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Abstract

In this study, we will implement new perceptions for the bright and dark soliton solutions to the modified nonlinear Schrédinger
equation (MNLSE)or forms of the rogue wave modes for a derivative nonlinear Schrodinger model with positive linear dispersion
which describe the propagation of rogue waves in Ocean engineering as well as all similar waves such as dynamics waveguides
that have unexpected large displacements, the waves which occur only in the regime of positive cubic nonlinearity, regime that
coincides exactly with the existence of instabilities of plane waves , long-wave limit of a breather (a pulsing mode). Two famous
different schemas are involved for this purpose. The first schema is the solitary wave ansatze method (SWAM), while the second
scheme is the extended simple equation method (ESEM). The two schemas are implemented in the same vein and parallel to
construct new perceptions to the soliton solutions of this model. A comparison between the obtained new perceptions with the

old perceptions that achieved previously by other authors has been demonstrated.
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ABSTRACT

In this study, we will implement new perceptions for the bright and dark soliton solutions to
the modified nonlinear Schrodinger equation (MNLSE)or forms of the rogue wave modes for
a derivative nonlinear Schrodinger model with positive linear dispersion which describe the
propagation of rogue waves in Ocean engineering as well as all similar waves such as
dynamics waveguides that have unexpected large displacements, the waves which occur only
in the regime of positive cubic nonlinearity, regime that coincides exactly with the existence
of instabilities of plane waves , long-wave limit of a breather (a pulsing mode). Two famous
different schemas are involved for this purpose. The first schema is the solitary wave ansatze
method (SWAM), while the second scheme is the extended simple equation method (ESEM).
The two schemas are implemented in the same vein and parallel to construct new perceptions
to the soliton solutions of this model. A comparison between the obtained new perceptions
with the old perceptions that achieved previously by other authors has been demonstrated.
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1-Introduction

The Schrodinger equation is considered as the main base of many phenomena arising in
different branches of physics such as atomic and nuclear physics, optics, plasma physics,
fluid-dynamics, etc. Recently several different forms of this equations have been discovered
to represent many phenomena in different branches of physics. This article focused on the
famous one of these forms of this equation which is the MNLSE that represents the
propagation of random waves in Ocean engineering as long-wave which widely occurs in
fluid dynamics and optical waveguides that have unexpected large displacements. Two
different perceptions for the accurate solution to this model have been established via two
different techniques. The first technique is implemented through the SWAM [1-3], while the
second technique is implemented via the ESEM [4-6]. These two perceptions are
implemented successfully by these two distinct schemas which are invited for this purpose.
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Several different forms of the Schrodinger equation have been studied via big number of
authors through their suggested methods which treat many phenomenon behavior in various
branches of sciences to achieve the exact and hence the solitary solutions of these
phenomenon. See for example, Bekir and Zahran [6] who achieved the bright and dark
soliton solutions to the complex Kundu-Eckhaus equation which represents a general form of
integrable system that is governed by the equivalent to the mixed nonlinear Schrodinger
equation, Bekir and Zahran [7] who extracted three distinct and impressive visions for the
soliton solutions to the higher-order nonlinear Schrodinger equation, Mirzazadeh et al. [8]
who obtained the optical soliton solutions to the Kundu—Eckhaus equation with general
coefficients using the Riccati—Bernoulli's sub-ODE method as well as Kudryashov's scheme,
Biswas et al. [9] who extracted the soliton solutions from the Lakshmanan—Porsezian—Daniel
model by the aid of the modified simple equation method, Biswas [10] who extracted the
optical soliton cooling with polynomial law of nonlinear refractive index via the perturbation
theory, Seadawy et al. [11] who achieved the bright and dark solitary wave soliton
solutions for the generalized higher order nonlinear Schrdodinger equation and its
stability, Vinita and Ray [12] who used the Lie symmetry analysis to achieve the
invariant solution and similarity reduction of the resonance nonlinear Schrodinger
equation, Raza et al. [13] who established the optical solitons and stability analysis for
the generalized second-order nonlinear Schrédinger equation in an optical fiber.
Moreover, big number of manners which were applied to solve many forms of the
NLPDE arising in different nonlinear phenomenons was listed through references [14-
31].

Specially, few tries were constructed through some authors to demonstrate the soliton
solutions to the MNLSE using different methods namely, Stéphane et al. [32] who apply the
extended (G'/G) method to the modified nonlinear Schrodinger equation in the case of ocean
rogue waves, Chan et al. [33] who calculated the rogue waves of a derivative non-linear
Schrodinger equation as a long-wave limit of a breather ( a pulsing mode) which widely
occurs in fluid dynamics and optical waveguides that have unexpected large displacements,
Yu and Yan [34] who constructed explicit rouge wave solutions and dark-bright solutions for
the inhomogeneous coupled nonlinear Schrodinger equation with variable coefficients by
means of similarity transformations and Younis et al. [35] who used the extended Fan sub-
equation method with five parameters to achieve new families of exact traveling wave
solutions for the modified nonlinear Schrédinger equation.

According to [32-35], the MNLSE can be proposed in the form,

iQ +7,Qu +7:Q|Q°| = 12Qy +10,Q7Q; —12,Q, [Q*[ + 2,Q (1)

Where the slightly changes in the boundary region of the random waves in Ocean engineering
are governed by the complex function Q(x,t),
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And k,w are the wave number and frequency of the carrier wave respectively.
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This paper is organized as follow, in sections two and three we will give description of the
SWAM and its application to find the soliton solution of MNLSE respectively. In sections
four and five the ESEM schema and its application to find other new perceptions of soliton
solution of this model respectively. In section six brief conclusion of our work has been
established.

The main purpose of this study is to implement new different perceptions of the optical
soliton solution to the MNLSE (in terms of some parameters) using these two various
schemas which are introduced above. If we give definite values for the appearing parameters
in these exact solutions, new perceptions of the solitary solutions could be demonstrated.

2. Description of the SWAM
According to [1, 3] the SWAM solutions can be proposed as follows,
Consider the wave transformation,
Q(x,t) =y (x,1)e"*" 2

Where w(x,t)and R(x,t)are the amplitude portion and the phase portion of soliton
respectively. Hence, via simple calculation of Eq.(2) we get the following relations,

Q = (y, +iwR)e® 3)
Q, = (w, +iyR, )e" @)
Qu =W, +2iy,R +iyR, —yR?)e" (5)

Qxxx = (l/lxxx + 3il//xx Rx - "//Rf - 3!//x Rf + iV/Rxxx + 3"//x Rxx - 3‘// Rx Rxx )eiR (6)
Consequently, the bright and dark soliton solutions can be implemented as follows,

(1) The bright soliton solutions

w(x,t) = A sech™t, where t, = B(x—wt)and R, (x,t) = kx - Qt 7)
w, =—ABWR sech™t tanht, (8)
v, = ABR sech™t tanht, 9)
v, = AB°R (L+R)sech™?t — AB’RZsech™t, (10)

Vo, = AB°R (R +1)(R, +2)sech™?t tanh t, — AB°R’sech™t tanh t, (11)
(1) The dark soliton solutions

w(x,t) = A tanh™ t,, where t, = B(x —w,t)and R, (x,t) = kx — Ot (12)



w, = AW,BR,[tanh® " t, —tanh™ ¢, ] (13)
v, = A,BR,[tanh®"t, —tanh®*t,] (14)
v, = AR, (R, -1)B? tanh®?t, —2A,RZB* tanh™ t, + AR, (R, +1)B* tanh®**t,  (15)

Vi = AR (R ~D)(R - 2)B tanh ™ (t) ~[2AB'R} + AR, (R, ~1)(R, ~2)B"] tanh "' (1)

+AB°R[2R] + (R +D(R, +2)]tanh®"(t) - AB’R (R, +1)(R +2) tanh™ (¢, =
3. The bright and dark soliton solutions to MNLSE
Substituting about Q,Q,,Q,,Q,,, Q,,, the relations (2-6) at equation (1), we get,
iy, +iyR)e™ + 5[y, +2iy,R, +iyR, —yR:]e"
= i04[Y o +3iw, R, — i RS =3y, RY +iw R, +3iy, R, — 3y R,R, Je™ + (17)

2,2iR

i,y e (v, —iyR )e™ day’ (v, +iyR, )" +a,pe”

This can be splits into two parts one real and the other is imaginary which are given
respectively as,

(7, + 3Ky, —k(a, + @)y’ +(Q—-y, -y —a,)y =0, (18)

QW + (0t + )y 'y, — (Berk® + 27, K)y, — 7, =0. (19)
3.1 The bright soliton solution

Now; use the constructed relations (7-11) into the real part equation (18) we obtain:

(7, +3ke,) AB’R (R, +1)sech™?t +k(a, + o) A’sech®™ t,

20
(3, +3ke,)B?R? + (Q -y, — at, —,)JA sech® t, =0, (20)

o, ABR (R +1)(R, +2)sech®™(t,) tanht, — BR (e, + &) A’ sech®™ t, tanht,

21
+ABR [(3a,k” +27,k) — o, B*R” —w, ]sech™ t, tanht, =0. (1)

From equations (20), (21), by equating the highest exponents of sech’ t,we getR, =1, hence,
we can establish these relations,

»  —2B%(y, +3key)
k(a, +a;)
82(7/1+3ka1):_(Q_7l_a1_a4)’ (22)
6a,B” = (2, + ;) A,
AB[(2yk +3a,k?)—a,B* —w,]=0.

From which we can easily obtain,



_ 20Q-y~-a,-a,)
AT i ra)

BZZ(Q_yl_al_a4)’ (23)
3key

W, = ,B* — (2y,k + 3 k?).

i)

Hence we will achieve these results A =—1.5,B =++/0.6i,w, =—16 under the same values

used in [33], hence the solution is,
Q(x,t) =—1.5sech(+/0.6i(x +16t)e'*™ (24)

—3Cos(x—t) 25)
2Co0s+/0.6(x +16t)

ReQ(x,t) =

—3Sin(x—t) (26)

ImQ(x,t) =

2Co0s+/0.6(x+16t)

Figure 1. The bright soliton solution of the real part Eq.(25) in two and three dimensions when:
A =-15B==%40.6i,w,=-16,k,=0.3,,=2.2,7,=3,¢,=3.2,0, =45, =3.6,, =1.8,k =1

Figure 2. The bright soliton solution orf the imaginary part Eq.(26) in two and three dimensions when:
A =-15B=+406i,w,=-16,k, =0.3,,=2.2,5,=3,¢, =3.2,a, =45,0,=3.6,0, =1.8 k=1

3.2 The dark soliton solution
Now; via inserting the relations (12-17) into the real and imaginary parts Eqs (18), (19)
respectively we get,

(7,+3Key) AR, (R, —~1)B* tanh™t, + A[(Q-y, -, — @) - 2(7, + 3Ky, )R:B*Jtanh " t,

+AR, (R, +1)B?(y, + 3k, ) tanh % t, —k(at, + ;) A tanh** t, =0,



o, [AR,(R, ~1)(R, 2B’ tanh**1, +(2A,B°R: - AR, (R, ~1)(R, - 2)B° ) tanh ™ 1,
FABR, (2R + (R, +1(R, +2))tanh™ - ABR, (R, +)(R, + 2t
+(a2 + 0[3)A22 BRz[tanh3Rz‘1 t,— tanh3fe L tz]

~(3e4K +2y,K) A,BR,[tanht, —tanh™*t,]— A w,BR, [tanh™"*t, —tanh " t,] = .

(28)

From equations (27), (28), by equating the highest exponents of tanhitzwe getR, =1,
hence, we can establish these relations,

pe - 2B%(y, +3ka,)
k(a, +a3)
BZZ(Q_Vl_al_a4) (29)
2(y, +3ke,)
6B? = —(a, +a,) A,
ZAQB3 +A,B(2y,k +3a1k2) —A,Bw, =0.
From which we get,
A= Q-yn-a-a,)
(e, + a3)(y, +3key)
BZ= k(Q_yl_al_a4) (30)
2(y, +3ka, ), + )
W, = 2Q-y —o —a) +2y,k +3a1k2.
ke

Hence we will achieve these results A, =—0.1, B =++/0.03i,w, =12.7 under the same
values used in [33], hence the solution is,

Q(x,t) =—0.1tanh(+/0.03i(x —12.7t)e'*™" (31)
ReQ(x,t) =0.1tan(+/0.03i(x —12.7t) xSin(x —t) (32)
ImQ(x,t) =-0.1tan(+/0.03i(x —12.7t) x Cos(x —t) (33)

5 1015 F
Figure 3. The dark soliton solution of the real part Eq.(32) in two and three dimensions when:
A =-01B= ++4/0.03 iw,=12.7k,=0.3,,=2.2,7, =3,y =3.2,a, =450, =3.6,0, =1.8, R=k =1
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Figure 4. The dark soliton solution of the imaginary part Eq.(33) in two and three dimensions when:
A, =-0.1,B=+40.03i,w, =12.7, k,=03,%,=227,=3,0,=32,0,=450,=36,0,=18 R=k =1

4. The second schema: the ESEM

First of all to introduce the form of ESEM [4-6], let us firstly introduce the general form of
the MNLSE by propose the function R as a function of E(x, t) and its partial derivatives as,

R(E,E,,E,E  Eqcooonn )=0 (34)

That involves the highest order derivatives and nonlinear terms.

With the aid of the transformation E(x,t) = E(<),{ = wx + kt equation (33) can be reduced
to the following ODE:

S(E,E"E"........... )=0 (35)
Where S is afunction in E({) and its total derivatives, while ’:di

The solution in the framework of this method is:
M .
P(&) = Z A y'(S) (36)
i=——M
Where (¢ achieves the equation,

v'(¢) =B, + By +By’ (37)

The constant M appearing in Eq. (36) can be defined by applying the homogeneous balance
between the orders of highest derivative and the nonlinear terms, while the other parameters

A will be located later, while the other parameters B, B, and B, will propose the following
facts.

(1) If B, = B, =0it will admit to the Riccati equation [34-36], whose solutions are;

w(() = V BB, tan(,/B,B, (£ + <), ByB, = 0 (38)



w(&)=— it 2tanh(,/ B,B, —p'”§°)BB <0,&0,p==1

2

(2) If B, = B, =0, it will admit the Bernoulli equation [34], whose solutions are;

B, Exp[B, (¢ +¢5)]
1-B,Exp[B,(¢ + &)l

_Bl Exp[Bl(é/_Fé/O)]
1+B,Exp[B({ +¢p)]

w(S)= B, =0

()=

And the above solutions have the general forms which are:

W({)——[B —/4B,B, - B’ tan [—“481%(5 §O)J],4BIBZ>812,BZ>O,

2

w(<) Bi[BthBle —B/ tanh (—“4819;2(( {0)]}48182 = B’,B, <0,

2

Where the integer ¢, is the constancy of integration.

(39)

(40)

(41)

(42)

(43)

Finally, via inserting Eq. (37) into Eq. (36), collecting and equating the coefficients of various
powers of /' to zero implies system of equations through which we can calculate the values of
the unknown variables. Moreover, via inserting these variables into equations (36) then we

can establish the required solutions.

5. The exact solutions in the framework of the ESEM

We will implement this technique to the Eq. (1) mentioned above,

iQ +7Q, +7.Q|Q°|=i,Q,, +i2,Q°Q; -
The solution according to the ESEM is,
Q(x,t) = @(&) ™™V, & =kx +wt, u = gx + St
=iope" +wgp'e™,
Q, =iage” +kg'e”,
Q, =—5%ge" + 2iowg e +w’g"e",

Qu = _i53¢ el — 352W¢'ei# + 3i5W2¢"ei# + W3¢wei'u,

(44)

(45)

(46)

(47)

(48)



Q07 (|Q°), = 2w, Q(Q7), = 2wg*pre. (48)
Substituting about the above relations at the MNLSE we get,
i (i5¢ e +wg'e ) +7, (—q2¢ e + 2ikqg'e’” +k2g"e™ ) +y,p%"
=i, (-ig’pe" —3q’ke' €™ +3igk’g" e + k4" e™ ) (49)
+ia,g’e™ (—igge ™ +kg'e ) —iayg’ (igge™ +kgpe™ )+ a g
This splits into the following real and imaginary parts respectively,
Re (7, +3a,0)k’¢" + (7, — 0,0 —,q) &’ +(0{1q3 +a, —5—;/1q2)¢ =0, (50)
Im ak®s" + (o, — o, )k’ — (W+ 2kq + 3a,kq )¢’ = 0. (51)
We will firstly implement the ESEM to the real part
(7 +3a,@)K*d" + (7, — 2,0~ ,0) ¢° + (0 + @, — 5 — 7,0 ) ¢ = 0. (52)

Via balancing ¢",¢° appearing at Eq. (52) lead to 3M =2M +1which impliesM =1,
hence the solution is,

#(C) =%+A) + Ay (53)

Where ' =B, + By + By’ + Byy’®

Case 1: The 1% family which suppose B, = B, = 0=y’ = B, + B,*, consequently

, B A
== l(;/zl+AlBo+A&le//2_BzA—1 (54)
2
=Tt E R BBy 2By 5

5 = Ky 1 2A Ay + (R +2AA)+VA/—‘2§+ ZA,;‘\’ , 6)

¢° =Ny’ +3AAY" +BAA +3A, )y +(A +6A,AA)
A, 3AA, BAA+3AN, (57)

3 2

vy %

Via inserting the relations (53-57) into Eq. (52), collecting and equating the coefficients of
various powers ofwi to zero, we get the following system,



2k2(71 +30(1q)822 +(7, —azq—asq)Af =0, (58)
3y, —a,q- a3q)A)A12 =0, (59)

ZBOszz(]/1 +3a,0) +3(y, —a,q —053q)(A52 +AA)+ (ozlq3 +oa,-0+ quz) =0, (60)

(r,—a,9 _053,(4)('0‘02 +6ALA)+ (alqs ta, -0+ 71q2) =0, (61)
2k? (rn+ 30‘1(:1)802 +(7, —a,q- asQ)A_zl =0, (62)
3(72 —a,q- OZ3Q)1%AEI =0, (63)

ZBOBZkz(]/l +3a,0) +3(y, —a,q —ocaq)(ﬁb2 +AA)+ (ozlq3 +a, -0+ quz) =0. (64)

It is clear that equations (59), (63) imply that A, =0, in addition equations (60), (64) are the
same and by substitute from equation (61) at equation (60) and put A, = 0 we can reduced the
above system to,

2k2(71 "'30(1(:1)822 +(7, — a0 - asq)Af =0,
2Boszz(7/1 +30,q) - 3(y, —a,q - ;)AL A =0,
2k2(71+3a1q)802 +(7, _azq_asq)Afl =0. (65)

Via solving this system the following results will be achieved,

(1)B _0 B __iA—l\/72_a2q_a3q Ai—O
2 — VY Yo — 2 2 H - Y
\BK g+ 2Ky,

(66)
Ay, —a,q—
(2)82 — O, BO — =1 7/2 an aSq ,Ai _ 0
6K q+ 2k?y,
These results lead to that there are no solution because B, =0.
Case 2: The 2™ family which suppose B, = B, =0=y' =B, + B, , consequently
A—l
#S)=—+A+Ay, (67)
v
, A B
¢'= ABy* +B Ay ———=—A B, (68)
" 2.3 2 2 Blefj_
¢"=2AB,w°+3ABByw +ABw+A BB, + : (69)

7



¢° = Ny® +3ANY* +BAA +3A Ay + (A +6A,AA)

A® 3AAL 3A, A +3AA (70)
+ L

vy %

Substituting for equations (67-70) at equation (52) and collecting the coefficients of different
powers Ofl//i and equating them to zero, we can easily obtain this system of algebraic

2K* (7, +34,0)B; + (7, — 2,0 — ;) A =0, (72)

K* (7, +3a,0)B,B, + (7, — 2,0~ 2,0) AA =0, (72)
BYk (7, +3040) +3(r, — a0 — ) (A + ALA) + (a0’ +a, =5 +7,0°) =0, (73)
k?(y, +3a,0)A BB, + (7, —a,0 — a,q)(As +6AAA) +(,0* +a, -5 +7,0°)A, =0, (74)
k?(y, +3a,q) A’ =0, (75)

3(y, — 2,9 - 0) A A =0, (76)

Blzk2(71 +3a,q) +3(y, —a,q —053q)(A)2 +ALA)+ (alqs ta, -0+ 71q2) =0. (77)

It is clear that (75, 76) will lead to A ; =0, use this value of A and substituting by (74) at

(73) and collecting the coefficients of different powers oft//i and equating them to zero, then
the above system will be reduced to,

2k2(7/1+3a1q)822 +(7, _azq_asq)Aiz =0,
k2(71 +30‘1q)Ble + (7/2 —a,q _aSQ)AoAi =0,

Blzk2(71+3a1q)+2(72 _azq_asq)pbz =0. (78)

By solving this system we get,

is[(3‘/§k2a1q+kz)\/72 _azq_asq]
()B, = _i\/zpb\ﬂ/z —a,q—a5q A= 3k2a1q +k271
' V3K, q+Ky, 1 7, 00— a5q ’
_is[(3\/§k2a1q+k2)\/72 azanQ]
(2)B, = i\/EAO\H/Z_azq_asq A V3k2a1q+k271
= =

\/3k20{1q+k2]/1 , 72— 0~

(79)

By substituting about the values of the parameters these solutions becomes,



(1)B,=0.7,B,=-0.1,

(2)B,=-0.7,B, =0.1. (80)

In the framework of the suggested method these two results implies only one solution which
is,

0.7 Exp[0.7(x+t+1)]

, (81)
1+ 0.1Exp[0.7(x+t +1)]

()=

P N W s~ 0o N

10 5 ‘ 50 m
Figure 5. The soliton solution Eq.(81) in 2D and 3D with values: =1,k =1,¢, =1
A=1A=1B=+07,B,=+01k,=0.3,,=22,7,=3,¢=3.2,a, =4.5,, =3.6,¢, =1.8,

We will secondly implement the ESEM to imaginary part
ak’¢" +(a, — a,)kg’d' — (W+ 2Kg + 3a,kq* )¢’ = 0.

By integrating once we get,
a1k3¢"+%(a2 —a,)kg® — (W+2kq +3a,kq?) ¢ = 0. (82)

Case 1: The first family, in which B, =B, =0=y' =B, + B,y*.

Via inserting the relations (53-57) into Eq. (82), collecting and equating the coefficients of
various powers ofwi to zero, we get the following system,

6c,k?’BZ + (ar, — ;) A? =0, (83)
k(ar, —a) AN =0, (84)
2a,k°B,B, +k(a, — ) (A + A ,A) — (W+2kq +3a,kg®) =0, (85)
6a,k’B? + (ar, — ) A% =0, (86)
k(a, — ;) A/A%, =0, (87)

20,k’B,B, +k(a, —a,)(AC + A A) — (W+ 2kq +3a,kg?) =0, (88)



%k(az o)A+ A A — (W 2k +3akq?) = 0. (89)
It is clear that equations (84), (87) imply that A, =0, in addition equations (85), (88) are the
same thus this system could be reduced to,

6, k?B; + (o, — ;) AY =0,

ak’B,B, — (o, —at,) A, A =0,

6a,k’B} +(ar, — ;) A% =0, (90)

By solving this system we get,

_ __An/as_az _
(1)B()—0,Bz——k\/€\/071 A =0,

_ Ao, -a, _
(Z)BO_O'BZ_—k\/E\/a_l A =0.

From which we conclude that there are no solution because B, =0.

(91)

Case 2: The 2" family which suppose B, =B, =0=y'=B, +B,y’, hence,

Via inserting the relations (67-70) into Eqg. (82), collecting and equating the coefficients of
various powers of:,//i to zero, we get the following system,

6a,k’B; + (ar, — ;) A? =0, (92)
3a1szle + (0{2 _as)A)Ai =0, (93)
aK°B? +k(a, — ) (AL + AL A) — (W+ 2kq +3a,kq?) =0, (94)
1 3

5 k(a, —a,) A, =0, (95)
k(a, —a,) AA =0, (96)
aK°B! +k (o, — o)) (AL + AL A) — (W+2kq +3a,kq?) =0, (97)

a,k*A BB, +§k(a2 — ) (AP +B6AA ,A)— (W 2kq +3a,kg?) A, =0.  (98)

The equations (95), (96) imply that A , =0, in addition equations (94), (97) are the same thus
this system could be reduced to,



6, k?B; + (o, — ;) AY =0,
3a,k’B,B, + (o, —a5) A/A =0,
2p?2 2 2
aK°B; +§(052 —a,)A; =0. (99)

By solving this system we get,

2
ke, T ke

(100)
2, ———
(2B, = N% % g _ _\ﬂpb o
S CN . ko,
By substituting about the values of the parameters these solutions become,
1)B, =0.4i,B, =-0.2i,
B, : (101

(2)B, =—0.4i,B, =0.2i.

In the framework of the suggested method these two results implies only one solution which
is,

0.4i Exp[0.4i(x+t+1)]

= , 102
V() = 0 2EXp[0.Ai (X £ £ 1)] (102
Rey(¢) _DB-04SIn(0.4x+0.41.+0) (109

S 1 04-04xSin(0.4x+04t+0.4)
0.4Cos(0.4% + 0.4t + 0.4
Imy(¢)- 04x;04+39 (10)

© 1.04-0.4xSin (0.4x+0.4t+0.4)

Figure 6. The soliton solution the real part Eq.(103) in 2D and 3D with values: Kk =1, =1
A =1A =1B =04iB,=-02ik, =03 =3.2,a,=450a,=3.6,0, =1.8,
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Figure 7. The soliton solution the imaginary part Eq.(104) in 2D and 3D with values: K =1,¢; =1
A=1A =1B =04iB,=-0.2ik, =03 =32,a,=450a,=3.6,0, =1.8,

6. Conclusion

This study has success to establish multiple impressive accurate perceptions of the
optical solution to MNLSE through two important various algorithms. The first one which is
regrestsed with the name the SWAM which achieves new perceptions of the soliton solution
to the suggested equation figures (1-4).While the second one is the ESEM which has been
applied effectively to establish other new visions to the soliton solutions to the suggested
equation figures (5-7). Our achieved solutions are new and demonstrate new distinct
perceptions to the soliton solutions of this model compared with that obtained previously [32-
36] who applied different techniques.
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