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Abstract
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1. INTRODUCTION

This paper aims to investigate the following two dimensional Boussinesq equations with
partial dissipation
Opuy + (u - V)uy — vdsuy + 0T =0, (t,z) € (0,00) x R?
Opug + (u - V)ug — vojjug + 0211 = O,
0 + (u-V)0 =0,
V-u=0,
where u = (up,u2) is the velocity field, ©,II denote the temperature and the pressure,

respectively. The positive constant v is the viscosity. Obviously, the Boussinesq system (1.1)
has a steady state solution

(1.1)

1
(1.2) u’ = (0,0), O =umzy, TI°= 51‘%,

which is often named the hydrostatic equilibrium. We consider the perturbation (u, 6, 7) with
v=u—u’0=0-0"7=01-1".
Then one can verify that

Opur + (u - V)uy — vggug + 01 =0, (t,z) € (0,00) X R?,
Orug + (u . V)UQ — vO11ug + 0o = 0,
00 + (u- V)0 = —ua,

V-u=0.

(1.3)
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It is well known that the global well-posedness of this system remain open. If we add an
damping term into the temperature equation, the system (1.3) becomes

Opur + (u - V)uy — vogguy + 01w =0, (t,z) € (0,00) X R?,
Opug + (u - V)ug — voj1ug + Oom = 6,

00 + (u- V)0 +nb = —ua,

V-u=0.

It is well known that classic Boussinesq equations model buoyancy drift fluids such as atmo-
spherical and oceanographic flows(see e. g. [12], [13], [14]). In addition to natural sciences,
the Boussinesq flows usually appears in industrial applications such as dense gas dispersion
and central heating. The 2D incompressible Boussinesq system is one of the most common-
ly studied models in mathematical fluid dynamics. One of its characteristic feature is that
special case of the model can be identified with the 3D incompressible Euler equations for ax-
isymmetric swirling flows. Another important qualitative property is that the 2D Boussinesq
equations share a similar vortex stretching effect as in the 3D flows (see [19]).

During the past thirty years, a large amount of attention has been paid to the global
regularity and stability problems of the Boussinesq equations. The great advances since then
have come in the global regularity of the two dimensional Boussinesq equations with only
partial or fractional dissipation or even no dissipation (see e. g. [1], [2], [3], [4], [5], [6]).
Though the study on the stability and large time behavior is relatively recent in the last
fifteen years, the investigations on those problems have so far been great fruitful (see [7], [8],
17, [18], [9)).

In 2021, Lai, Wu and Zhong [10] has established the global existence and stability of the
following 2D Boussinesq equations

Opu 4 (u - V)uy — vOsu + V= ey, (t,z) € (0,00) x R?,
00 + (u- V)0 +nb = —us,
V-u=0,
(’LL, 0)|t=0 = (’LL(), 00)7
in the Sobolev space H2. They also obtained the large time behavior of ||[Vu(t)||;2 and
IVO(t)| 12 in terms of energy methods. Later Lai, Wu et al [11] acquired the optimal decay
estimates for the system (1.5). Motivated by [9], [10], [11]and [18], the purpose of this paper
is to address the stability and decay of the Boussinesq system (1.4) near the hydrostatic
equilibrium.

Our results can be formulated as follows.

Theorem 1.1. Let (ug,0y) € H*(R?) x H*(R?) and V -ug = 0. Then there exists a constant
€ > 0 such that if

(1.6) [[(wo, 00) |2 < €,
then there admits a unique global solution (u,0) of system (1.4) such that for anyt > 0,

(1.4)

(1.5)

t
(L.7) \WW%+AMWM#H@M%+M%WSC&

where C' is a positive constant independent of € and t.

Remark 1.2. This theorem is obtained heavily based on H?-energy estimate and the bootstrap
argument.
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Theorem 1.3. Let (U(), 90) € HQ(RQ) X H2(R2), (8111UQ0, aQQQUm) S L2(R2), V- uyg=0 and

(1.8) [[(uo, 60) || > < €

hold for some sufficiently small € > 0. Suppose (u,0) is the corresponding solution of (1.4)
obtained in Theorem 1.1, then
(i) Ast — oo, it holds

101V uz|| 2 = 0, |02V ur]| L2 — 0, [|0pull L2 = 0, [|8]|z2 — 0, [|V?0]|2 — 0.
(7)1t holds
IVu(®)l: < COA+)72, [VO(D)|L2 < CL+D72,
where C' is a positive constant independent of t.

Remark 1.4. Though reasoning in a similar line in [10], we can prove the following result.
However, due to lacking the horizontal dissipation on u; and vertical dissipation on ug, we
cannot prove that ||0|| 12, ]|00||2 — 0 as t — oo. Moreover, the pressure term brings more
difficulties during handling the asymptotic behave of ||Opui||r2 and ||Opuz|| 2.

Now we turn to solve the linearized system of (1.4)
Orur + (9 + vR303 + vR20%) Oy — (R? — vnR305 — vnRI0H)uy = 0,
(1.9) Opug + (N + VR292 + vR203)dug — (RE — vnR305 — vnR20%)ug = 0,
b + (n+ vR305 + vRIOT)00 — (R — vnR305 — vnRI07)6 = 0,
which is very different from that in [10].

Theorem 1.5. Assume that (ug, o) is the initial data of (1.9). Then the solution of (1.9)
can be given via uig, uzg and 0y as

1
Uy = 5(n —VR20? — VR302)Grurg — D1 AT 9,G100 + Gauio,

1 _
Uy = 5(77 — VRIO? — vR303)Grugo + 1 AT 01G10y + Gaugg,

1
0y = —5(77 — VR20? — VR303)G16y — Grugg + Gabp.

Here G1 and G2 satisfy

o e)\zt _ e)\lt - 1
(110 Giet) =0, Galet) = (M 4 ).
Ao — A1 2
with A1 and Ao being the roots of the following equation:
&+ & & &+ €4
A2+ n+v A (=5 +vn =0
gy A e e )
or
1 &+&, 1 &+& & & +&
M=——=Mn+v - = +v 2 _4(2 4 v ,
L=yt ) e\ T g )
1 eyl 1 &+ 3 &+&
A=—=Mn+v + = +u 222 _4(2= 4y )
N A A N T N A

Consequently, if (ug,00) € L N L? and V - ug = 0, then (u,0) fulfils, for any 0 < o < 1,
1(u, 0)[l2 < C(o)(1 4+ 1)~ 2| (uo, 00) [l 1 L2
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where C' = C(0) is a constant depending on o.

Remark 1.6. To obtain the decay rates of L?>-norm of u and 0, the crucial step is to establish
the upper bound of G1 and Gy. Compared with [10], the characteristic values in Theorem 1.5
is more complex. To find the upper bound for G1 and Ga, it needs more ingenious technique,
which is provided in Lemma 5.2.

The rest of this paper is organized as follows. Some crucial lemmas is presented in Section
2. The proof of Theorem 1.1 can be found in Section 3. We will prove Theorem 1.3 and
Theorem 1.5 in Section 4 and Section 5, respectively.

2. PRELIMINARIES

The following lemmas play a crucial role in proving our theorem.

Lemma 2.1. (See [10]) Let f, g, h, O2g,01h € L*(R?). Then there exists a pure constant
C > 0 such that

1 1 1 1
/R? | fghldx < CHJCHLQ(R?)Hgsz(Rz)”329"22(R2)Hhuzz(RZ)Halh”zzORZ)-
Lemma 2.2. (See [10]) It holds that
1 1 1 1
||f”L°°(]R) < C”f”ﬁ(]}@)Halfuiz(ﬂgz)Ha2f”i2(R2)Ham”iz(mz)-

when the right sides are all bounded. Consequently, the following inequalities hold
1 1
[fllzoe®) < ClIf 17 gey 101 F 1| 71 2y

1 1
1@ < Ol g 102112 oy
when the right sides are all bounded.

Lemma 2.3. (See [10]) Suppose f = f(t) is a nonnegative continuous function fort € [0, 00).
Let f be integrable on [0,00),

‘/f®ﬁ<w
0
Assume that for any 6 > 0, there is p > 0 such that, for any 0 < t1 <ty with to —t1 < p,
either f(t2) < f(t1) or f(t2) = f(t1) and f(t2) — f(t1) < 9.
Then
ft) = 0ast— 0.

Lemma 2.4. (See [10]) Suppose f € W1([0,00)), that is

/MWMﬁ<mMM/mW@W<m.
0 0

Then f(t) = 0 as t — oo.

Lemma 2.5. (See [10]) Let f(t) be a nonnegative function satisfying for two constant Cy > 0
and Cy1 > 0,

/oo’f(T)’dTS Co < o0 and f(t) < Cif(s) for any 0 < s < t.
0

Then, for Cy = max{2C f(0),4CoC1} and for any t > 0,
f(#) <Co(1+6) 1
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3. PROOF OF THEOREM 1.1

In this section, we first establish the H? energy estimate and using a bootstrap argument
to obtain Theorem 1.1.

Proof. Step 1. L*-energy norm
Taking the L2-inner product to (1.4) with (ug,us, ) respectively, we get, after a few
calculations and integrations by parts,

1d
2 dt
Step 2. H?-energy norm
Applying Vx to (1.4)1, system (1.4) can be rewritten as
Ow + (u - V)w = v(d111up — Danouy) + 016, (t,z) € (0,00) x R?,
{ 00+ (u-V)0 +nb = —uy, (t,z) € (0,00) x R?,
here w =V X u = O1us — Oquy.

Applying V to (3.2)1, A to (3.2)s, taking the L?-inner product with Vw, A# respectively
and integrating by parts then yield

(3.1) (el + 110172) + 19272 + Orua][72 + nll6ll7> < 0.

(3.2)

1d
L9l + 1812) + )l 0]
= —(V(u-Vw), Vw) + v(V(duy — d3uy), Vw) + (VO10, Vw)
(3:3) — (A(u- V), AO) — (Aus, AB)
= —(Vu - Vw, Vw) + v(V(d{ug — d3uy), Vw) — (A(u - V), Af)
= A + Ay + Az,

where we have used Aug = Oqw.
Notice that w = Oyus — Osu;. Making use of the Holder inequality, the Sobolev inequality
and the Young inequality, we obtain

Alz—/Vu-Vw-Vw

< O|lull grel|wl)3y
< Ollull g2 (||0vuz3yz + [|02ur || 372)-

Easy computations based on integration by parts yield

Ay =v / (O3Vuy — O3Vuy) - (VOug — Vouy)
= u/ai”vug - Voug — u/ai”vuz - Voauy
— V/BSVul -VOojus + V/@%Vul - VOauy
= —u/(@%Vug)Q — y/@i’Vuz - Voouq
- u/asjvul - Voug — u/(agvul)Q

= —V/(|81V2U2’2 + ](92V2u1]2).
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By applying Lemma 2.1, Lemma 2.2 and the Young inequality, we deduce
Agz—/A(u~V0)~A0
:—/VZU-VH-AG—Q/VU~V20~A9
= —/V2u1819-A6—/V2u2829-A9
— 2/Vu1@1V0 - Af — 2/Vu282V0 - Af

1 1 1 1
< CJ| 20| 2 VPur |7 102V | 72 1016112110 7.

1 1 1 1
+ Ol A0 2| VPuz 72101 Vurl 71102011 2110301 72
+ Ol Vur | = 10132 + Ol Vuz || L= 10132

1 1 1 1
< Cllull 2 182ual| 72 10172 + Cllull 72 1912 | 72 19172

+ OVl 109 5 1013 + 1Pl 101 Vesal s 61
< C(llullgz + 101 g2) 1016z F2 + 18201 [ 32 + 1011 32)-
Collecting all the estimates above A; through As leads to
1d
(3.4) 2dt
< C(llullgz + 101 g2) (|01ual 2 + 18201 [ F2 + 1611 32).
Combining (3.1) and (3.4), we have

1d,
(3.5) 2 dt
< Cllull gz + 1101l 2) (|90ruz ]| Bz + (102w |72 + 10172).

(lullFz + 1011%2) + 0ol 7 + viivuallZ, + viiozu |3,

el 7o + 101772) + 11017 + vl OvuallF + vl Bpun |7

Integrating over [0, ¢] leads to, for some constant C' > 0,

t
lullF + 16117 + 2/0 ll011Z2 + vllOruz| 3 + v O2uall2)dr

t
< C(|luoll7> + 160ll72) + ¢ s (ullm + H9HH2)/O (10ruz 3 + 92ual|2 + nll6]|32)dr.

Step 3. Bootstrap argument
Now, we set

t
€= llullfp + 10172 + 2/0 (ll011Z2 + vllOruz|Fe + vl Oyuall3)dr,

then we have

(3.6) E(t) < CLE(0) + Col2(t) - E(t) < C1E(0) + CoE2 (1),
We can infer that if ||(ug,00)|| 2 is sufficiently small, then
1 1
E(0) < ——— or ||(ug, 0 <é€ei= ———,
(37) = fagigg o N Wl < = 1
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therefore, the solution remains uniformly small, i.e.

E(t) < O

The estimate (3.6) can thus obtain the desired stability result by making use of a bootstrap
method. In fact, the method begins with the ansatz that, for t < T,

EW) < qoz = M
(3.6) and (3.7) entail that
£(1) < CLE(0) + CoE(r) - £(1)F < CLIE) + LE(0)
Then
(3.8) E(t) < 2C1E(0) < 81022 _ %

A simple bootstrap method implies that T'= co. From (3.8), one has

t
(3:9) Ll + 181 +2 [ (161 + ol + vy < 206
0

holds for any ¢ > 0. This completes the proof of stability.
Step 4. Uniqueness

Assume that we are given (ugl),uél),ﬂ(l),e(l)) and (u§2),ug2),7r(2),0(2)) two solutions of
(1.4) (with the same dates) satisfying the regularity assumptions of Theorem 1.1. In order

to show that these two solutions coincide, we shall give estimate for (@, 2, 7, 0) := (ugl) -

u?), ugl) — ug), 70 — 72 9 — 92 and (uy, 4, 7, ) satisfy the following system:

Opuy + (u(l) V) + +(u - V)U?) — vyt + 01T = 0,
(3.10) Byais + (uD - V)ag + +(@- V)ul? — vdi1ts + ot = 0,
90+ (u - V)0 + +(@- V)0® + 0 = —s,
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Taking the L?-inner product of (3.10) with (a1, g, #), according to Lemma 2.1, the Young

inequality and the uniformly global bounds for ||(u§ ),ugZ), 0| 2, we have

1d
5 dt(HulHLZ + [[ag]|F2 + 116]172) + nll0ll72 + vi|ovusl|7 > + vlOat |7

——/ﬂ-Vqu)~ﬁ1—/a-vuéz)-ﬁg—/ﬂlale(z)-9—/@2629(2)~§

< Ollall g2 [lan |22 19271 2|V | 25 81 Vit |12,
(3.11) + Cllall o llial 22 91 2, |Vl | 2, | 05 Vi HLz
1l e | 22 1B | 221180 2, | 926 2,
+ O] g2 2] 22 101 2, 18260 | 2, | 026 2,
< Clall 1051112, + Cllal 2. |0yl 2, + Cllan |2, 182112, 1612
+ Cll |2, )| 101 2
< Zlowir 32 + 210rml3 + C(lal3 + 1812)
Therefore, we have

1d
(3.12) 2dt
< C(lalz: + 19172),

_ 4 _
—(lallFe + llazlza + 10172) + nll0l72 + 5 ||01U2H%2 + 5 10 172

where u = (11, u2). Gronwall inequality then implies
(3.13) lall7= = [16]7. = 0.

This completes the proof of Theorem 1.1. O

4. PROOF OF THEOREM 1.3

This section is devoted to the proof of Theorem 1.3, it gives the large-time behavior of the
solution (u, ) to (1.4).

Proof. From the inequality (3.9), one has [} [|0]|3,.d7 < co. Taking the L*-inner product of
(1.4)s with 6, we have

1 d
(4.1) 6122 + ml3. = —/u V00— /uQe - —/uQe.

Applying A to (1.4)3 and taking the L?-inner product with Af, we have

(4.2) 0], = —/A(u-VH)-AH— /Au2~A0.

0
S lel
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Combining (4.1) and (4.2), by virtue of the Holder inequality, Lemma 2.1, Lemma 2.2 and
the Young inequality, we have

1d
5 2 101+l

:—/U20—2/VU'V20'A9—/AU'VG'AH—/A'LLQ‘AQ

= —/UQ9 — 2/VU181V9 - AO — 2/Vu262V0 - A6

- /Au1619 - Al — /Au2829 - Al — /AUQ - Af

(43) < Cllusllgel0llmz + CIVurlZ 102Vl 2 8125 + Ol Va2 [0y Tusll, [6]22
OB 2| A | 2, 9o i |2, 048] 2, 036
+ YA 12 | Az |2, 101 Aus | 2, 02612, 10201 2,
< 26l + Cllualfe + Cllullz 16132
+ 612 OrualZe + C16] e s e
< 21013 + Cllulls (1013 + 1) + Clo13a(10rualds + 19 32).
We thus obtain

d
(4.4) 1017 < Cllulzz (161172 + 1) + ClIOIG: (10wl + [102wl[72)-

t
Multiplying both sides of (4.4) by e_cfo(“81“2“?{2+||82“1||i12)dT, we end up with
(4.5) %efcfg(llaluzllf{ﬁllawlHiz)dTHgH%{Q < Ce*Cfot(llalwHizﬂlawlllilz)d‘r||u]|%12(||9||%{2 +1).

Setting
B(t)=e© fg(\\aluzllzg-i-llawl||i12)dTH@H%p’

then we get

d _ -
%B(t) < Ce Cfot(Hawaquz-f—Hdwl||§12)dT||uH%{2(||€H12LI2 +1).

Integrating in time leads to, for any 0 < s < t,
B(0) = B(s) < € OBt 00 o+ 1
s
Taking advantage of (3.9), we have
B(t) — B(s) < Ce CC( + 1)(t — ),
and we know [ B(7)dr < 0o, Lemma 2.3 provides

B(t) —» 0 as t — oc.

From this, we deduce

(4.6) 16()]|%2 = ecfot(||8lu2|‘§[2+H82u1I|§_12)dTB(t) 0 as t — oo
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Next, we prove ||(w(t), VO(t))| 2 < C(1+ t)% Taking the L?-inner product of (3.2); with
w, applying V to (3.2)2 and taking the L?-inner product of (3.2)y with V6, we have

1d
5o (lwlZ: + 196122 + Vo3

= V<8111’u,2 — 8222u1,w> — (u . Vw,w> + <819,w> — <V(’U, . V&), V@) — <VU2, V9>
Using integration by parts, V- u = 0, Aus = 01w and w = Oyug — Oouy yields

(u-Vw,w) =0,
(010, w) — (Vug, V) =0,
V<(9111U2 - 5222U1aw> = —V(H81VU2||%2 + H32VU1H%2)-
It follows from Lemma 2.1 and Theorem 1.1 that
1d
5@(HW||%2 +IV0l|Z2) + 0l VOII72 + v(101Vuz|2 + 102 Vua[|72)

= —/Vu1810 . V@ - /VU2820 . V@

1 1 1 1
(4.7) < CVOll 2| Vur |12 102Vus | 72110161172 10761 72

1 1 1 1
+ OV 21| Vuzl| 2:110) Veual| 2. 026] 2. 036 2.
< C(llull gz + 101l2) (V112 + 101 Va2 + 85 Vun 22)
< cel[| VO3 + 101 Vuzla + 92V |22).

Now, we take a sufficiency small constant € in the above inequality, then terms on the right-
hand side can be absorbed by the left-hand side, that is

d .
—(wllzz + [IVOIIZ2) + 2(min{n, v} — ce)(|VO]72 + 01 Vus|[72 + [[02Vuall72) < 0.
Integrating in time, for any 0 < s < ¢, we have
t
o172 +IVO@) 172 + 2(min{n, v} — 06)/ (IVOIIZ2 + 01 VuallZs + [102Vur||72)dr

< Jw(s)z2 + 1VO(s)]7-

Let D(t) = [Jw(t)[|32 + [[VO(t)]|32, we then deduce that D(t) is a non-increasing function with
respect to time. (3.9) implies again that

oo
/ D(t)dr < oo,
0
where used [lw|2, < [|01u2|2; + ||O2u1]2,. Lemma 2.5 ensures

lwll 2, V8]l 2 < C(L+18)72 as t — 0.

Finally, we establish as t — 0, |01 Vuz||z2 = 0, ||02Vuil/z2 — 0, ||Owul|z2 — 0.
After applying 0; to (3.2)1 with ug = —9;(—A) 1w, we have
Dppw + N — VO (Dug — O3ur) — Riw = =01 (u - VO) — n(u - Vw) — di(u - Vw) + nu(dug — dauy).

Taking the L?-inner product of the above equality with dyw, we get
(O, Dy ) +1(Osw, Oyw) — V{9 (Dug — D3uy ), Ow) — (Riw, dyw) — nu{(Fug — d3uy), diw)
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= —(0i(u-V0),0w) —n((u-Vw), 0iw) — (O(u - Vw), dw).
A few calculations and integration by parts entail that
—v{(0p(O}ug — D3uy), Ow) = —v{(0p(Dug — Dauy), Dy (Orug — Oaur))
=—v / 01y - Dpdyug + v / D103uy - Opd1ug
+ V/@taqu - O Oou1 — V/@tag’ul - OpOruq
—v / (OPus)? + v / (O0%ur)? + v / (OrdrDauz)? + v / (Do )?
- V/qatalwﬂ? + 10405V [?)
= 1]|810, Va2 + v]|0:02Vur |2,
and
—nu{(Bug — D3 ), Bw) = —n((FPug — B3ur), 0 (D1uz — Bauy))
= ny/ﬁ%uQ - Op01ug + T]V/O%UQ - OpOruq
+ nu/agul - OO ug — nu/@%ul - OpOquq
=nu / 8%u28t8%u2 + nv / 022u18t822u1
+ nV/8182U28t8182U2 + nv / 0102110010211

= ?71//81VU2 - 0:01Vug + 771//82Vu1 - 0102 Vuq

1d
=5 2 (191 Vus |7 + 92V 72).

We thus obtain
1d

2 dt

+ nl|owl22 + v]|0:01 Vuz||2e + v]|0,02Vus |2

:/81(U'V«9)'8tw—17/u'Vw-8tw—/8t(u-Vw)'8tw

(4.8) ——/81u~V9-8tw—u-81V9-8tw—n/u-Vw-@tw—/atu-Vw-Gtw

(|02 + [Riwll72 + |01 Vusl|7 2 + n||02Vur ||72)

:—/alu-VQ-atw—/u-@lve-ﬁtw—n/u-Vw~8tw

— /(9tu181w - Opw — /8ﬂt282w - Oww
= Fy + By + B3+ FEy + Es.
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For E;, making use of the Holder inequality and the Young inequality gives
Elz—/alu-ve'atw

(4.9) < Cllovull a [ VOl L[| 0ol 2
< Cllull 2|01 2|9 | 2

U
< 1gllowllze + Cliulzz 101172

Similar as F, we have

EQ:—/u-81V6~8tw
< Cllullz=[[VO10] 2] 0w 2

(4.10)
< Cllull g=10]] 2| O || 2
< 0wl + ClulByal013,
and
ES:—W/U~Vw-8tw
(4.11) < ]| Veoll 2| 0ol

< Cllull g2 l|wll 2| O] 2
Ui
< 1gll0wllze + Cllullfz (101uz 7z + (192w [[32).
In order to bound Ey, we exploit Lemma 2.1, the Holder inequality and the Young inequality
to get

E4 = —/&gul . (910) -8tw

1 1 1 1
< Cll0pur | 22 11020pun 172 010 22 105w 22| O | 2

(4.12)

IN

n
?Offatw“%2 + C||0pur | £2]|020pur || 12 | 01w 2| OFw|| 2

IN

%H@MH%Q + 2%\\31&32”1”%2 + Ol Opun |7 2 [|ullF2 (| 01uz|7r2 + [|O2ur ||7;2)

IN

To 10132 + Cllopu 7o lullFe (9 uallFe + |02 72).

Easy computations based on Lemma 2.1 also yield

(4.13) Bs < %Hatwlliz + Clldpuz || T2 lull3y2 (1 0ruz | Bz + [102us|72).
Combining the last inequality with (4.8), (4.9), (4.10), (4.11) and (4.12), we have

d
Z(10wllFe + IR1w|F2 + w01 Vsl [Fe + w92V |2)
1) 0w + 20]1 0101 Vs |22 + 2010105 Vus |2
< O(|ullZs + 100 |2l + 19zl Ze ) 22) (10122 + [OruallZs + 102 | 3r2).

We now prove (dyui, drug) € L°°(0,00; L?). (1.4); can be rewritten as

uy u - Vup Oagu1 om) _ (0
(4.15) O <U2> + (u : VU2> B V<811u2> * <a27r> B <9>



STABILITY AND LARGE-TIME BEHAVIOR OF THE 2D BOUSSINESQ SYSTEM 13

Recall that P := I — VA~!V. stands for the Leray projector over divergence-free vector fields.
Applying P to (4.15) and notice that

P w-Vur\  (u-Vuy — WAV - (u-Vu)
u-Vuz)  \u-Vug — AV (u-Vu))’

Py Ooouy . Oy — 81A_181822U1 — alA_lﬁgc‘)%uz
O11us - O11ug — 82A_1818§u1 — 62A_1628%u2

— 81A‘1818%u1 + 82A_1828%u1
- 82A‘1828§u2 + 81A_181812u2 ’

P 0 B —61A71829 B —81A71829
0]  \9-— 82A71829 o 61A*1810 ’
(4.15) is then converted into

(4.16)
{ Ol +u - Vuy — 81A*1V . (u . Vu) — 1/82A’1828§u1 — I/alAflala%ul = —alAilage,

Owug + u - Vug — 82A71V . (u . Vu) — V@QAflaza%UQ — I/alAflala%’U,Q = 81A71819.

Using the fact that the singular integral operators R; ; = 81-8]-(—A)*1, 1,7 = 1,2 are bounded
on L?, we have

el ze < llu- Vur] g2 + 01471V - (w- V)| 2
(4.17) + 0247105 05un [| 2 + |01 AT 10w || L2 + |1 AT D16 2
< Cllullgzllwllzz + Cll02Vusll 2 + Cl|01 Vual| 2 + C[|6]] g2
Similarly,
(4.18) 10ruzll L2 < Cllullgzllwlrz + Cll02Vurll L2 + Cll01Vual| L2 + Cl0]| 2.
We then obtain (9yu1, dsus) € L>¥(0, 00; L?) by (3.9). Integrating in time to (4.14), we have

t
ol + [RislFs +m10r Vualfs + 02Vt + 1 [ 0wladr
0

t
+2y/ (1860, Va2 + 002V ur | 22)dr
0

< |00l 72 + [Rawoll72 + w01 Vugo |72 + nv||02Vusol|7 2

+C sup ([fullfe + 10w |72 llull Frz + 1| Buall72]|ul )
0<r<t
! 2 2 2
x| ([10]l72 + 101uzllf2 + [|02ur =) dr,
0
which implies
o0 o
/ |8w|adr < oo, / (1001 Va2 + 0402V ||22)br < oo,
0 0
(3.9) shows that

[e.o] o
| Mliadr < [ (ol + 100 2)ar < o,
0 0
o0

|0Vl + j0:val)ar < [ (10vuallh + o e)ar < oo,
0 0
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By Lemma 2.4, we obtain
lwllz2 = 0, |01Vusllz2 — 0, |[|02Vui||z2 — 0 as t — 0.

Of course, because when ¢t — 0, ||w|[fz2 — 0, ||1Vuz|2 — 0, [[0oVuillzz — 0 as t —
0, 10]|12 — 0, we can easily get from (4.17) and (4.18),

[0vurllLz = 0, [[OpuzllL2 — 0,
namely
|0su|| 2 — 0.

This completes the proof of Theorem 1.3. O

5. PROOF OF THEOREM 1.5

In this section we show the proof of Theorem 1.5. To study the regularity and damping
effects from the wave structure, we give the explicit representation.

Lemma 5.1. Assume that g satisfies the degenerate wave type equation
Bug + (1 + vR303 + VRID? )89 — (RT — viR305 — vnR1d7)g = 0,
9(x,0) = go(x), Org(,0) = g1 ().

Then g can be explicitly represented as

(5.1)

1
(5.2) g=Gi(g1 + 5(77 + VR305 + vRI07)g0) + Gago,

where G1 and Go are defined as in (1.10), namely

o e)\Qt _ e/\lt - 1
(53) G1(£7t) = N 3 GQ(&at) = 7(8)\1]5 + e>\2t)-
Ao — A 2
with A1 and Ao being the roots of the characteristic equation
§+& & &+&
M+t A+ (55 +vn )=0
€17 195 €17
or
1 §+&, 1 & +& & & +&
(54) A:_fn‘i_yl 2y 77+V1 22_47]_+an 27
L= gt T\ g )
1 §+6&, 1 & +& & & +&
(5.5) Ao=——(n+v2=22) + oy [(n+ vt o22)2 — 4 (=2 o2l 22,
2= g g )

When A1 = Aa, (5.2) remains valid if we replace G and Gy in (5.3) by their corresponding
limit form, namely

=h et — Mt Lot ot Alt
Gi= lim — Go= lim —(eM"4e?")=¢e"".
! Ao— A1 )\2 — )\1 2 A2— A1 ( )
Proof. The details of this proof are similar to Lemma 3.1 in [10], so we omit it. O

Next we provide precise upper bounds on the Fourier multiplier operator Gy and Gs.
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Lemma 5.2. Suppose S1,S2,S3 and A denote the following subsets of R?,

2 44 ¢4 3 4y g4
Si:={¢eR?: ‘22 + I/nélg‘fz > E(n + 1/61‘5;2 )2,
2 4. ¢4 3 4 ¢4
Sy 1= {f eR?: ‘22 —|—1/17€12|_2§2 < 16(77—1—1/51|§2§2 )2 and £ € Ac},
2 1 ¢d 3 4 ¢4
Sy = {¢ cR?: ‘22 +an1;|‘2§2 < 16("+”£1|;|2£2)2 and € € A,
o 2.2 2p) o 20p(t)
A R S @ &= vn— o))

where A€ is the complement of A and 0 < p(t) < min{3, %} is specified in (5.11). Then
é\l(f,t) and (/}\g(f,t) have the following upper bounds.

(i) For any & € S,
8 +& & +&
€17 €17
. EENE S 2 IV 1y, Ehved
GL(E,1)] < te TR Gy, ) < ce 3T RR !

(ii) For any £ € Sa,

1
), Reda < ——(n+v

1
Re); < —i(n—l-y 1

),

&+

3
M<—Mn+v

A ]2 ), A2 < —p(t),
’é\l(fat)’ < 774_V&l%g(e_i”t + =P, |C/?\2(§,t)| < C’(@‘%”t + Py,
>
(iii) For any & € Ss, :
A1 < —z(n + ugﬁgfé), A2 <0,
GrE ] S — g (e +1), [GalE, )] < C(e 7 1)
(AR

Proof. (i) For any £ € S1, we split S into two parts:

4 ¢4 2
Si={6eSi:(n+ V£1|§2€2)2 > 451

S1g 1= {f S 51/811}.
When £ € 511, we have

&+ &
gt b

G+&% & G+& 1 G480
PR e e <At T
Meanwhile, A\, Ao are real and
1 54 +£4 1 54 _1_54
M g de S g )

With the help of the mean-value theorem, one then has

. At Aot 1 V€4+E4

Gre )] = | <t

A=A T
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For C/J\g, we can directly obtain

G Lot o ot —l(n+uw)t
|G2(§7t)|§§|e e <Ce * ¢l
When £ € S12, we have
SRR 51 &g+8&
n+v <4—== +vn )
(v ) < g T g
Furthermore, both A; and A\s are a pair of complex conjugates, namely
L SRRSIe & 54 +& & +&.,
M=——=(n+v R /) Sy —(n+v ’
2R T\t R e
! 51 & & 54 +& 51 +& s
T g T e e )

Thanks to Euler’s formula and the important limits, we obtain

4 1 4
Gie, o)) < oS (ty/ 45 + oS — (n+ v R )
9 s e
1 \/4 + Vn£1+§§ _ (,'7 + V€%+§§)2
R [eP B
4, .4
< o3OS

and

- 1 et+ed
IGa(&, )] < e 2 e !

(ii) For any £ € Sy, we have
4 ¢4 4 ¢4

&1 +2§2) 512 I 77§1 +2§2 > 1
€] !5\ iy 4

At the same time, A\; and Ay are real and

§+8

e ) o

(n+v

(n+v

£%+£§).

3
Ms gt e

4
We bound Ay as follows:

AQZ_lorH;%+$_ﬁ¢m+ya+fg I +7§%+$>

2 1£]2 |€]2 1£]2 |£]2
51 f4+§§
_ [eZ tVIep
giqed \/ €l +§2 & &i+&s
N+ Ve T/ (1 V) — A i
& &1+65
CERTVTREE O G+t + &)
P 4 4 .
nﬂﬁll;‘gz n(Ed + &) +v(Ed +£3)

Setting
Sor = {6 € 99,61 > €3}, Soo = {€ € S5, €] < &3}



STABILITY AND LARGE-TIME BEHAVIOR OF THE 2D BOUSSINESQ SYSTEM

When £ € So1,
NP7 S 751
T &+ 2wt T 2+ 2wE
when £ € Sy,
N VM v

= omZ 2wl T 2+ 2w
Since & € A¢, we have Ay < —p(t). Then

efres

3
Gi| < £i+es 1 &e (e *TEE ) 4 et
2 2
\/ "7+ ) 4\s|2 + v

et 4 e Py,

é‘f+£2 (
ot

and
|é\2| < C'(e_%(77—~_V641|1e3+\25421 )t + e—p(t)t)
< C(e_%”t + e—p(t)t).
(iii) For any & € S3, according to (5.4) and (5.5), we easily get

3 &+8&
A< (7] + v , Aoy < 0,
1 2
from which we obtain
__ 2 __
G1| < arer (e 1), [Ga < (e7EM 4 1)
n+ Ve

This completes the proof of Lemma 5.2.

Now we pay attention to prove Theorem 1.5 by Lemma 5.1 and Lemma 5.2.

Proof. Combining Lemma 5.1 and (1.9), we have

1
(5.6) up = G1(9un)(2,0) + 5 (n+ VR302 + vR39%)Gruio + Gauo,
1
(5.7) up = G1(Oyu2)(2,0) + 5 (n+ VR302 + vR30%)Grug + Gausg,
1

(5.8) 0 =G1(0,0)(2,0) + 5 (n+ VR302 + VR329%)G1600 + Gab.

Letting ¢t = 0 in the following system:
Opuy — VO AT 005Uy — vOLATI0103u1 + O1ATI00 = 0,
(5.9) Oy — VI AT 003Uy — vOLATI010uy — 1ATIO10 = 0,
00 +nb 4+ us = 0,
From (5.9), (5.7) and (5.8) we have

1
ur = 5(n - VR305 — vRIDT)Gruro — AT 820 + Gaunp,

17
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1
uz = 5 (0 — VR3OS — VRIOF)Gruz + AT 016 + Gyu,
1

0=—50n- VR302 — UR292)G1600 — G1ugg + Gabo.
Using Plancherel’s Theorem entails
&+ 24 2~ §162 10,512, 7
lua[|72 < C/ In—v 1|£‘2 2 ?|G1 P[0 P dé + |W|2|G1\2!90\2d€
5.10 9~
(5.10) +/|G2\2!U10!2d§
=1L+ 1+ Is.

For the term I, from Lemma 5.2 and the inequality (aZ:U)b2e*a2x <Cforanya,beR,z>0
we have

4 4 4
T NS T
b= [ - SR PG @+ [ -] 52 121G P e
Sy €] So €]
4 4
N S
+A;M_V&WfﬂaGWWde
3
468 2
4 died —
+ + —~ VR -3 - ™
< C/|77_ § ’5‘2§2| t2 77 V I&\Z |u10|2d§—|—0 ’gf_}.g%‘ (e 277t_|_e 2p(t)t)|ulo|2d§
Nt VR
4
5‘5252 ? —§nt -~ |2
€4+£2 (e 2 +1>‘u10‘ df
AN+ v

< C/|77+ §1|;|'2£2’ 2 77+V |£\2 |U10| d€+0/ e 277t+6 t)t)|ul | d¢

Lo / i 2de
A

2np(t) .

—Cnt —2p(t)t 2
< Ol 4 &) furolfa + O3 s ol

For I, Lemma 5.2 entails that

2
(ef%nt+672p(t)t)‘é;)|2d§

&1+€3

St n+v €2

L<CO | te W‘@”w|@+04

2

1 ~
(€727 4 1)|Go[2de

&r+es
N+ Ve

<C / =My |2de + C / (€73 4 =2000) |6y [2ag
Lo / 1By 2de
A

+C
Ss

< Cnt 2p(t)¢ 2 _anpit) .
<C(e +e )||90||L2+CV —2y,0(t)H90HL1
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Similar as I3, the bound of I3 easily follows that

2np(t
—Cnt —2p(t)t 2 np(t) 2
Iy < Cem ™ 4 72701 |uyg| 3 +CV_72W@)HU10||L1-

Combining the estimates of Iy, I and I3, we have

2np(t
_o _ np(t)
lurl|72 < Cle™ " + e D) (Jluro|72 + [160]72) + Cm

Without loss of generality, we can assume that ¢ > 1. In particular, from our assumption, if
we choose

(lusoll7s + 1160]72)-

1
(5.11) p(t) :min{g,?}(l—i—t)_o foranyt>1, 0<o<1.
n

then we have the upper bounds

2min{%,%}t

et — T Tar < o~ min{355 14017 o C(1+1t)7% Ya >0

and
p(t) _ 2np(t) n(l+1)~° i -
v —2vp(t) ]/77(1_2”%(75)) = v(1—(1+1)7) <Clo)(1+1)7°.

As a consequence we have the following estimate for u:
lur ()72 < C(o)(L + )7 (w0, b0) | L1rL2-

In a similar manners, we can obtain the estimates of [[ug |7, and [|fy]|7 . and they are omitted
for simplicity. This complete the proof of Theorem 1.5. O
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