which ε1 and ε2 are positive constants to be chosen later, and

ϕ(t) =

∫
Ω

u(t)ut(t)dx+
σ

4
‖∇u‖42, (3.8)

ψ(t) = −
∫

Ω

ut(t)

∫ t

0

g(t− s) (u (t)− u (s)) dsdx. (3.9)

The functional L is equivalent to the energy function E by the following lemma.

Lemma 3.4. There exist two positive constants C1 and C2 such that,

C1E(t) ≤ L(t) ≤ C2E(t), t ≥ 0. (3.10)

Proof. Integrating by parts, using Young’s inequality and Poincare’s Theorem, we
have

|L(t)−NE(t)| =
∣∣∣∣α (t)

∫
Ω

u(t)ut(t)dx+ α (t)
σ

4
‖∇u‖42

∣∣∣∣
≤ ε1 |α (t)|

∫
Ω

|u(t)| |ut(t)|dx+ ε1
σ

4
|α (t)| ‖∇u‖42

+ ε2
1

2
|α (t)| ‖ut‖22 + ε2

1

2
|α (t)| c2∗ (a− l) (g ◦ ∇ (u)) (t)

≤ α(0)

2
c2∗‖∇u‖22 +

α(0)

2
‖ut‖22 + σ

α(0)

4
‖∇u‖42

+ ε2
1

2
α (0) ‖ut‖22 + ε2

1

2
α (0) c2∗ (a− l) (g ◦ ∇ (u)) (t)

≤ C (ε1 + ε2)E(t),

taking C1 = N −C (ε1 + ε2) and C2 = N +C (ε1 + ε2), with ε1, and ε2 sufficiently
small, the proof of Lemma (3.4) is concludes. �

Lemma 3.5. There exist positive constants cε and Cε satisfying

ϕ′(t) ≤‖ut‖22 −
l

2
‖∇u‖22 − b‖∇u‖42 + α(t)

a

2l
(g ◦ ∇u)(t)

+ cε

(∫
Ω

|ut|p(x)
dx+

∫
Ω

|z(1, t)|p(x)dx

)
+ Cε

∫
Ω

|u|p(x)
dx.

(3.11)

Proof. Differentiating (3.8) with respect to t, using first equation of (2.9), we get

ϕ′(t) = ‖ut‖22 +

∫
Ω

uuttdx+ σ‖∇u‖22
∫

Ω

∇u∇utdx+

∫
Ω

|u|p(x)−2
uutdx

= ‖ut‖22 − a‖∇u‖
2
2 − b‖∇u‖42 + α(t)

∫
Ω

∫ t

0

g(t− s)∇u(s)ds∇u(t)dx

− µ1

∫
Ω

|ut|p(x)−2
utudx− µ2

∫
Ω

|z(1, t)|p(x)−2z(1, t)udx+

∫
Ω

|u|p(x)−2
uutdx

= ‖ut‖22 − a‖∇u‖
2
2 − b‖∇u‖42 + I1 + I2 + I3 + I4.

(3.12)
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We need to estimate the second summand on the right-hand side of (3.12). Hölder
inequality, Young’s inequality, Sobolev-Poincare inequalities, (H1), and (3.3), give

I1 =α(t)

∫
Ω

∫ t

0

g(t− s)∇u(s)ds∇u (t) dx

≤α(t)

(∫
Ω

|∇u|2dx

) 1
2

(∫
Ω

∣∣∣∣∫ t

0

g(t− s)∇u(s)ds

∣∣∣∣2 dx

) 1
2

≤α(t)

(∫
Ω

|∇u|2dx

) 1
2
(∫

Ω

∫ t

0

g(s)ds

∫ t

0

g(t− s)|∇u(s)|2dsdx

) 1
2

≤α(t)

(∫
Ω

|∇u|2dx

∫ t

0

g(s)ds

) 1
2
(∫

Ω

∫ t

0

g(t− s)|∇u(s)|2dsdx

) 1
2

≤α(t)

2

∫
Ω

|∇u|2dx

∫ t

0

g(s)ds+
α(t)

2

∫
Ω

∫ t

0

g(t− s)|∇u(s)|2dsdx

≤α(t)

2

∫
Ω

|∇u|2dx

∫ t

0

g(s)ds+
α(t)

2

∫
Ω

∫ t

0

g(t− s)|∇u(s)−∇u(t) +∇u(t)|2dsdx,

(3.13)
we use Young’s inequality, and (H1) to obtain for every η > 0

α (t)

2

∫
Ω

∫ t

0

g(t− s)[∇u(s)−∇u(t) +∇u(t)]2dsdx

≤α (t)

2

∫
Ω

∫ t

0

g(t− s)
(

(∇u(s)−∇u(t))
2

+ 2|∇u(s)−∇u(t)‖∇u|+ |∇u|2
)

dsdx

≤α (t)

2

∫
Ω

∫ t

0

g(t− s)|∇u(s)−∇u(t)|2dsdx+
α (t)

2

∫
a

∫ t

0

g(t− s)|∇u|2dsdx

+ α (t)

∫
Ω

∫ t

0

g(t− s) |∇u(s)−∇u(t)| |∇u|dsdx

≤α (t)

2
(g ◦ ∇u)(t) +

α (t)

2

∫ t

0

g(s)ds

∫
Ω

|∇u|2dx

+ η
α (t)

2

∫ t

0

g(s)ds

∫
Ω

|∇u|2dx+
α (t)

2η
(g ◦ ∇u)(t)

≤α (t)

2
(1 + η)

∫ t

0

g(s)ds

∫
Ω

|∇u|2dx+
α (t)

2

(
1 +

1

η

)
(g ◦ ∇u)(t)

≤(1 + η)
(a− l)

2

∫
Ω

|∇u|2dx+
α (t)

2

(
1 +

1

η

)
(g ◦ ∇u)(t).

(3.14)
By combining (3.13) and (3.14) we arrive at

α (t)

∫
Ω

∫ t

0

g(t− s)∇u(s)ds∇udx

≤ (a− l)
2

∫
Ω

|∇u|2dx+
(a− l)

2
(1 + η)

∫
Ω

|∇u|2dx+
α (t)

2

(
1 +

1

η

)
(g ◦ ∇u)(t)

=(2 + η)
(a− l)

2
‖∇u‖2 +

α (t)

2

(
1 +

1

η

)
(g ◦ ∇u)(t).
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By taking η = l
a−l , we have

|I1| ≤α (t)

∫
Ω

∫ t

0

g(t− s)∇u(s)ds∇udx

≤
(
a− l

2

)
‖∇u‖22 +

a

2l
α (t) (g ◦ ∇u)(t).

(3.15)

and by using Young’s inequality

|I2| ≤cε
∫

Ω

|ut|p(x)
dx+ εmax

(
µp
−

1 , µp
+

1

)∫
Ω

|u|p(x)
dx

:= cε

∫
Ω

|ut|p(x)
dx+ εc2

∫
Ω

|u|p(x)
dx.

(3.16)

Related computations further allow,

|I3| ≤cε
∫

Ω

|z(1, t)|p(x)
dx+ εmax

(
µp
−

1 , µp
+

1

)∫
Ω

|u|p(x)
dx

:= cε

∫
Ω

|z(1, t)|p(x)
dx+ εc3

∫
Ω

|u|p(x)
dx,

(3.17)

I4 ≤ cε
∫

Ω

|ut|p(x)
dx+ εc4

∫
Ω

|u|p(x)
dx

A substitution of (3.15)-(3.17) into (3.12), we get

ϕ′(t) ≤‖ut‖22 −
l

2
‖∇u‖22 + Cε

∫
Ω

|u|p(x)
dx− b‖∇u‖42

+
a

2l
α(t)(g ◦ ∇u)(t) + cε

(∫
Ω

|ut|p(x)
dx+

∫
Ω

|z(1, t)|p(x)
dx

)
,

(3.18)

where, for ε sufficiently small, Cε = ε (c2 + c3 + c4) > 0. �

Lemma 3.6. There exist positive constants δ and cδ satisfying

ψ′(t) ≤−
{(∫ t

0

g(s)ds

}
− δ
)
‖ut‖22 + δ

{
a+ 2(a− l)2α(t)

}
‖∇u‖22 + δb‖∇u‖42

+ δ
2σE(0)

l
e

l0
l α(0)

(
1

2

d

dt
‖∇u‖22

)2

+

{
Cδ +

(
2δ +

1

4δ

)
(a− l)α(t)

}
(g ◦ ∇u)(t)

+ cδ

(∫
Ω

|ut|p(x)
dx+

∫
Ω

|z(1, t)|p(x)
dx

)
− g(0)c2∗

4δ
(g′ ◦ ∇u) (t).

(3.19)
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Proof. Differentiating (3.9) with respect to t and using first equation of (2.9), yields

ψ′(t) =−
∫

Ω

utt

∫ t

0

g(t− s)(u(t)− u(s))dsdx

−
∫

Ω

ut

∫ t

0

g′(t− s)(u(t)− u(s))ds dx−
(∫ t

0

g(s)ds

)
‖ut‖22

=
(
a+ b‖∇u‖22

) ∫
Ω

∇u
∫ t

0

g(t− s)(∇u(t)−∇u(s))dsdx

+ σ

∫
Ω

∇u∇ut dx

∫
Ω

∇u
∫ t

0

g(t− s)(∇u(t)−∇u(s))dsdx

− α(t)

∫
Ω

(∫ t

0

g(t− s)∇u(s)ds

)(∫ t

0

g(t− s)(∇u(t)−∇u(s))ds

)
dx

+ µ1

∫
Ω

|ut|p(x)−2
ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx

+ µ2

∫
Ω

|z(1, t)|p(x)−2z(1, t)

∫ t

0

g(t− s)(u(t)− u(s))dsdx

−
∫

Ω

ut

∫ t

0

g′(t− s)(u(t)− u(s))dsdx−
(∫ t

0

g(s)ds

)
‖ut‖22

=

6∑
i=1

Ii −
(∫ t

0

g(s)ds

)
‖ut‖22 ,

(3.20)
in what follows, we need to estimate the second summand on the right-hand side of
(3.20). By using Hölder’s, Young’s, Sobolev-Poincare inequalities, (H1), (3.6) and
(3.3), we obtain

|I1| ≤
(
a+ b‖∇u‖22

){
δ‖∇u‖22 +

(a− l)
4δ

(g ◦ ∇u)(t)

}
≤δa‖∇u‖22 + δb‖∇u‖42 +

{
a(a− l)

4δ
+
b(a− l)E(0)

2δl
e

l0
l α(0)

}
(g ◦ ∇u)(t),

(3.21)

|I2| ≤δσ
(∫

Ω

∇u∇utdx
)2

‖∇u‖22 +
σ(a− l)

4δ
(g ◦ ∇u)(t)

≤ δ 2σE(0)

l
e

l0
l α(0)

(
1

2

d

dt
‖∇u‖22

)2

+
σ(a− l)

4δ
(g ◦ ∇u)(t),

(3.22)

|I3| ≤δα(t)

∫
Ω

(∫ t

0

g(t− s)(|∇u(t)−∇u(s)|+ |∇u(t)|)ds
)2

dx

+
1

4δ
α(t)

∫
Ω

(∫ t

0

g(t− s)|∇u(t)−∇u(s)|ds
)2

dx

≤ 2δ(a− l)2α(t)‖∇u‖22 +

(
2δ +

1

4δ

)
(a− l)α(t)(g ◦ ∇u)(t),

(3.23)
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|I4| ≤cδ
∫

Ω

|ut|p(x)
dx+ δmax

(
µp
−

1 , µp
+

1

)∫
Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds

)p(x)

dx

≤ cδ
∫

Ω

|ut|p(x)
dx+ δ

{
max

(
µp
−

1 , µp
+

1

)
max

(
(a− l)p

+−1, (a− l)p
−−1

)
max

(
cp

+

∗ , cp
−

∗

)
∫ t

0

g(t− s)‖∇u(t)−∇u(s)‖p(x)
2 ds

}
≤ cδ

∫
Ω

|ut|p(x)
dx+ δ

{
max

(
µp
−

1 , µp
+

1

)
max

(
cp

+

∗ , cp
−

∗

)
max

((
2E(0)

l
e

l0
l α(0)

)(p+−2)/2

,

(
2E(0)

l
e

l0
l α(0)

)(p−−2)/2
)

(g ◦ ∇u)(t)

}

:= cδ

∫
Ω

|ut|p(x)
dx+ δc4(g ◦ ∇u)(t).

(3.24)
Similarly

|I5| ≤ cδ
∫

Ω

|z(1, t)|p(x)
dx+ δc5(g ◦ ∇u)(t),

|I6| ≤ δ ‖ut‖22 −
g(0)c2∗

4δ
(g′ ◦ ∇u) (t).

(3.25)

Combining these estimates (3.21)-(3.25) and then (3.20) becomes

ψ′(t) ≤−
(∫ t

0

g(s)ds− δ
)
‖ut‖22 + δ

{
a+ 2(a− l)2α(t)

}
‖∇u‖22 + δb‖∇u‖42

+ δ
2σE(0)

l
e

l0
l α(0)

(
1

2

d

dt
‖∇u‖22

)2

+

{
Cδ +

(
2δ +

1

4δ

)
(a− l)α(t)

}
(g ◦ ∇u)(t)

+ cδ

(∫
Ω

|ut|p(x)
dx+

∫
Ω

|z(1, t)|p(x)
dx

)
− g(0)c2∗

4δ
(g′ ◦ ∇u) (t),

(3.26)

in which Cδ =
{
a(a−l)

4δ + b(a−l)E(0)
2δl e

l0
l α(0) + σ(a−l)

4δ + δ (c4 + c5)
}
. �

Lemma 3.7. There exist positive constants C3, C4 and t0 satisfying

L′(t) ≤ −C3α(t)E(t) + C4α(t)(g ◦ ∇u)(t), t > t0. (3.27)

Proof. Since the function g is positive, continuous and g(0) > 0, then for any
t ≥ t0 > 0, we have

∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds = g0 > 0.
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Differentiating (3.9), and using Lemmas (3.5), (3.5), we have

L′(t) =NE′(t) + ε1α
′(t)ϕ(t) + ε1α(t)ϕ′(t) + ε2α

′(t)ψ(t) + ε2α(t)ψ′(t)

≤− α(t) {ε2 (g0 − δ)− ε1} ‖ut‖22 − α(t)
{
ε1Cε − ε2δ

(
a+ 2(a− l)2

)
α(t)

}
‖∇u‖22

− α(t) (b (ε1 − ε2δ)) ‖ut‖42 − α(t)

{
σ − ε2δ

σE(0)

l
e

l0
l α(0)

}(
1

2

d

dt
‖∇u‖22

)2

+ α(t)

{
ε1
α(t)

4
+ ε2Cδ + ε2

(
2δ +

1

4δ

)
(a− l)α(t)

}
(g ◦ ∇u)(t)

+ α(t)

{
N

2
− ε2

g(0)c2∗
4δ

}
(g′ ◦ ∇u) (t)− α(t)

{
c0
α(0)

− ε1cε − ε2cδ

}∫
Ω

|ut|p(x)
dx

− α(t)

{
c1
α(0)

− ε1cε − ε2cδ

}∫
Ω

|z(1, t)|p(x) − Nα′(t)

2

(∫ t

0

g(s)ds

)
‖∇u‖22

+ ε1α
′(t)

∫
Ω

uutdx+ ε2α
′(t)

∫
Ω

ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx.

(3.28)
Making use of the following relations

α′(t)

∫
Ω

uutdx+α′(t)

∫
Ω

ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx

≤ −α′(t)c
2
∗
2
‖∇u‖22 − α′(t) ‖ut‖

2
2 − α

′(t)
c2∗
2

(∫ t

0

g(s)ds

)
(g ◦ ∇u)(t).

Thus

L′(t) ≤− α(t)

{
ε2 (g0 − δ)− ε1 +

α′(t)

α(t)

}
‖ut‖22

− α(t)

{
ε1Cε − ε2δ

(
a+ 2(a− l)2

)
α(0) +

Nα′(t)

2α(t)

(∫ t

0

g(s)ds

)
+
c2∗α
′(t)

2α(t)

}
‖∇u‖22

− α(t) (b (ε1 − ε2δ)) ‖∇u‖42 − α(t)

{
σε1 − ε2δ

σE(0)

l
e

l0
l α(0)

}(
1

2

d

dt
‖∇u‖22

)2

+ α(t)

{
ε1
α(t)

4
+ ε2Cδ + ε2

(
2δ +

1

4δ

)
(a− l)α(t)− c2∗α

′(t)

2α(t)

(∫ t

0

g(s)ds

)}
(g ◦ ∇u)(t)

+ α(t)

{
N

2
− ε2

g(0)c2∗
4δ

}
(g′ ◦ ∇u) (t)− α(t)

{
c0
α(0)

− ε1cε − ε2cδ

}∫
Ω

|ut|p(x)
dx

− α(t)

{
c1
α(0)

− ε1cε − ε2cδ

}∫
Ω

|z(1, t)|p(x)
dx.

(3.29)
First, we fix δ > 0 such that,

g0 − δ >
1

2
g0,

δ

Cε

(
a+ 2(a− l)2

)
α(0) <

1

4
g0,

and take ε1 and ε2 so small satisfying
g0

4
ε2 < ε1 < ε2

g0

2
, (3.30)

and
c5 = ε2 (g0 − δ)− ε1 > 0,
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c6 = ε1Cε − ε2δ
(
a+ 2(a− l)2

)
α(0) > 0.

We select ε1 and ε2 small enough so that relations (3.10) and (3.29) are valid,
furthermore

b (ε1 − ε2δ) > 0, σε1 − ε2δ
σE(0)

l
e

l0
l α(0) > 0,

N

2
− ε2

g(0)c2∗
4δ

> 0

c0
α(0)

− ε1cε − ε2cδ > 0,
c1
α(0)

− ε1cε − ε2cδ > 0.

Hence, (3.29) becomes, for a generic positive constant c

L′(t) ≤− α(t)

{
c+

α′(t)

α(t)

}
‖ut‖22 − α(t)

{
c+

α′(t)

2α(t)

((∫ t

0

g(s)ds

)
+
c2∗
2

)}
‖∇u‖22

+ α(t)

{
c− c2∗g0α

′(t)

2α(t)

}
(g ◦ ∇u)(t), ∀t ≥ t0.

(3.31)

Since lim
t→∞

−α′(t)
ξ(t)α(t) = 0, we can pick t1 > t0 so that (3.31) leads to

L′(t) ≤− α(t)
(
c ‖ut‖22 + C‖∇u‖22

)
+ c(g ◦ ∇u)(t)

≤ −C3α(t)E(t) + C4α(t)(g ◦ ∇u)(t), ∀t ≥ t1,
(3.32)

where C3 and C4 are positive constants. �

Next, the main result reads as follows

Theorem 3.8. Assume (H1)-(H4) and (3.2) hold. Then there exist positive con-
stants C0, C, and t1 > 0 such that the energy for problem (1.1) satisfy

E(t) ≤ C0e
−C

∫ t
t1
α(s)γ(s)ds

, for t ≥ t1.

Proof of Theorem (3.8). By using Lemma (3.7), (3.1) and (H1), we get

ζ(t)L′(t) ≤ −C3α(t)ζ(t)E(t) + C4α(t)ζ(t)(g ◦ ∇u)(t)

≤ −C3α(t)ζ(t)E(t)− C4α(t) (g′ ◦ ∇u) (t)

≤ −C3α(t)ζ(t)E(t)− C4

(
2E′(t) + α′(t)

(∫ t

0

g(s)ds

)
‖∇u‖22

)
.

(3.33)

Since ζ(t) is nonincreasing, the definition of E(t) and and assumption (H1), we have

l

2
‖∇u‖22 ≤ E(t),

d

dt
(ζ(t)L(t) + 2C4E(t)) ≤ −C3α(t)ζ(t)E(t)−C4α

′(t)

(∫ s

0

g(s)ds

)
‖∇u‖22, (3.34)

which leads to

d

dt
(ζ(t)F (t) + 2C4E(t)) ≤− C3α(t)ζ(t)E(t)− C4α

′(t)

(∫ t

0

g(s)ds

)
‖∇u‖22

≤ −C3α(t)ζ(t)E(t)− 2C4E(t)

l
α′(t)

∫ t

0

g(s)ds

≤ −α(t)ζ(t)

(
C3 +

2C4l0α
′(t)

lα(t)ζ(t)

)
E(t).

(3.35)



A NONLINEAR VISCOELASTIC WAVE EQUATION 15

Since limt→∞
−α′(t)
α(t)ζ(t) = 0, we can choose t1 ≥ t0 such that C3 + 2C4l0α

′(t)
lα(t)ζ(t) > 0 for

t ≥ t1. Hence, if we let

L(t) = ζ(t)L(t) + 2C4E(t)

easily we see that L(t) is equivalent to E(t), and satisfy

L′(t) ≤ −kζ(t)α(t)L(t) for t ≥ t1. (3.36)

Simple integrating (3.36) over (t1, t) . with respect to t, yields

L(t) ≤ L (t1) e
−C

∫ t
t1
ζ(s)α(s)ds

t ≥ t0.

Thus, the desired result yields from the equivalence relations of L(t), L(t), and
E(t). �
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