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Abstract

Arthropod communities globally are declining while undergoing taxonomic and functional homogenization, with agricultural

activity being a strong contributory factor. Here we use DNA metabarcoding to quantify how variation in climate, agricultural

intensity, and plant community composition shape spatiotemporal variation in a metacommunity of > 10,000 arthropod species

sampled from 29 Malaise traps across 15 sites in southern Ontario, Canada. Local variation in plant community composition

and canopy cover best explained arthropod community dissimilarity. Climatic variables followed closely as explanatory factors,

driven primarily by seasonal variation in temperature. The proportion of agricultural land at the landscape scale had no de-

tectable effect. Our results suggest that plant community composition, microclimate, and seasonality structured the arthropod

metacommunity to considerable degree, factors that are rarely incorporated into assessments of biodiversity loss due to agricul-

ture. We conclude that habitat restoration on marginal lands is likely an effective strategy for promoting arthropod biodiversity

in agroecosystems.

1



1 
 

Article type: Letter 1 
 2 
Title: Spatio-temporal determinants of arthropod biodiversity across an agro-ecosystem 3 
landscape 4 
 5 
Running title: Determinants of arthropod biodiversity 6 
 7 
Authors: 8 
Burgess, P.1, G.S. Betini1, A. Cholewka1, J.R. deWaard2,3, S. deWaard2, C. Griswold1, 9 
P.D.N. Hebert1,2, A. MacDougall1, K.S. McCann1, J. McGroarty1, E. Miller1, K. Perez2, S. 10 
Ratnasingham1,2, C. Reisiger1, D. Steinke1,2, E. Wright1, E. Zakharov1,2, and J.M. Fryxell1 11 
Author emails: 12 
pburgess@uoguelph.ca; gbetini@uwaterloo.ca; ashcholewka@gmail.com; 13 
dewaardj@uoguelph.ca; sdewaard@uoguelph.ca; cgriswol@uoguelph.ca; phebert@uoguelph.ca; 14 
amacdo02@uoguelph.ca; ksmccann@uoguelph.ca; jmcgroar@uoguelph.ca; 15 
eleish@uoguelph.ca; kperez@uoguelph.ca; sratnasi@uoguelph.ca; creisige@uoguelph.ca; 16 
dsteinke@uoguelph.ca; ewrigh06@uoguelph.ca; zakharov@uoguelph.ca; jfryxell@uoguelph.ca  17 
Author affiliations: 18 
1Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1 19 
2Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada, N1G 2W1 20 
3School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1 21 
 22 
Corresponding author:  23 
John M. Fryxell 24 
Department of Integrative Biology 25 
University of Guelph 26 
Guelph, Ontario, Canada, N1G 2W1 27 
jfryxell@uoguelph.ca  28 

Statement of authorship: 29 
Research concept and experimental design: P.B., G.S.B., J.R.D.W., C.G., P.D.N.H., A.M., 30 
K.S.M., D.S., J.M.F. Data acquisition and lab analysis: P.B., G.S.B., A.C., J.R.D.W., S.D.W., 31 
J.M., E.M., K.P., C.R., D.S., E.W., E.Z. Informatics and quantitative analysis: P.B., C.G., S.R., 32 
J.M.F., Manuscript preparation: P.B., J.M.F., Editorial input: All.  33 

Data accessibility statement: 34 
Should the manuscript be accepted, the data supporting the results will be archived in a public 35 
repository. 36 

Keywords:  37 
Agriculture; arthropods; beta-diversity; DNA metabarcoding; metacommunity; plants; 38 
seasonality  39 
 40 
Number of words: Abstract – 149, Main text – 4965  41 
Number of references: 71 42 
Number of figures: 4 in main text, 2 in supporting information 43 
Number of tables: 1 in main text, 1 in supporting information 44 

mailto:pburgess@uoguelph.ca
mailto:gbetini@uwaterloo.ca
mailto:ashcholewka@gmail.com
mailto:dewaardj@uoguelph.ca
mailto:sdewaard@uoguelph.ca
mailto:cgriswol@uoguelph.ca
mailto:phebert@uoguelph.ca
mailto:amacdo02@uoguelph.ca
mailto:ksmccann@uoguelph.ca
mailto:jmcgroar@uoguelph.ca
mailto:eleish@uoguelph.ca
mailto:kperez@uoguelph.ca
mailto:sratnasi@uoguelph.ca
mailto:creisige@uoguelph.ca
mailto:dsteinke@uoguelph.ca
mailto:ewrigh06@uoguelph.ca
mailto:zakharov@uoguelph.ca
mailto:jfryxell@uoguelph.ca
mailto:jfryxell@uoguelph.ca


2 
 

ABSTRACT 45 

Arthropod communities globally are declining while undergoing taxonomic and functional 46 

homogenization, with agricultural activity being a strong contributory factor. Here we use DNA 47 

metabarcoding to quantify how variation in climate, agricultural intensity, and plant community 48 

composition shape spatiotemporal variation in a metacommunity of > 10,000 arthropod species 49 

sampled from 29 Malaise traps across 15 sites in southern Ontario, Canada. Local variation in 50 

plant community composition and canopy cover best explained arthropod community 51 

dissimilarity. Climatic variables followed closely as explanatory factors, driven primarily by 52 

seasonal variation in temperature. The proportion of agricultural land at the landscape scale had 53 

no detectable effect. Our results suggest that plant community composition, microclimate, and 54 

seasonality structured the arthropod metacommunity to considerable degree, factors that are 55 

rarely incorporated into assessments of biodiversity loss due to agriculture. We conclude that 56 

habitat restoration on marginal lands is likely an effective strategy for promoting arthropod 57 

biodiversity in agroecosystems. 58 

 59 

 60 

 61 

 62 

 63 

 64 
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INTRODUCTION 65 

Rapid declines in arthropod abundance and species diversity across the globe have 66 

received a great deal of recent attention (Gossner et al. 2016; Hallmann et al. 2017; Sánchez-67 

Bayo & Wyckhuys 2019; Seibold et al. 2019; Wagner et al. 2021). These drastic changes in 68 

arthropod communities are a major cause for concern, given their enormous taxonomic and 69 

functional diversity, critical role in maintaining ecosystem stability, and provisioning of vital 70 

ecological services such as pollination, pest control, and nutrient cycling (Kremen et al. 1993; 71 

Stork et al. 2018). Although the causes of arthropod declines are surely complex and multi-72 

faceted, habitat loss and external inputs associated with agriculture are frequently identified as 73 

primary drivers (Gossner et al. 2016; Sánchez-Bayo & Wyckhuys 2019; Seibold et al. 2019; 74 

Wagner 2020). Recent work suggests, however, that arthropod declines are not universal 75 

(Crossley et al. 2020; van Klink et al. 2020), raising fundamental questions about the regulation 76 

of arthropod biodiversity in agroecosystems (Wagner 2020).    77 

Metacommunity theory should provide a useful framework to understand how arthropod 78 

communities are regulated in agricultural landscapes. On ecological timescales, this framework 79 

describes how species are distributed in space and time according to the relative importance of 80 

species sorting, dispersal, and ecological drift (Leibold et al. 2004; Vellend 2010). These 81 

processes can be expected to interact significantly but are rarely quantified in the context of 82 

agroecosystems. Under a species sorting paradigm, differences in environmental conditions 83 

should be the primary driver of differences in community composition. However, wide 84 

compositional differences may be caused by stochastic-based dispersal limitation, an effect 85 

exacerbated by patch isolation and especially affecting groups with limited dispersal ability 86 

(Vellend 2010). As well, ecological drift can cause species abundances to vary stochastically and 87 
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thus community composition can shift through time independently of environmental conditions. 88 

In these cases, it is pure distance, not environmental differences, that regulates distribution, 89 

abundance, and organismal fitness (Bell 2001; Hubbell 2001). Much more is known about spatial 90 

dynamics than temporal dynamics for arthropods in agricultural systems, and few studies have 91 

examined this problem from a metacommunity perspective. This is especially significant given 92 

the potential for rapid generation times in many arthropod taxa, such that the influences of 93 

temporal and spatial processes on community divergence can be powerful even within a single 94 

growing season (Kingsolver 1989; Chown & Gaston 1999). 95 

Most of these community-shaping processes have been investigated from a spatial 96 

perspective, but temporal factors can also play a central role (Grøtan et al. 2012). Seasonality is 97 

particularly important in many systems, stemming from an interplay of species-specific 98 

responses to abiotic conditions, such as temperature and precipitation, biotic conditions, such as 99 

plant resource availability, and stochastic variation through time (Stinson & Brown 1983; Wolda 100 

1988; Grøtan et al. 2012; Hatosy et al. 2013). Previous studies have found that the effect of 101 

habitat composition and the configuration of those habitats in the landscape on arthropod 102 

communities can vary across the growing season (Bertrand et al. 2016) and that landscape 103 

composition can modulate phenological diversity (Sydenham et al. 2014). Even in tropical 104 

systems with less pronounced seasonality compared to temperate regions, arthropod community 105 

composition in both natural forests and rubber plantations shows high seasonal turnover (Beng et 106 

al. 2018). Seasonality in agroecosystems can unfold by climatic seasonality and associated 107 

management-based seasonality of factors such as plowing, planting, and pesticide application. 108 

Neither form of seasonality, nor their interaction, are well understood in terms of their impacts 109 

on arthropods. 110 
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Previous work has suggested that the quantity, quality, and spatial arrangement of habitat 111 

can all simultaneously impact the composition of arthropod communities. Variation in arthropod 112 

community composition has been linked to local attributes, including plant biomass, structural 113 

complexity, and plant community composition (Stinson & Brown 1983; Schaffers et al. 2008; 114 

Borer et al. 2012; Prather & Kaspari 2019) as well as measures of habitat diversity, land-use 115 

intensity, landscape connectivity, and the configurational complexity of the landscape 116 

(Hendrickx et al. 2007; Fahrig et al. 2011; Gossner et al. 2016; Seibold et al. 2019). It is less 117 

clear, however, whether these factors are comparable in magnitude to the effect of local variation 118 

in agricultural land use. Using DNA metabarcoding to analyze Malaise trap samples of 119 

arthropods, we evaluated this proposition across a network of 15 Canadian farms and 120 

conservation areas that span a range of agricultural intensity at the landscape scale and varying 121 

degrees of natural land and ecological restoration under a novel land management initiative 122 

termed the Alternative Land Use Services (ALUS) program (https://alus.ca). 123 

METHODS 124 

We used structural equation modelling to tease apart the contributory impact of (a) 125 

climatic variation, (b) plant community attributes (plant community composition, richness, and 126 

canopy openness) and (c) agricultural intensity on spatio-temporal variation in β diversity across 127 

an agroecosystem landscape in southern Ontario. In each model variant, we predicted a positive 128 

relationship between arthropod community dissimilarity and environmental distances. That is, 129 

larger differences in environmental conditions should generate more dissimilar communities for 130 

environmental variables representing climate, plant community attributes, or agricultural 131 

intensity. In keeping with our metacommunity perspective, we incorporate spatial and temporal 132 
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distances as covariates in analyses with environmental variables, independent effects of which 133 

may tie to dispersal limitation and ecological drift (Jabot et al. 2020).  134 

In late April/early May 2019, 29 Townes style malaise traps were placed at 15 farms and 135 

conservation areas in Southern Ontario, Canada (SI Appendix, Figure S1). Most of the study 136 

region is intensely farmed with crop monocultures typically of corn (Zea mays), soybean 137 

(Glycine max), and winter wheat (Triticum aestivum) covering ~90% of the landscape. Mean 138 

annual temperatures are 8°C, with precipitation averaging 1035.8 mm 139 

(http://climate.weather.gc.ca).  Traps were separated by 48,551m on average (range = 71.2 – 140 

142,343, sd = 30,533) and traps on the same farm were separated by 371m on average (sd = 141 

282.1). Malaise traps are well suited for large-scale monitoring as they are easily standardized, 142 

time and cost effective, and sample a wide array of arthropod taxa, though they preferentially 143 

trap flying insects (D’Souza & Hebert 2018; deWaard et al. 2019). The placement of Malaise 144 

traps on the sites represented four broad habitat types in varying proportions: woodland, 145 

grassland/meadow, aquatic edge, and crop edge. Typically, traps were placed on the edge of two 146 

of these habitat types. Sites varied in agricultural intensity, including conventional farms, 147 

conventional farms with a higher proportion of natural land (mid-impact), ALUS-supported 148 

farms with restored habitat on their marginal lands, and conservation areas. By “conventional”, 149 

we mean non-organic farms practicing industrialized input-intensive cropping. These farms are 150 

fertilized, periodically sprayed with pesticides, but not irrigated. We defined “agricultural 151 

intensity” as the proportion of agriculture in the landscape within a 2 km radius of each trap. 152 

“Marginal” lands on the ALUS farms were determined based on lack of crop profitability, with 153 

soils that were nutrient poor, hydrologically constrained (either under- or over- drained), or 154 

difficult to cultivate because of slope. Restored lands on ALUS farms were plowed and seed-155 

http://climate.weather.gc.ca/
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planted with native tallgrass prairie species, including C4 perennial grasses and diverse mixtures 156 

of forbs (Paterson et al. 2019). By “natural land”, we refer to unrestored areas without crops, 157 

typically forest or old-field pasture. Edge areas adjacent to aquatic habitat or crop fields refer to 158 

narrow unmanaged buffer strips, that are unsuitable for cultivation but can act as refugia for 159 

some arthropods on farms otherwise largely dominated by cultivated fields (Paterson et al. 160 

2019).    161 

Arthropods were collected in 500mL plastic bottles filled with 95% ethanol attached to 162 

the trap heads. The bottles were collected and replaced biweekly from May through mid-October 163 

2019. With few exceptions (damaged samples or early trap takedown), 12 two-week samples 164 

were collected at each trap site. All of the collected samples were accessioned and are stored at 165 

the Centre for Biodiversity Genomics (CBG) (http://biodiversitygenomics.net). Every other two-166 

week sample was sent for metabarcoding at the CBG’s sequencing facility (http://ccdb.ca/).  167 

The metabarcoding analysis targeted a 462 bp amplicon of the mitochondrial cytochrome 168 

c oxidase subunit I (COI) gene which was PCR amplified from each bulk sample using the 169 

forward primer AncientLepF3 (Prosser et al. 2016) and the reverse primer cocktail C_LepFo1R 170 

(containing LepR1 and HCO2198) (Hebert et al. 2004). Detailed laboratory methods are 171 

provided in SI Appendix. Sequences recovered from eight replicates from each sample were 172 

uploaded to the mBRAVE platform (Ratnasingham 2019; http://www.mbrave.net/) where they 173 

underwent the analytical steps (see protocols described in SI Appendix) required to allow their 174 

assignment to a Barcode Index Number (BIN) that serves as a species proxy (Ratnasingham & 175 

Hebert 2013) based on queries between sequences and reference libraries for chordates, insects, 176 

non-insect arthropods, non-arthropod invertebrates, and bacteria. BIN assignments and the 177 

taxonomic assignments associated with them are dynamic because they are impacted by the 178 

http://biodiversitygenomics.net/
http://ccdb.ca/
http://www.mbrave.net/
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continual expansion of sequence records on BOLD. The taxonomic assignments reported in this 179 

study are those current in November 2019. Only arthropods and non-arthropod invertebrates 180 

were included in the final BIN table, although arthropods constituted 99.8% of these BINs.  181 

 Floristic surveys of ground vegetation were conducted monthly on a four-week rotating 182 

schedule between May and September, given the importance of non-crop plant resources for 183 

food, shelter, and nesting for many arthropods of farm landscapes. Two plant survey techniques 184 

were used over the course of the sampling period. For the first three weeks, five quadrats 185 

measuring 1x1m were randomly placed on each side within 25 m of the Malaise trap for a total 186 

of ten quadrats per trap. From week four onward, two 25 m transects were placed 187 

perpendicularly to each side of trap, or as close to perpendicular as possible if there were large 188 

waterbodies next to the trap, and 1x1m quadrats were placed every 5 m along the transects for a 189 

total of ten quadrats per trap.  190 

The identity and percent cover of each plant as well as overhead canopy openness were 191 

measured in each plot. Overhead canopy openness was measured given the importance of canopy 192 

on microclimate, to which ectothermic arthropods can be highly sensitive. Openness was 193 

determined using a convex spherical densiometer (Forestry Suppliers), averaged from four points 194 

perpendicular to each side of each plot. Only canopy openness from the second set of plant 195 

surveys was used in the analyses as tall vegetation could obscure canopy measurements in later 196 

months. Given some uncertainty about field identification of closely related forbs and grasses 197 

that were not in flower, all plant data were analysed at the genus level or higher. Because of 198 

uncertainty in the identification of some non-native C3 pasture grasses (e.g. Poa or Festuca), 199 

some of these grasses were classified into the tribe Festuceae.  200 
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 Given that arthropods can be influenced by climatic conditions either via physiological 201 

mechanisms or by influences on dispersal, weather data were sourced from the Government of 202 

Canada Historical Weather Database (https://climate.weather.gc.ca/) from five weather stations 203 

closest to the sampling sites as well as temperature loggers attached to each Malaise trap. The 204 

loggers recorded temperature (℃) hourly throughout the entire sampling period for each trap. 205 

Six loggers malfunctioned; in these cases, temperature data were taken from another trap on the 206 

same farm (five traps) or from the nearest site (one trap). Hourly relative humidity (%), hourly 207 

wind direction (10s deg), and hourly wind speed (km/h) were obtained from four weather 208 

stations. Total daily precipitation (mm) was only available for three stations, so in one case these 209 

data were taken from another nearby station. All variables were averaged, and the coefficient of 210 

variation was calculated for the temperature data to match the two-week sampling periods of the 211 

nearest traps throughout the season. Since the climate variables were expected to be correlated, 212 

principal components analysis (PCA) was used to extract the main axes of variation before 213 

analysis. 4 axes were retained, representing 88% of the total variation. 214 

 Landcover data were obtained from the 2019 Annual Crop Inventory, which classifies 215 

landcover types from satellite images with 30m spatial resolution using decision tree algorithms 216 

(Agriculture and Agri-Food Canada 2020). All landcover types were reclassified into cropland 217 

(excluding pasture/forage and fallow land), semi-natural, and urban categories prior to analysis. 218 

Since the percentages of seminatural and agricultural land were highly correlated and we were 219 

primarily interested in the effects of agriculture, only the percentage of the landscape that is 220 

agricultural within a 2000 m radius was used in the analysis. This scale better represents 221 

landscape-level processes including dispersal limitation and spatial turnover in habitat quality, 222 

with strong effects of landscape factors on arthropods at 1000-2000 m scales previously 223 

https://climate.weather.gc.ca/
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observed (Gámez-Virués et al. 2015; Siebold et al. 2019). These metrics were calculated using 224 

the landscapemetrics R package (Hesselbarth et al. 2019). 225 

To explore general patterns of spatiotemporal β diversity, a dissimilarity approach based 226 

on the Sørensen index was taken where arthropods were grouped by trap across all time periods, 227 

by time period across all traps, and for all samples. In the first case, there were 29 units for 228 

comparison (traps), in the second there were 6 (time periods) and in the third there were 172 229 

(samples; trap by time combinations). Since the temporal extent of the arthropod and plant data 230 

differed slightly (six months and five months, respectively), the arthropod data were filtered to 231 

the samples that were closest in time to the plant data for all analyses that involve environmental 232 

effects. This meant that either the first arthropod sample or the last arthropod sample was 233 

omitted, depending on the plant survey schedule. This left 144 samples available for analysis. 234 

We conducted a distance-based path analysis based on the framework proposed by Jabot 235 

et al. (2020). The structure of the path model was as follows: arthropod Sørensen dissimilarities 236 

between samples were linked to eight environmental distance variables. Three represented plant 237 

community attributes, one represented agricultural intensity, and four represented climatic 238 

variation (see SI Appendix, Table S1 for a full list). Based on hypothesized relationships 239 

between the plant community attributes, plant richness and canopy cover were allowed to have 240 

both a direct effect on arthropod community dissimilarity as well as an indirect effect through 241 

plant community composition. Arthropod Sørensen dissimilarities were directly linked to spatial 242 

and temporal distances, and each environmental distance was also linked with spatial and/or 243 

temporal distance depending on whether it showed spatial variation, temporal variation, or both 244 

(SI Appendix, Table S1). Environmental distances were calculated as Euclidian distances except 245 

for differences in plant communities, which were calculated as Bray-Curtis dissimilarities of the 246 
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plant cover data. Spatial distances were calculated as the distance in meters between individual 247 

traps using the geodist R package (Padgham & Sumner 2020) and temporal distances were 248 

calculated as the Euclidian distance between sampling periods.  249 

The importance of each significant path in the model was assessed based on standardized 250 

path coefficients (SPC). Model fit was assessed based on a combination of the Standardized Root 251 

Mean Square Residual Index (SRMR), the Root Mean Square Error of Approximation Index 252 

(RMSEA), and the Comparative Fit Index (CFI). Values typically indicating acceptable to 253 

perfect model fit for each index range between 0.09 – 0, 0.08 – 0, and 0.90 – 1, respectively 254 

(McDonald & Ho 2002; Fan et al. 2016). The significance of parameters was determined using 255 

the permutation method of Fourtune et al. (2018) to account for non-independence between 256 

dissimilarity values and the Benjamini-Hochberg procedure was used to correct P-values for 257 

multiple comparisons (Benjamini & Hochberg 1995; Jabot et al. 2020). Values of paths to and 258 

from groups of environmental distances were calculated by summing the absolute values of 259 

significant standardized path coefficients of individual environmental variables, including both 260 

direct and indirect effects (Jabot et al. 2020). All aspects of model fitting were conducted by 261 

modifying scripts provided in the supplementary material of Jabot et al. (2020) using the R 262 

packages lavaan (Rosseel 2012) and MASS (Venables & Ripley 2002). We additionally used a 263 

variance partitioning approach based on multiple regression (Tuomisto et al. 2012) to investigate 264 

the unique explanatory power of time and space while controlling for environmental variation 265 

and vice versa. Analyses were carried out using R statistical software version 3.6.3 (R Core 266 

Team 2020) at a significance level of α = 0.05.  267 

RESULTS 268 
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The number of BINs varied strongly among samples (mean = 347, sd=151; range = 51 – 269 

792). There also was substantial variation in the number of BINs identified among traps and time 270 

periods (SI Appendix, Figure 1 B-C). The greatest number of BINs identified in a single trap 271 

over the course of the season was 1,851 while the lowest was 983, and the average was 1,335. 272 

Arthropod diversity was highest in July with 5,059 BINs and lowest in May with just a total of 273 

1,761 BINs. The average number of BINs per sampling period was 3,748. Many BINs were 274 

uncommon with 39% of BINs represented by only a single sample. 53% of BINs belonged to the 275 

order Diptera, 17% to Hymenoptera, 10% to Lepidoptera, 6% to Coleoptera, 6% to Hemiptera, 276 

and 2% to Araneae (SI Appendix, Figure 1 A). A total of 144 samples had temporally matching 277 

arthropod and plant samples available for analysis. A subset of 44 samples where every 278 

specimen was counted yielded a mean of 3,009 individuals. This result suggests that our total 279 

collection of 144 samples provided >400,000 individuals for genomic identification. Among this 280 

total, 10,359 BINs were identified, with representatives from 34 orders and 428 families.  281 

Arthropod Sorensen dissimilarity among traps across all time periods was very high 282 

(mean = 0.73, sd = 0.09), as was dissimilarity among time periods across all traps (mean = 0.61, 283 

sd = 0.12). The highest pairwise dissimilarity among months was 0.80, involving comparisons 284 

between May and August, while the lowest was 0.44, both between July and August and between 285 

August and September.  286 

Arthropod community dissimilarity was significantly related to both environmental 287 

distances and temporal distance (SPC = 0.27) (Table 1, Figures 2 – 3; SI Appendix, Figure S2), 288 

but there was no significant effect of spatial distance among traps. The total R2 for the effect of 289 

all variables on arthropod dissimilarity was 0.49. Spatial and temporal distances were both 290 

significantly related to environmental distances (P < 0.05), demonstrating that environmental 291 
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variables were both spatially and temporally structured. Of the eight environmental variables 292 

considered, six had a significant direct effect on arthropod community dissimilarity after 293 

Benjamini-Hochberg correction (Table 1, SI Appendix, Figure S2). In order of importance, these 294 

included a positive effect of changes in canopy openness (SPC = 0.31), a positive effect of plant 295 

community dissimilarity (SPC = 0.26), a positive effect of changes in climate PC1 (SPC = 0.23), 296 

a positive effect of changes in climate PC4 (SPC = 0.14), a positive effect of changes in climate 297 

PC2 (SPC=0.07), and a positive effect of changes in climate PC3 (SPC = 0.07). Temperature and 298 

the coefficient in variation of temperature loaded most strongly on PC1 (0.49 and -0.50, 299 

respectively), wind speed and average precipitation loaded most strongly on PC2 (0.72 and -300 

0.43, respectively), relative humidity and wind direction loaded most strongly on PC3 (-0.89 and 301 

-0.33, respectively), and temperature and the coefficient of variation in temperature loaded most 302 

strongly on PC4 (-0.60 and -0.66, respectively). There was no significant effect of changes in the 303 

proportion of agriculture in the landscape nor was there a significant direct effect of plant 304 

richness. Plant richness and canopy openness both had indirect effects through compositional 305 

dissimilarity among plant communities (SPC with plant community dissimilarity = 0.09 and 306 

0.39, respectively). 307 

When environmental effects were lumped into variable groups of climate, plant 308 

community attributes, and agricultural intensity (Figure 2), plant community attributes had the 309 

strongest effect (Σ|SPC| = 0.70), followed by climate variables (Σ|SPC| = 0.51), with no 310 

significant effect of agricultural intensity. Plant community attributes and agricultural intensity 311 

both showed spatial structure (Σ|SPC| = 0.29 for both), while plant community attributes showed 312 

weak temporal structure (Σ|SPC| = 0.04), and climatic variables showed both temporal and 313 

spatial structure (Σ|SPC| = 0.97 and 0.27, respectively). Corroborating the results of the path 314 
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analysis, variance partitioning (Figure 4) showed that most of the variation in arthropod 315 

community composition could be explained purely by environmental distances (adjusted R2 = 316 

0.32). Environmental and spatial distances shared a small fraction of variation (adjusted R2 = 317 

0.01), while spatial distance retained no unique contribution. Environmental and temporal 318 

distances shared a larger fraction of variation (adjusted R2 = 0.12), indicating that temporal 319 

variability in environmental conditions across the sampling season played an important role in 320 

structuring arthropod communities. Temporal distance retained a unique but small contribution 321 

(adjusted R2 = 0.05). After accounting for the effects of space and time, most of the variation that 322 

was explained by environmental distances was due to plant community attributes (adjusted R2 = 323 

0.21), followed by climate (adjusted R2 = 0.06), and no unique effect of agricultural intensity. 324 

These results indicate that much of the effect of local plant communities was trap-specific 325 

(independent of spatial and temporal distances), whereas climate variables were largely collinear 326 

with temporal distance. 327 

DISCUSSION 328 

Taken together, our results suggest the dominance of species-sorting dynamics in both 329 

space and time, a possible effect of ecological drift, and no evidence of dispersal limitation in 330 

this system. We found arthropod communities to be highly variable among localities and across 331 

time periods. Plant community attributes best explained this variation, the effects of which were 332 

much stronger than agricultural intensity despite variation in the percentage of agriculture in the 333 

landscape ranging from 11% to 78%. Climatic variability across the sampling season also played 334 

an important role. Environmental variables demonstrated both temporal and spatial structure and 335 

significant effects of temporal distance on arthropod dissimilarity remained even after 336 

accounting for environmental variables, while spatial distance did not retain a significant effect.  337 
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Canopy openness had a significant direct effect while plant richness did not, though both 338 

had indirect effects through plant community composition. These results highlight that arthropod 339 

communities tend to be strongly specialized on specific plant communities. This could be due to 340 

species-specific preferences for food (either directly on plants or other organisms that depend on 341 

those plants), nesting, shelter, and mating resources, or because plant community composition 342 

also acts as a reliable index of other environmental factors such as light availability or soil type 343 

(Schaffers et al. 2008). It is noteworthy that plant richness alone did not have a significant direct 344 

effect in our analyses, as many studies have shown this to be an important determinant of 345 

arthropod community composition (Borer et al. 2012; Ebeling et al. 2018). Combined with the 346 

indirect effect through plant community composition, this means that the identities of plants 347 

mattered more than their richness for the arthropod communities studied here (e.g., Harvey & 348 

MacDougall 2015).  349 

Researchers seldom demonstrate these relationships in agroecosystems (but see Boutin et 350 

al. 2009), tending instead to place emphasis on remote sensing data that show effects of 351 

agricultural intensity at larger spatial scales (Schweiger et al. 2005). Contrary to these results, we 352 

did not find a significant effect of agricultural intensity at the landscape scale. Our findings 353 

demonstrate that restoration of multiple habitat types with compositionally distinct plant 354 

communities at a local scale is likely to be an effective method for sustaining arthropod diversity 355 

in agroecosystems, provided that the landscape contains enough functionally connected habitat to 356 

maintain the species pool (Scheper et al. 2013).  357 

Variation in climatic conditions, particularly across the growing season, also played an 358 

important role in determining arthropod community composition. This could be explained by 359 

several mechanisms. The first is that climate has a direct effect on arthropod survival and 360 
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reproduction. Arthropods are generally constrained to narrow optimum ranges of temperature 361 

and humidity and taxa differ widely in their tolerances for climatic conditions, with some species 362 

being specialized for early emergence (Høye & Forchhammer 2008). Such differences in the 363 

phenology of emergence due to climatic conditions results in compositional turnover throughout 364 

the season. It could also partially explain why strong differences were observed with forest 365 

canopy, as turnover of arthropods between shaded cool forest and warmer and often drier 366 

herbaceous plant communities tends to be high (Yekwayo et al. 2017). A related explanation 367 

could be resource limitation. Many arthropods depend on specific feeding and nesting/shelter 368 

resources, and many of those resources are not available early in the season due to plant 369 

phenology in the case of herbivores (foliage) and pollinators (flowers), and the phenology of 370 

prey in the case of predators (Høye & Forchhammer 2008).  371 

Climate change is predicted to have major impacts on seasonal systems, particularly 372 

regarding increases in temperature and the timing of seasonal events (Hoegh-Guldburg et al., 373 

2018). Our results suggest that arthropod communities in seasonal agroecosystems are likely 374 

susceptible to shifts in seasonal norms, either directly via physiological mechanisms or indirectly 375 

due to changes in the resource phenology (Høye & Forchhammer 2008). Studying the interactive 376 

effects of temporally varying agricultural practices, especially pesticide application, and 377 

variation in climate on the plant and arthropod communities in farm landscapes will be critically 378 

important to understand the effects of multiple stressors on these dynamic communities. This is 379 

an area that warrants further research.   380 

Much of the variation in arthropod community composition could be explained by 381 

environmental factors, indicating a strong role for species sorting in both space and time in these 382 

communities. The effect of spatial distance on community dissimilarity was not significant after 383 
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accounting for environmental variation. This finding is especially interesting, given the large 384 

extent of our study region and its ~90% cover of crop monoculture, the fact that many non-crop 385 

areas with natural or restored plant cover can be highly spatially isolated, and that this habitat 386 

isolation has been in place for many decades given that this region has been intensely farmed 387 

since at least the 1930s (Riley 2013; McQuarrie 2014). This degree of habitat transformation 388 

over the last century might imply acute species turnover by spatial distance but this was not the 389 

case. That being said, single individuals of many flying arthropods such as some species of bee 390 

have foraging ranges upwards of 5km (Greenleaf et al. 2007) and are likely to travel much 391 

further in windy conditions (Pasek 1988), resulting in many transient individuals being caught in 392 

the traps and high dispersal potential. This could explain the high incidence of singleton 393 

occurrences observed here as well as the weak effect of spatial distance. The effect of temporal 394 

distance, however, did remain significant after controlling for environmental variation. 395 

Theoretical and empirical work has shown that ecological drift should result in directional 396 

turnover through time that is independent of environmental variability (Hubbell 2001; Hatosy et 397 

al. 2013; Jabot et al. 2020). We find evidence of this here, though it should be interpreted with 398 

care as our study was observational and could not control for all potentially relevant factors. 399 

Either way, the discovery of such strong temporal turnover (far exceeding the magnitude of 400 

turnover with spatial distance) over a growing season was a novel finding that emphasizes the 401 

important but often neglected role of seasonality. 402 

Despite the limitations on inferring process from pattern, the use of a metacommunity-403 

based framework is useful for investigating which mechanisms may be most important for 404 

shaping arthropod communities in agroecosystems. Several recent studies have shown that 405 

ecological drift may play a stronger role in determining the composition of local communities 406 
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than commonly thought (Gilbert & Levine 2017; Sydenham et al. 2017; Jabot et al. 2020; 407 

Siqueria et al. 2020), but this remains an infrequent subject of empirical investigation. Attaining 408 

a better understanding of these mechanisms has implications for the management of agricultural 409 

landscapes. If species sorting mechanisms primarily govern the composition of arthropod 410 

communities then the focus of conservation efforts might be placed on ensuring that a diverse set 411 

of habitat types and local resources are represented in the landscape (Economo 2011). If 412 

ecological drift and dispersal limitation primarily govern the composition of arthropod 413 

communities then more focus might be placed on the size and spatial arrangement of habitat 414 

patches (Economo 2011; Gilbert & Levine 2017). Finally, the powerful role of seasonal turnover 415 

on arthropod diversity that we observed, deriving from unprecedentedly frequent sampling 416 

intervals, implies that the timing of pesticide application could have large impacts on arthropod 417 

communities, with the potential to more closely target application windows to avoid overlap with 418 

non-target species including those with high functional benefit. 419 

Our ability to examine the composition of arthropod communities with such broad 420 

taxonomic coverage at a large spatiotemporal scale was mainly due to the combined use of 421 

metabarcoding and Malaise traps, both of which are highly scalable methodologies (deWaard et 422 

al. 2019). Metabarcoding has many advantages over morphological identification. It provides a 423 

standardized method for species assignment even when a species has not been formally 424 

described, allows finer taxonomic resolution, speeds sample processing time, and is very cost-425 

effective (Cristescu 2014; Bush et al. 2020). Using barcoding rather than morphological 426 

identification can also increase estimates of species richness and beta diversity by revealing 427 

cryptic species (Brehm et al. 2016; D’Souza & Hebert 2018), which allows for a more robust 428 
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assessment to be made about the factors that drive variation in community composition (Bush et 429 

al. 2020).  430 

Habitat restoration is commonly promoted as a useful land management strategy to 431 

prevent or reverse biodiversity loss in agroecosystems (Tilman et al. 2002; Green et al. 2005 432 

Fahrig et al. 2011; Ekroos et al. 2016). Under a land-sharing framework, agricultural systems 433 

should be managed to retain and/or enhance habitat heterogeneity to ensure that a wide array of 434 

organismal needs can be met, resulting in more abundant and taxonomically diverse 435 

communities, enhanced ecosystem services, and improved ecological stability (Borer et al. 2012; 436 

Tscharntke et al. 2012). Results from our study suggest that enhancement of local habitat 437 

heterogeneity, particularly restoration of woody cover and local vegetation composition, should 438 

be a particularly useful means of managing agro-ecosystems to better conserve arthropod 439 

biodiversity and the critical ecosystem services that flying arthropods provide. Given the 440 

immense challenge that the world faces in feeding a large and growing human population, it is 441 

critical that we continue to better understand and implement the strategies that can work 442 

alongside agriculture to maintain viable habitat for the benefit of human and non-human 443 

communities alike. 444 
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TABLES 639 

Table 1. Results from path analysis and associated standardized path coefficients. Entries in bold 640 

are significant (P < 0.05 with Benjamini-Hochberg correction). The fit statistics of the path 641 

model were as follows: SRMR = 0.055, RMSEA = 0.08, CFI = 0.889. 642 

GROUP  PATH STANDARDIZED 
PATH 

COEFFICIENT 
  SØRENSEN DISSIMILARITY ~ Δ TIME 0.27 
  SØRENSEN DISSIMILARITY ~ Δ SPACE 0.02 
PLANT    SØRENSEN DISSIMILARITY ~ Δ CANOPY OPENNESS 0.31 
COMMUNITY  SØRENSEN DISSIMILARITY ~ Δ PLANT COMMUNITY 0.26 
ATTRIBUTES  SØRENSEN DISSIMILARITY ~ Δ PLANT RICHNESS 0.04 
  Δ CANOPY OPENNESS ~ Δ SPACE 0.06 
  Δ PLANT COMMUNITY ~ Δ TIME 0.04 
  Δ PLANT COMMUNITY ~ Δ SPACE 0.16 
  Δ PLANT RICHNESS ~ Δ TIME 0.03 
  Δ PLANT RICHNESS ~ Δ SPACE 0.07 
  Δ PLANT COMMUNITY ~ Δ CANOPY OPENNESS 0.39 
  Δ PLANT COMMUNITY ~ PLANT RICHNESS 0.09 
CLIMATIC  SØRENSEN DISSIMILARITY ~ Δ PC1 0.23 
  SØRENSEN DISSIMILARITY ~ Δ PC2 0.07 
  SØRENSEN DISSIMILARITY ~ Δ PC3 0.07 
  SØRENSEN DISSIMILARITY ~ Δ PC4 0.14 
  Δ PC1 ~ Δ TIME 0.40 
  Δ PC1 ~ Δ SPACE 0.02 
  Δ PC2 ~ Δ TIME 0.14 
  Δ PC2 ~ Δ SPACE 0.27 
  Δ PC3 ~ Δ TIME 0.36 
  Δ PC3 ~ Δ SPACE -0.03 
  Δ PC4 ~ Δ TIME 0.07 
  Δ PC4 ~ Δ SPACE 0.00 
AGRICULTURAL   SØRENSEN DISSIMILARITY ~ Δ % AGRICULTURE 0.02 
INTENSITY  Δ % AGRICULTURE ~ Δ SPACE 0.29 
 643 

  644 
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FIGURES 645 

 646 

Figure 1. Distribution of arthropod BINs (Barcode Index Number; a species proxy) for (A) the 647 

top six most species-rich orders of arthropods across all samples, (B) among traps pooled across 648 

all time periods, and (C) among sample periods pooled across all traps. 649 

  650 
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 651 

 652 

Figure 2. Path analysis of factors influencing spatiotemporal Sørensen dissimilarity of arthropod 653 

community composition. Only significant paths are shown.  Values correspond to standardized 654 

path coefficients, and values towards or away from variable groups (e.g. climate) represent the 655 

sum of the absolute values of standard path coefficients for each variable within those groups 656 

(including direct and indirect effects). Arrow thickness is proportionate to the magnitude of the 657 

standardized path coefficients. 658 

 659 

 660 

 661 
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662 

Figure 3. Partial regression plots for the effect of all variables in the path analysis on 663 

spatiotemporal arthropod Sørensen dissimilarity. PC1 – 4 are principal components of the 664 

climatic variables. All variables are standardized. 665 

 666 

 667 
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 668 

Figure 4. Regression-based variance partitioning results for the effect of distances in 669 

environment, space, and time on arthropod Sørensen dissimilarities.  Numbers are adjusted R2 670 

values and the results showing the relative effects of plant community attributes, climate, and 671 

agricultural intensity are conditional on the effects of space and time.  672 
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SUPPORTING INFORMATION 673 

APPENDIX 674 

METABARCODING METHODS 675 

Bottles sent for metabarcoding first had their ethanol filtered off using a sterile 676 

Microfunnel 0.2 uM Supor membrane filter (Pall Laboratory) using a 6-Funnel Manifold (Pall 677 

Laboratory). The filters were then weighed to measure wet arthropod biomass. DNA extractions 678 

employed a membrane-based protocol (Ivanova et al. 2006). Wet biomass was used to 679 

standardize the amount of arthropod lysis buffer added to each bottle (~10 ml buffer per g of 680 

biomass). After lysis buffer was added, each bottle was incubated at 56°C overnight on a shaker. 681 

After lysis, technical replicates were created by taking 300 μl of lysate from eight locations in 682 

each bottle. 50 μl from each of these technical replicates were placed into a separate well in a 96-683 

well microplate along with 8 negative controls (no DNA) and 8 positive controls (known 684 

community DNA sample: public dataset at http://dx.doi.org/10.5883/DS-AGAKS) per plate. 100 685 

μl of binding mix was added to the lysate which was then transferred to a 3.0 μm Pall Supor 686 

Membrane glass fiber plate and centrifuged at 5000g for 5 minutes. The resultant DNA extracts 687 

were purified in three wash steps: 180 μl of protein wash buffer centrifuged at 5000g for 2 688 

minutes followed by two washes with 600 μl of wash buffer centrifuged twice at 5000g for 5 689 

minutes. The filter plate was then transferred onto a sterile 96-well microplate and incubated at 690 

56°C for 30 minutes. DNA elution was carried out by adding 60 μl of 10 mM Tris-HCl pH 8.0 691 

followed by centrifugation at 5000g for 5 minutes.  692 

A 462 base-pair amplicon of cytochrome c oxidase subunit I (COI) was PCR amplified 693 

using the forward primer AncientLepF3 (Prosser et al. 2016) and the reverse primer cocktail 694 
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C_LepFo1R (containing LepR1 and HCO2198) (Hebert et al. 2004). The PCR cocktail included: 695 

1.25 μl of 10x Platinum Taq reaction buffer (Invitrogen), 6.25 μl of 10% trehalose (Fluka 696 

Analytical), 0.625 μl of 50 mM MgCl2, 0.0625 μl of 10 mM dNTPs (KAPA biosystems), 0.125 697 

μl of each primer (1 μM), 0.06 μl of Platinum Taq (5 U/μl), 2 μl of DNA extract, and 2μl of 698 

Hyclone ultra-pure water (Thermo Scientific). PCR employed  the following cycling regime: 699 

initial denaturation at 94°C for 2 minutes, 20 cycles of denaturation at 94°C for 40 seconds, 700 

annealing at 51°C for 1 minute, extension at 72°C for 1 minute, and a final extension at 72°C for 701 

5 minutes. The resultant PCR products were diluted by 2x before a second round of PCR with 702 

fusion primers to attach a different pair of unique molecular identifiers (UMIs) to the amplicons 703 

from each well along with sequencing adaptors that are required for IonTorrent S5 libraries. The 704 

resultant PCR products were pooled, standardized to 1 ng/μl, and the sequence libraries were 705 

prepared on the Ion Chef™ system (Thermo Fisher Scientific) for characterization on a 530 Chip 706 

according to manufacturer instructions.   707 

The reads derived from the eight technical replicates for each sample were separately 708 

uploaded to the mBRAVE platform (Ratnasingham 2019; http://www.mbrave.net/). Sequences 709 

were only retained if they had a mean quality value (QV) > 20, a minimum length of 350 bp, less 710 

than 25% of bases with QV <20, and less than 5% of bases with QV <10. Reads were trimmed 711 

30 bp at the front with a trim length of 450 bp. Reads were queried against mBRAVE reference 712 

libraries for chordates, insects, non-insect arthropods, non-arthropod invertebrates, and bacteria. 713 

Reads were assigned to a Barcode Index Number (BIN) that serves as a species proxy 714 

(Ratnasingham & Hebert 2013). The BIN system uses the Refined Single Linkage (RESL) 715 

algorithm to designate OTUs and then match them to BINs in the Barcode of Life Data System 716 

(BOLD; http://boldsystems.org) based on a predefined distance threshold (Ratnasingham & 717 

http://www.mbrave.net/
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Hebert 2013). Thus, BIN assignments are dynamic and depend on the continual updating of 718 

sequence information in BOLD; the taxonomy reported in this study is current as of November 719 

2019. During a second denoising process, BINs were discarded under the following 720 

circumstances: (1) they had less than 5 sequence reads summed across all technical replicates, 721 

(2) their read count was less than the mean read count for the run in at least 75% of the technical 722 

replicates, or (3) their read count was less than 1% of the maximum read count for the run with 723 

less than 10 total reads. BINs that showed up in negative controls would have been removed in 724 

this process and if the noise could not be removed through these steps, the run was excluded 725 

and/or rerun. Only arthropods and non-arthropod invertebrates were included in the final BIN 726 

table, though arthropods constituted 99.8% of these BINs.  727 
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Table S1. Environmental variables considered in the path analysis and their groupings into either 728 

plant community attributes, agricultural intensity, or climatic variables. Type of variation 729 

indicates whether the explanatory variable exhibits spatial (S) temporal (T) or spatiotemporal 730 

(S+T) variation. *Limited spatial variation based on closest weather stations. Climatic variables 731 

were subject to principal components analysis prior to use in path analysis and 4 axes were 732 

retained, explaining 88% of the variation. 733 

GROUP VARIABLE TYPE OF 
VARIATION 

PLANT COMMUNITY CANOPY OPENNESS S 
ATTRIBUTES PLANT GENUS RICHNESS S+T 
 BRAY-CURTIS PLANT COMMUNITY 

COMPOSITION 
S+T 

AGRICULTURAL 
INTENSITY 

% AGRICULTURE IN 2KM RADIUS S 

CLIMATIC AVERAGE TEMPERATURE S+T 
 AVERAGE RELATIVE HUMIDITY S+T* 
 CV TEMPERATURE S+T 
 AVERAGE WIND SPEED S+T* 
 AVERAGE WIND DIRECTION S+T* 
 AVERAGE PRECIPITATION S+T* 
 734 
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 735 

Figure S1. Map of Southern Ontario, Canada showing the study sites and their respective 736 

management types.  737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 
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 745 

Figure S3. Path analysis of factors influencing spatiotemporal Sørensen dissimilarity of 746 

arthropod community composition. PC1 – 4 are principal components of the climatic variables. 747 

Values correspond to standardized path coefficients. Only significant paths are shown. Arrow 748 

thickness is proportionate to the magnitude of the standardized path coefficients. 749 

 750 

 751 

 752 

 753 

 754 

 755 
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