Sea Surface Salinity Provides Subseasonal Predictability for Forecasts of Opportunity of U.S. Summertime Precipitation

Marybeth Arcodia¹, Elizabeth A. Barnes¹, Paul James Durack², Patrick Keys³, and Juliette Rocha⁴

¹Colorado State University ²Lawrence Livermore National Laboratory (DOE) ³Department of Atmospheric Science, Colorado State University ⁴Texas A&M University

January 23, 2024

Abstract

As oceanic moisture evaporates, it leaves a signature on sea surface salinity. Roughly 10% of the moisture that evaporates over the ocean is transported over land, allowing the salinity fields to be a predictor of terrestrial precipitation. This research is among the first in published literature to assess the role of sea surface salinity for improved predictions on low-skill summertime subseasonal timescales for terrestrial precipitation predictions. Neural networks are trained with the CESM2 Large Ensemble using North Atlantic salinity anomalies to quantify predictability of U.S. Midwest summertime heavy rainfall events at 0 to 56-day leads. Using explainable artificial intelligence, salinity anomalies in the Caribbean Sea and Gulf of Mexico are found to provide skill for subseasonal forecasts of opportunity, e.g. confident and correct predictions. Further, a moisture-tracking algorithm applied to reanalysis data demonstrates that the regions of evaporation identified by neural networks directly provide moisture that precipitates in the Midwest.

Hosted file

984624_0_art_file_11783280_s7d5lp.docx available at https://authorea.com/users/541956/ articles/701151-sea-surface-salinity-provides-subseasonal-predictability-for-forecastsof-opportunity-of-u-s-summertime-precipitation

1			
2	Sea Surface Salinity Provides Subseasonal Predictability for Forecasts of		
3	Opportunity of U.S. Summertime Precipitation		
4			
5	Marybeth C. Arcodia ¹ , Elizabeth A. Barnes ¹ , Paul J. Durack ² , Patrick W. Keys ¹ , Juliette		
6 7	Kocha		
8	¹ Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA.		
9 10	² Program for Climate Model Diagnosis and Intercomparison (PCMDI), Lawrence Livermore National Laboratory, Livermore, CA, USA.		
11	³ Department of Atmospheric Science, Texas A&M University, College Station, TX, USA.		
12	Corresponding author: Marybeth C. Arcodia (marcodia@rams.colostate.edu)		
13	Key Points:		
14 15	• Sea surface salinity anomalies provide predictability for heavy summertime Midwest precipitation events		
16 17	• Subseasonal forecasts of opportunity for heavy precipitation are informed by positive salinity anomalies in the Caribbean and Gulf of Mexico		
18 19 20	• Regions of evaporation identified by neural networks provide a direct moisture source for precipitation in the Midwest region		

21 Abstract

- 22 As oceanic moisture evaporates, it leaves a signature on sea surface salinity. Roughly 10% of the
- 23 moisture that evaporates over the ocean is transported over land, allowing the salinity fields to be
- 24 a predictor of terrestrial precipitation. This research is among the first in published literature to
- 25 assess the role of sea surface salinity for improved predictions on low-skill summertime
- subseasonal timescales for terrestrial precipitation predictions. Neural networks are trained with
- the CESM2 Large Ensemble using North Atlantic salinity anomalies to quantify predictability of
- U.S. Midwest summertime heavy rainfall events at 0 to 56-day leads. Using explainable artificial
 intelligence, salinity anomalies in the Caribbean Sea and Gulf of Mexico are found to provide
- 30 skill for subseasonal forecasts of opportunity, e.g. confident and correct predictions. Further, a
- 31 moisture-tracking algorithm applied to reanalysis data demonstrates that the regions of
- 32 evaporation identified by neural networks directly provide moisture that precipitates in the
- 33 Midwest.

34 Plain Language Summary

35 Global water cycling plays a fundamental role in the climate system, directly impacting

- 36 terrestrial water availability. Roughly 10% of the moisture that evaporates over the ocean is
- 37 transported over land, eventually falling as precipitation. As moisture evaporates from the ocean,
- 38 the waters below become saltier, leaving an imprint on the sea surface salinity pattern. These
- 39 salinity signatures can potentially be used as a predictor of landfalling precipitation in the
- 40 coming weeks. This study uses neural networks to quantify the predictability of summertime
- 41 precipitation in the Midwest from 0 to 56 days in advance using salinity patterns in the North
- 42 Atlantic. High salinity in the Caribbean Sea and Gulf of Mexico is found to provide skill for
- 43 subseasonal forecasts of opportunity, e.g. confident and correct predictions at 21-day leads. A
- 44 moisture-tracking model traces the origin of water that falls as precipitation and confirms the
- 45 Caribbean Sea and Gulf of Mexico as direct moisture sources for Midwest precipitation.
- 46

47 **1 Introduction**

48 Global water cycling plays a fundamental role in the climate system, directly impacting 49 terrestrial water availability. The hydrological cycle consists of moisture evaporation in one 50 location which falls as precipitation in another location via a balance of atmospheric, oceanic, 51 and terrestrial water transport (Adler et al., 2003; Gimeno et al., 2010). The majority of moisture 52 $(\sim 90\%)$ that evaporates over the ocean rains out over the ocean (Trenberth et al., 2007). 53 However, the remaining 10% of the moisture evaporated is transported over land, eventually 54 falling as terrestrial precipitation (Gimeno et al., 2012; Trenberth et al., 2011). Intense and 55 persistent precipitation events over land cannot be sustained by local terrestrial moisture 56 recycling alone (Brubaker et al., 1993; Dirmeyer et al., 2009; Koster et al., 2004; Trenberth, 57 1999), highlighting ocean-derived moisture as a source of extreme terrestrial precipitation events 58 from. 59 Oceanic evaporation increasingly acts as a source of terrestrial precipitation due to

- 60 anthropogenic climate change (Gimeno et al., 2020). Rising atmospheric temperatures have led
- 61 to more rapid evaporation over the oceans than over the land. This climate change response has
- 62 intensified the oceanic water cycle (Durack et al., 2012), increasing the importance of oceanic
- 63 evaporation for continental precipitation (Findell et al., 2019). As oceanic moisture evaporates it

leaves a signature on sea surface salinity, allowing these fields to be a potential predictor ofterrestrial precipitation (Schmitt, 2008).

66 Sea surface salinity has emerged as a potentially useful indicator of evaporation and 67 subsequent moisture export from the ocean (Bengtsson, 2010). A close link exists between the oceanic water cycle and the sea surface salinity anomaly signal: positive anomalies (e.g. saltier 68 69 waters) indicate evaporation of ocean waters and negative anomalies (e.g. fresher waters) 70 indicate precipitation into the ocean (Durack, 2015). This relationship has led to an investigation 71 into sea surface salinity as a potential seasonal predictor of terrestrial precipitation in the African 72 Sahel (L. Li et al., 2016b), Southwestern U.S. (T. Liu et al., 2018), China (Zeng et al., 2019), and 73 Australia (Rathore et al., 2020). In addition, Li et al. (2016a) and a followup study by Li et al. 74 (2022) showed a strong relationship between springtime sea surface salinity in the northwestern 75 subtropical North Atlantic and summertime precipitation in the U.S. Midwest, revealing sea 76 surface salinity as a skillful seasonal predictor of U.S. Midwest summertime rainfall.

77 Here, we explore the predictability provided by North Atlantic sea surface salinity for 78 subseasonal prediction of summertime U.S. Midwest precipitation. Subseasonal prediction (e.g. 79 2 weeks to one season ahead) bridges the gap between weather and climate (Lang et al., 2020) 80 and supports sufficient lead time for storm and flood preparedness and informed resource management (DeFlorio et al., 2021). Heavy Midwest rainfall events in the summertime are 81 82 particularly challenging to predict (L. Li et al., 2022; Z. Li & O'Gorman, 2020), yet the damage 83 from these events can be extensive (Trenberth & Guillemot, 1996). For example, historic 84 flooding throughout the Midwest region in spring-summer of 2013, dubbed a 500-year flooding 85 event by a U.S. Geological Survey press release, resulted in over 10 fatalities and \$400 million 86 damages. Given the difficult predictive nature of summertime heavy rainfall events, we focus on 87 identifying "forecasts of opportunity", e.g. predictions with high skill and confidence due to a 88 predictable state of the climate system (Mariotti et al., 2020), and pinpointing their sources of 89 predictability. To connect the climate model analysis to real-world dynamics, we employ a 90 moisture tracking algorithm to determine the North Atlantic sources of evaporation that 91 eventually fall in the Midwest as heavy precipitation events. This study reveals sea surface 92 salinity as an effective subseasonal predictor for forecasts of opportunity of summertime 93 Midwest heavy precipitation events.

94

95 **2 Data and Methods**

96

2.1 Climate Model Data Preprocessing

97 Artificial neural networks are trained to ingest maps of sea surface salinity anomaly maps 98 to classify precipitation events into light or heavy precipitation events over the U.S. Midwest at 99 leads of 0-56 days. Training neural networks requires a large amount of data (Adi et al., 2020), 100 but observed daily sea surface salinity fields are not readily available in a usable (e.g. gridded) 101 format (H. Wang et al., 2022). The few reanalysis datasets that provide daily sea surface salinity 102 fields either do not cover the North Atlantic region needed for this study (e.g. the Global 103 Tropical Moored Buoy Array) or do not have a long enough time series for adequate training 104 (e.g. only ~30 years are provided by the Global Ocean Forecasting System HYCOM, which is 105 insufficient for training in this study). Therefore, we take advantage of the long-running daily, 106 gridded data from the Community Earth System Model Version 2- Large Ensemble (CESM2-107 LE; Danabasoglu et al., 2020) for analysis of 1,000 years of climate model data.

Figure 1. a) Schematic of the neural network architecture used in this study for a 21-day lead. b) The accuracy vs. confidence for 5 testing (green) and validation (purple) members using 5 random seeds each (light lines; dark lines represent the average) for 21-day lead predictions. Confidence is computed using the softmax activation on the output layer of the network in (a). A random network is represented with the gray shading. The gold box highlights the 20% most confident predictions.

115 We use 1850-1949 historical daily data from 10 CESM2 ensemble members, in which 116 each ensemble member is considered to be an independent realization of the historical climate 117 (Rodgers et al., 2021). Sea surface salinity fields in units based on the Practical Salinity Scale 118 1978 (PSS-78) span May-August to capture the U.S. Midwest summer. Daily anomalies are 119 computed via subtraction of the linear trend at each grid point of the ensemble mean for each 120 calendar-day of the year to remove the forced response, then smoothed with a 3-day running 121 mean. Sea surface salinity anomalies span the North Atlantic region from 8N - 50N, 265E -122 320E, including the Gulf of Mexico, but excluding all data from the Pacific (Fig. 1a left).

123 We use raw precipitation fields (e.g. not anomalies) of a 3-day cumulative sum averaged 124 over the Midwest region- defined as 36N - 49N, 254E - 270E (Fig. 1a right). A Poisson 125 weighting strategy (Fig. S1) adapted from Ford et al. (2018) is applied to the precipitation time series to smooth data as lead time increases for a seamless transition across timescales assessed 126 127 (Hoskins, 2013). This technique broadens the event window to shift from deterministic to 128 probabilistic forecasts and account for uncertainty as lead time increases (Fig. S1) (Dirmeyer et 129 al., 2018; Dirmeyer & Ford, 2020; Ford et al., 2018). Once smoothed, periods above the 80th 130 percentile of precipitation are classified as heavy events, designated as a 1, and the remaining 131 80% of the data classified as light events, designated as a 0.

132 2.2 Neural Network Setup

133 The feedforward artificial neural network approach consists of a 3-layer neural network: 134 the input layer (3-day averaged sea surface salinity anomaly maps), 1 hidden layer, and the 135 output layer (classification of light or heavy precipitation event in the Midwest boxed region).

136 Neural networks are trained separately for each lead time. Additional details on data pre-

137 processing and hyperparameter tuning are found in S1-2 and Tables S1-2.

138

139 2.3 Quantifying Forecasts of Opportunity

140 The final network output layer consists of the two nodes of our binary classification setup 141 (Fig. 1a). The softmax activation function is applied to the final layer, transforming the two 142 outputs to values which sum to 1, representing a probability estimate. This probability is used to 143 select the predicted output in that the value which exceeds 0.5 is selected as the prediction. We 144 leverage this output probability as our network confidence (Arcodia et al., 2023; Mayer & 145 Barnes, 2021, 2022), allowing quantification of the prediction confidence. As confidence 146 increases, accuracy also increases, suggesting that the network identifies intermittent patterns in 147 the input salinity maps that lead it to be more confident in its prediction (Fig. 1b). Hereafter, we 148 define the 20% most confident predictions, which are also found to be the most accurate

- 149 predictions, as *forecasts of opportunity* (Fig. 1b; gold box).
- 150

151 2.4 Water Accounting Model

We employ the Water Accounting Model 2-layers (WAM2layers, version 3.0.0), a Eulerian moisture-tracking model that can trace the path of water from its origin as evaporation, through the atmosphere as water vapor, and to its eventual fate as precipitation elsewhere (van der Ent et al. 2014; van der Ent et al. 2023). The model uses European Centre for Medium-Range Weather Forecasts v5 (ERA5; Hersbach et al. <u>2020</u>) climate reanalysis data to verify that the oceanic

157 evaporative moisture source regions identified by the neural networks provide the moisture to

- 158 Midwest precipitation events in the real world. Additional WAM2layers model details are found
- 159 in S3.

160 **3 Results**

161 3.1 Subseasonal Forecasts of Opportunity

Accuracy for all summertime Midwest precipitation predictions shows the highest skill at leads 14- and 21-days (Fig. 2; blue squares). For the forecasts of opportunity, e.g. the 20% most confident predictions, accuracy peaks at lead 21-days (Fig. 2; gold diamonds), demonstrating that sea surface salinity anomalies serve as a meaningful predictor on subseasonal timescales. Notably, leads 7- through 21-days reveal accuracy above 75% on average for forecasts of opportunity for precipitation event prediction. Skill drops quickly to that of random chance for leads of 35-days and beyond (Fig. 2; gray shading).

169 Fig. 2a shows accuracies for balanced test data (see S1), meaning the likelihood of a 170 heavy precipitation event is 50%. However, based on the definition of a heavy event (>80th 171 percentile), the true likelihood of a heavy event is 20%. We use two skill scores: 1. Threat Score 172 (Fig. 2b) and 2. Gilbert Skill Score (Fig. 2c); see S4 for definitions. These scores are verification 173 metrics of forecasts in which a score of zero denotes no skill, or random chance, and a skill of 174 one is a perfect score. Skill scores are used to evaluate the performance of the networks on 175 unbalanced data to determine if network prediction skill is due to accurate predictions of both 176 classes, or if the network has learned only the majority class. The variation in skill as a function

- 177 of lead time follows a similar pattern for the balanced and unbalanced datasets, with a peak in
- 178 skill at subseasonal lead time of 21 days, particularly for forecasts of opportunity. Networks have
- 179 learned patterns within the data to not only predict light but also heavy events, demonstrating the
- 180 utility of sea surface salinity as a predictor for high-impact heavy precipitation events.
- 181

182 183 Figure 2. a) Accuracy as a function of lead time in days for all predictions (blue squares) and forecasts of 184 opportunity (gold diamonds). The lightly shaded shapes represent the averaged accuracy from five 185 random seeds for each test ensemble member with balanced data, and the darker, larger shapes represent 186 the average accuracy from all 5 test ensemble members. The gray shading denotes the 99% confidence 187 intervals of a binomial probability (e.g. random chance). b) The Threat Score as a function of lead time 188 computed on predictions with unbalanced data for all predictions (hexagons) and forecasts of opportunity (stars). c) Same as b) but for the Gilbert Skill Score. For (b) and (c), a score of zero denotes no skill, or 189 190 random chance, and a skill of one is a perfect score. 191

192 After determining that the networks can result in skillful and confident predictions on 193 subseasonal lead time times, we want to know why the network made these predictions. We find 194 that for skillful forecasts of opportunity for heavy precipitation, sea surface salinity anomalies in 195 the Caribbean Sea and Gulf of Mexico are predominantly positive (Fig. 3a). That is, saltier 196 waters in these regions imply evaporation and atmospheric moisture available for transportation 197 out of the region. Conversely, for skillful light precipitation predictions, we find negative sea 198 surface salinity anomalies, indicating precipitation (Fig. 3b). This pattern reflects less 199 atmospheric moisture from the oceanic source region available to be transported away, resulting 200 in a confident subseasonal predictions of no heavy rainfall event.

201 We complement the salinity composite maps associated with forecasts of opportunity 202 with explainable artificial intelligence (XAI) to pinpoint regions that the network deems as 203 important in making its prediction (e.g. Arcodia et al., 2023; Mamalakis, Barnes, et al., 2022; 204 Mayer & Barnes, 2021; McGovern et al., 2019; Pegion et al., 2022; Rader et al., 2022). Here, the

- *gradient* method is applied to compute the gradient of the network output with respect to the
- input grid points to visualize the sensitivity of the networks to the salinity anomalies at lead 21days (Mamalakis, Ebert-Uphoff, et al., 2022) (Fig. 3c; composites and heatmaps for all leads in
- Figs. S3 and S4). For correct and confident heavy predictions, the sensitivity of the network to
- changes in salinity anomalies is most prominent in the Caribbean Sea and Gulf of Mexico.
- 210 Saltier waters in these regions are found to increase confidence in heavy predictions. Regions
- 211 with near-zero salinity anomalies south of Jamaica and negative salinity anomalies along the
- East Coast in the Gulf Stream region decrease confidence in heavy predictions. That is, network
- 213 confidence for heavy subseasonal predictions strengthens as water becomes saltier in the
- 214 Caribbean and Gulf of Mexico. Thus, anomalously salty waters in the Caribbean and Gulf of
- Mexico provide predictability for heavy precipitation events in the U.S. Midwest on subseasonaltimescales.
- 217
- 218
- 219
- 219

221

- Figure 3. a-b) Composite of the sea surface salinity anomalies in PSS-78 for input maps of the 20% most
- confident, correct predictions for a 21-day lead for heavy predictions (a) and light predictions (b).
- 224 Composites use input from each test ensemble member from the neural network initialized with the
- random seed that results in the highest accuracy. c) Saliency XAI composited heatmaps for the same days
- as the input maps as (a). The colorbar is a unitless measure of sensitivity. The number n represents the number of samples per composite.
- 228

3.2 Moisture Tracking with ERA5

230 The neural networks used thus far were trained, validated, and tested on 1,000 collective 231 years of CESM2 historical climate model data. Unfortunately, like all climate models, CESM2 232 exhibits biases which can result in limitations for its use for understanding the real world 233 (Simpson et al., 2020). Therefore, we employ the WAM2layers model and present-day reanalysis 234 data (van der Ent et al. 2023) to track where evaporation occurred, which would later fall as precipitation in a specific region. We track moisture within ERA5 using the WAM2 layers model 235 236 for May-August (MJJA) from 2008-2021 to pinpoint the origin of all moisture which eventually 237 falls in the Midwest region (Fig. 4a). The majority of Midwest moisture is found to be locally 238 recycled, consistent with Bosilovich and Schubert (2002) who showed the largest source of 239 precipitation in the midwestern U.S. came from local moisture recycling. However, we also find 240 that summertime Midwest precipitation has an oceanic moisture source in the Gulf of Mexico and the Caribbean Sea regions without recycling, consistent with the regions of sea surface 241 242 salinity anomalies identified by the neural networks as relevant for forecasts of opportunity (Fig. 243 3).

244 Another primary moisture source region for the Midwest is the area directly to the south (Fig. 4a), indicating that the southern U.S. acts as an additional moisture source region. The 245 246 WAM2layers results for moisture-tracking of the southern U.S. also highlight the Gulf of 247 Mexico and Caribbean Sea (Fig. 4b). Moisture which evaporates over the Gulf of Mexico and 248 Caribbean Sea likely acts as a moisture source for Midwest precipitation in 2 ways: 1) moisture 249 is directly transported and precipitates in the Midwest, or 2) moisture falls as precipitation in the 250 southern U.S. region which is then locally recycled and transported north to eventually precipitate in the Midwest. Thus, the networks have identified physically meaningful sources of 251 252 predictability, consistent with the patterns found in the composite and XAI maps (Fig. 3), which 253 can ultimately provide subseasonal prediction skill for U.S. Midwest heavy rainfall events.

254

Figure 4. The sum of the evaporated water (in cubic meters) which fell as precipitation in the red boxed
regions computed using the WAM2layers backtracking algorithm for the Midwest (a) and South U.S.
region (b) for May-August from 2008-2021. c) shows the same, but for the southern Midwest region (red
box) for May 27-June 4, 2013.

260

261 Lastly, we analyze a case study to verify the Gulf of Mexico and Caribbean Sea can 262 provide moisture sources for specific heavy precipitation events in the Midwest. We analyze a 9-263 day period of intense rainfall in the Midwest region from May 27 - June 4, 2013 when over 150 264 mm of rainfall was recorded in the Missouri and southeastern Midwest areas (USGS, 2013) (Fig. 4c). We find that the local region (red box), southern U.S., and Gulf of Mexico/ Caribbean Sea 265 are the largest moisture source regions for the observed extreme precipitation. Approximately 266 267 22% of the moisture originated from the Caribbean Sea and Gulf of Mexico region and was 268 directly transported and precipitated in the Midwest during this event (see S5 and Fig. S4), while 269 only 11% of the moisture was locally recycled. An additional case study is shown in 270 Supplemental Fig. 5 for the 2011 Missouri River Flooding events from May-June in which 271 approximately 21% directly originated from the Caribbean and Gulf of Mexico region and 14% 272 of the moisture was locally recycled.

The results from the WAM2layers water tracking model reveal that evaporation over the Gulf of Mexico and Caribbean Sea acts as a moisture source for precipitation over the Midwest in summertime. These results support our findings that evaporation in these regions indicated by sea surface salinity anomalies can provide predictive skill for heavy summertime Midwest

277 precipitation events.

278 4 Discussion

279 This analysis has revealed that salty waters indicative of evaporation in the Caribbean 280 and Gulf of Mexico (Fig. 3) provide predictability for subseasonal forecasts of opportunity for 281 heavy Midwest precipitation events (Fig. 2). We discuss a potential physical link for how the 282 evaporative moisture source regions, identified by neural networks, provide moisture that 283 ultimately precipitates in the Midwest region. The Caribbean Sea has been documented to 284 provide significant moisture sources for Midwest extreme precipitation events via dynamical 285 links from low-level jets (Dirmeyer & Kinter, 2010). In the summertime, a branch of the 286 Caribbean Low-level Jet (CLLJ) turns northward and connects with the Great Plain Low-level 287 Jet (GPLLJ) (Amador, 1998; Cook & Vizy, 2010). This causes a shift in westward moisture 288 transport over the Caribbean Sea to northward transport over the continental U.S. into the Great 289 Plains and Midwest regions (C. Wang et al., 2007). The interactions of these jets are intimately 290 tied to the North Atlantic Subtropical High (NASH), a robust atmospheric high pressure in the 291 North Atlantic region which impacts the strength and location of the low-level jets and their 292 surface evaporation (C. Wang et al., 2007). The lower branch of the NASH is reflected in the 293 swooping evaporated water feature found from the WAM2layers analysis in Fig. 4, supporting 294 the dynamical link between subtropical jet features and Midwest precipitation. Putting it all 295 together, evaporation in the Caribbean and Gulf of Mexico increases atmospheric moisture 296 availability which is then transported westward by the Caribbean Low-level Jet and northward 297 into continental U.S. and Midwest by the Great Plains Low-level jet.

Li et al. (2018) showed that a soil moisture feedback mechanism connects North Atlantic sea surface salinity anomalies to Midwest summertime precipitation. Enhanced moisture export from the subtropical North Atlantic contributes to extreme rainfall in the southern U.S. leading to 301 increased soil moisture. This soil moisture feedback causes enhanced evaporation and

302 atmospheric convection, which intensifies the GPLLJ and transports moisture to the Midwest

303 region. Additional research into the prediction of the location and intensity of these jets and the

- 304 NASH (e.g. Ferguson, 2022; García-Martínez & Bollasina, 2020; Krishnamurthy et al., 2015;
- 305 Malloy & Kirtman, 2020) could provide added predictive skill for forecasts of opportunity for 306 Midwest precipitation events.

307 Sea surface salinity biases have been documented in CESM2 linked to precipitation 308 biases (Simpson et al., 2020; Wei et al., 2021) with a slightly fresh overall salinity bias (Y. Liu et 309 al., 2022). There are also discrepancies between satellite and in-situ sea surface salinity data due

310 to both observational and sampling errors which provide constraints for ocean models

311 (Vinogradova et al., 2019). Further, CESM2 sea surface salinity data is taken as the average of

312 the upper 10m of the ocean. Boutin et al. (2016) show that near-surface stratification of salinity 313 exists in the upper 1m and subseasonal prediction could vary based on this upper ocean

314 resolution (Subramanian et al., 2019). We note that the predictive skill of heavy precipitation

315 events using higher vertical resolution sea surface salinity data may vary as this could more

316 effectively capture skin-layer evaporation intensity, rather than muted anomalies represented in

317 the 0-10m volume average, but we leave this investigation for future work.

318 **5** Conclusions

319 This study is the first peer-reviewed documentation to demonstrate the utility of North 320 Atlantic sea surface salinity anomalies as a skillful subseasonal predictor of heavy Midwest 321 summertime precipitation events. We employ a machine learning approach using neural 322 networks to quantify the subseasonal predictability of heavy summertime rainfall events in the 323 U.S. Midwest region using 3-day North Atlantic sea surface salinity fields. Using a statistical 324 smoothing for a seamless transition across timescales, we assess predictability for lead times 325 from 0-days to 56-days. We find that predictive skill is highest on subseasonal timescales with a 326 peak at 21-day lead, particularly for forecasts of opportunity, e.g. predictions which are both 327 confident and accurate. Output from neural networks allows us to identify predictions which 328 result in forecasts of opportunity. Using explainable artificial intelligence, we create heatmaps of 329 the most sensitive regions of salinity anomalies in the tropical and North Atlantic which provide 330 skill for forecasts of opportunity. Positive sea surface salinity anomalies (which indicate 331 evaporation and increased atmospheric moisture availability) in the Caribbean and Gulf of 332 Mexico provide predictability for the forecasts of opportunity for heavy precipitation events. 333 Consistent with previous research highlighting subtropical North Atlantic moisture as a source of 334 U.S. terrestrial precipitation (Gimeno et al., 2010; L. Li et al., 2016a, 2022; van der Ent et al., 335 2010), our results support a physically consistent link between evaporation in the Caribbean and 336 Gulf of Mexico and heavy precipitation in the Midwest via low-level jets. Output from the 337 WAM2layers moisture-tracking model reveals that the regions of evaporation identified by 338 neural networks within CESM2 simulations provide moisture to the Midwest region in the ERA5 339 atmospheric reanalysis. The Caribbean Sea and Gulf of Mexico are found to provide a direct 340 oceanic moisture source for Midwest precipitation, in part without moisture recycling, linking 341 the salinity anomalies to subseasonal predictive skill of Midwest precipitation. These results 342 complement the explainable artificial intelligence findings to reveal robust and physically 343 meaningful sources of summertime heavy Midwest precipitation predictability via Atlantic sea

344 surface salinity anomalies.

345 Acknowledgments

- 346 This study was performed as part of the Program for Climate Model Diagnosis and
- 347 Intercomparison (PCMDI), supported by the Regional and Global Modeling Analysis (RGMA)
- 348 program area of U.S. DOE's Biological and Environmental Research (BER) Program. Work was
- 349 performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory
- 350 under contract DEAC52-07NA27344. LLNL Release Number: LLNL-JNRL-859091. The
- authors declare no conflict of interest.
- 352

353 Open Research

- 354 CESM2 Large Ensemble Data are available freely to the public at
- 355 <u>www.cesm.ucar.edu/community-projects/lens2</u>. The code for the Water Accounting Model 2-
- 356 layers is available on GitHub, and is posted to the Zenodo permanent repository:
- 357 <u>https://doi.org/10.5281/zenodo.8172344</u>. The ERA5 data were downloaded from the Copernicus
- 358 Climate Data Store, and are freely available at
- 359 <u>https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-complete?tab=overview</u>.
- 360 All Python code for processing data and figures for this analysis will be available to the public
- 361 on Github and converted to a permanent repository on Zenodo at the time of acceptance for
- 362 publication.
- 363
- 364 **References**
- Adi, E., Anwar, A., Baig, Z., & Zeadally, S. (2020). Machine learning and data analytics for the IoT.
- 366 *Neural Computing & Applications*, *32*(20), 16205–16233.
- 367 Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U.,
- 368 Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., & Nelkin, E. (2003). The Version-2 Global
- 369 Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). Journal
- *of Hydrometeorology*, *4*(6), 1147–1167.
- 371 Amador, J. A. (1998). A climate feature of the tropical Americas: The trade wind easterly jet. *Topicos*
- 372 *Meteorologicos Oceanograficos.*
- 373 Arcodia, M. C., Barnes, E. A., Mayer, K. J., Lee, J., Ordonez, A., & Ahn, M.-S. (2023). Assessing
- decadal variability of subseasonal forecasts of opportunity using explainable AI. *Environmental*
- 375 *Research: Climate*, 2(4), 045002.
- Bengtsson, L. (2010). The global atmospheric water cycle. *Environmental Research Letters*, 5(2),

377 025202.

- Bosilovich, M. G., & Schubert, S. D. (2002). Water Vapor Tracers as Diagnostics of the Regional
 Hydrologic Cycle. *Journal of Hydrometeorology*, *3*(2), 149–165.
- Boutin, J., Chao, Y., Asher, W. E., Delcroix, T., Drucker, R., Drushka, K., Kolodziejczyk, N., Lee, T.,
- 381 Reul, N., Reverdin, G., Schanze, J., Soloviev, A., Yu, L., Anderson, J., Brucker, L., Dinnat, E.,
- 382 Santos-Garcia, A., Jones, W. L., Maes, C., ... Ward, B. (2016). Satellite and In Situ Salinity:
- Understanding Near-Surface Stratification and Subfootprint Variability. *Bulletin of the American Meteorological Society*, 97(8), 1391–1407.
- Brubaker, K. L., Entekhabi, D., & Eagleson, P. S. (1993). Estimation of Continental Precipitation
 Recycling. *Journal of Climate*, 6(6), 1077–1089.
- Cook, K. H., & Vizy, E. K. (2010). Hydrodynamics of the Caribbean Low-Level Jet and Its Relationship
 to Precipitation. *Journal of Climate*, *23*(6), 1477–1494.
- 389 Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons,
- 390 L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen,
- P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., ... Strand,
- 392 W. G. (2020). The community earth system model version 2 (CESM2). Journal of Advances in
- 393 *Modeling Earth Systems*, *12*(2). https://doi.org/10.1029/2019ms001916
- 394 DeFlorio, M. J., Ralph, F. M., Waliser, D. E., Jones, J., & Anderson, M. L. (2021). *Better Subseasonal-to-* 395 *Seasonal Forecasts for Water Management*. Eos, 102. https://doi.org/10.1029/2021EO159749
- 396 Dirmeyer, P. A., Adam Schlosser, C., & Brubaker, K. L. (2009). Precipitation, Recycling, and Land
- 397 Memory: An Integrated Analysis. *Journal of Hydrometeorology*, *10*(1), 278–288.
- 398 Dirmeyer, P. A., & Ford, T. W. (2020). A Technique for Seamless Forecast Construction and Validation
- from Weather to Monthly Time Scales. *Monthly Weather Review*, *148*(9), 3589–3603.
- Dirmeyer, P. A., Halder, S., & Bombardi, R. (2018). On the harvest of predictability from land states in a
 global forecast model. *Journal of Geophysical Research*, *123*(23), 13,111–113,127.
- 402 Dirmeyer, P. A., & Kinter, J. L. (2010). Floods over the U.S. Midwest: A Regional Water Cycle

manuscript submitted to Geophysical Research Letters

- 403 Perspective. *Journal of Hydrometeorology*, *11*(5), 1172–1181.
- 404 Durack, P. J. (2015). Ocean Salinity and the Global Water Cycle. *Oceanography*, 28(1), 20–31.
- Durack, P. J., Wijffels, S. E., & Matear, R. J. (2012). Ocean salinities reveal strong global water cycle
 intensification during 1950 to 2000. *Science*, *336*(6080), 455–458.
- 407 Ferguson, C. R. (2022). Changes in great plains low-level jet structure and associated precipitation over
 408 the 20th century. *Journal of Geophysical Research*, *127*(3). https://doi.org/10.1029/2021jd035859
- 409 Findell, K. L., Keys, P. W., van der Ent, R. J., Lintner, B. R., Berg, A., & Krasting, J. P. (2019). Rising
- 410 Temperatures Increase Importance of Oceanic Evaporation as a Source for Continental Precipitation.
- 411 *Journal of Climate*, *32*(22), 7713–7726.
- 412 Ford, T. W., Dirmeyer, P. A., & Benson, D. O. (2018). Evaluation of heat wave forecasts seamlessly
 413 across subseasonal timescales. *Npj Climate and Atmospheric Science*, 1(1), 1–9.
- García-Martínez, I. M., & Bollasina, M. A. (2020). Sub-monthly evolution of the Caribbean Low-Level
 Jet and its relationship with regional precipitation and atmospheric circulation. *Climate Dynamics*,
- 416 54(9), 4423–4440.
- 417 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental
- 418 precipitation. *Geophysical Research Letters*, *37*(13). https://doi.org/10.1029/2010g1043712
- Gimeno, L., Nieto, R., & Sorí, R. (2020). The growing importance of oceanic moisture sources for
 continental precipitation. *Npj Climate and Atmospheric Science*, *3*(1), 1–9.
- 421 Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L., Drumond, A., Durán-
- 422 Quesada, A. M., & Nieto, R. (2012). Oceanic and terrestrial sources of continental precipitation.

423 *Reviews of Geophysics*, 50(4). https://doi.org/10.1029/2012RG000389

- 424 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey,
- 425 C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold,
- 426 P., Biavati, G., Bidlot, J., Bonavita, M., ... Jean-Noël Thépaut. (2020). The ERA5 global reanalysis.
- 427 *Quarterly Journal of the Royal Meteorological Society*, 146(730), 1999–2049.
- 428 Hoskins, B. (2013). The potential for skill across the range of the seamless weather-climate prediction

manuscript submitted to Geophysical Research Letters

- 429 problem: a stimulus for our science. *Quarterly Journal of the Royal Meteorological Society*,
- 430 *139*(672), 573–584.
- 431 Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S.,
- 432 Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko,
- D., Oki, T., Oleson, K., Pitman, A., ... GLACE Team. (2004). Regions of strong coupling between
 soil moisture and precipitation. *Science*, *305*(5687), 1138–1140.
- 435 Krishnamurthy, L., Vecchi, G. A., Msadek, R., Wittenberg, A., Delworth, T. L., & Zeng, F. (2015). The
- 436 Seasonality of the Great Plains Low-Level Jet and ENSO Relationship. *Journal of Climate*, 28(11),
 437 4525–4544.
- 438 Lang, A. L., Kathleen, Pegion, & Barnes, E. (2020). Introduction to special collection: "bridging weather
- 439 and climate: Subseasonal-to-seasonal (S2S) prediction." *Journal of Geophysical Research*, *125*(4).
 440 https://doi.org/10.1029/2019jd031833
- Li, L., Schmitt, R. W., & Ummenhofer, C. C. (2018). The role of the subtropical North Atlantic water
- 442 cycle in recent US extreme precipitation events. *Climate Dynamics*, *50*(3), 1291–1305.
- Li, L., Schmitt, R. W., & Ummenhofer, C. C. (2022). Skillful long-lead prediction of summertime heavy
- rainfall in the US Midwest from sea surface salinity. *Geophysical Research Letters*, 49(13).
- 445 https://doi.org/10.1029/2022gl098554
- Li, L., Schmitt, R. W., Ummenhofer, C. C., & Karnauskas, K. B. (2016a). Implications of North Atlantic
 Sea Surface Salinity for Summer Precipitation over the U.S. Midwest: Mechanisms and Predictive
 Value. *Journal of Climate*, *29*(9), 3143–3159.
- Li, L., Schmitt, R. W., Ummenhofer, C. C., & Karnauskas, K. B. (2016b). North Atlantic salinity as a
 predictor of Sahel rainfall. *Science Advances*, 2(5), e1501588.
- 451 Liu, T., Schmitt, R. W., & Li, L. (2018). Global Search for Autumn-Lead Sea Surface Salinity Predictors
- 452 of Winter Precipitation in Southwestern United States. *Geophysical Research Letters*, 45(16), 8445–
 453 8454.
- 454 Liu, Y., Cheng, L., Pan, Y., Tan, Z., Abraham, J., Zhang, B., Zhu, J., & Song, J. (2022). How Well Do

manuscript submitted to Geophysical Research Letters

- 455 CMIP6 and CMIP5 Models Simulate the Climatological Seasonal Variations in Ocean Salinity?
- 456 *Advances in Atmospheric Sciences*, *39*(10), 1650–1672.
- Li, Z., & O'Gorman, P. A. (2020). Response of Vertical Velocities in Extratropical Precipitation
 Extremes to Climate Change. *Journal of Climate*, *33*(16), 7125–7139.
- Malloy, K. M., & Kirtman, B. P. (2020). Predictability of Midsummer Great Plains Low-Level Jet and
 Associated Precipitation. *Weather and Forecasting*, *35*(1), 215–235.
- 461 Mamalakis, A., Barnes, E. A., & Ebert-Uphoff, I. (2022). Investigating the Fidelity of Explainable
- 462 Artificial Intelligence Methods for Applications of Convolutional Neural Networks in Geoscience.
- 463 Artificial Intelligence for the Earth Systems, 1(4). https://doi.org/10.1175/AIES-D-22-0012.1
- 464 Mamalakis, A., Ebert-Uphoff, I., & Barnes, E. A. (2022). Neural network attribution methods for
- 465 problems in geoscience: A novel synthetic benchmark dataset. *Environmental Data Science*, *1*, e8.
- 466 Mariotti, A., Baggett, C., Barnes, E. A., Becker, E., Butler, A., Collins, D. C., Dirmeyer, P. A., Ferranti,
- 467 L., Johnson, N. C., Jones, J., Kirtman, B. P., Lang, A. L., Molod, A., Newman, M., Robertson, A.
- 468 W., Schubert, S., Waliser, D. E., & Albers, J. (2020). Windows of Opportunity for Skillful Forecasts
- 469 Subseasonal to Seasonal and Beyond. Bulletin of the American Meteorological Society, 101(5),
- 470 E608–E625.
- 471 Mayer, K. J., & Barnes, E. A. (2021). Subseasonal forecasts of opportunity identified by an explainable
 472 neural network. *Geophysical Research Letters*, 48(10). https://doi.org/10.1029/2020gl092092
- 473 Mayer, K. J., & Barnes, E. A. (2022). Quantifying the effect of climate change on midlatitude subseasonal
- 474 prediction skill provided by the tropics. *Geophysical Research Letters*, 49(14).
- 475 https://doi.org/10.1029/2022g1098663
- 476 McGovern, A., Lagerquist, R., Gagne, D. J., Eli Jergensen, G., Elmore, K. L., Homeyer, C. R., & Smith,
- T. (2019). Making the Black Box More Transparent: Understanding the Physical Implications of
- 478 Machine Learning. *Bulletin of the American Meteorological Society*, *100*(11), 2175–2199.
- 479 O'Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., & Others. (2019). KerasTuner.
- 480 https://github.com/keras-team/keras-tuner

- 481 Pegion, K., Becker, E. J., & Kirtman, B. P. (2022). Understanding Predictability of Daily Southeast U.S.
- 482 Precipitation Using Explainable Machine Learning. *Artificial Intelligence for the Earth Systems*,

483 *1*(4). https://doi.org/10.1175/AIES-D-22-0011.1

- 484 Rader, J. K., Barnes, E. A., Ebert-Uphoff, I., & Anderson, C. (2022). Detection of forced change within
- 485 combined climate fields using explainable neural networks. *Journal of Advances in Modeling Earth*
- 486 Systems, 14(7). https://doi.org/10.1029/2021ms002941
- Rathore, S., Bindoff, N. L., Ummenhofer, C. C., Phillips, H. E., & Feng, M. (2020). Near-Surface Salinity
 Reveals the Oceanic Sources of Moisture for Australian Precipitation through Atmospheric Moisture
 Transport. *Journal of Climate*, *33*(15), 6707–6730.
- 490 Rodgers, K. B., Lee, S.-S., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Edwards, J.,
- 491 Kim, J.-E., Simpson, I. R., Stein, K., Stuecker, M. F., Yamaguchi, R., Bódai, T., Chung, E.-S.,
- 492 Huang, L., Kim, W. M., Lamarque, J.-F., Lombardozzi, D. L., Wieder, W. R., & Yeager, S. G.
- 493 (2021). Ubiquity of human-induced changes in climate variability. *Earth System Dynamics*, *12*(4),
- 494 1393–1411.
- 495 Schmitt, R. (2008). Salinity and the global water cycle. *Oceanography*, 21, 12–19.
- 496 Simpson, I. R., Bacmeister, J., Neale, R. B., Hannay, C., Gettelman, A., Garcia, R. R., Lauritzen, P. H.,
- 497 Marsh, D. R., Mills, M. J., Medeiros, B., & Richter, J. H. (2020). An evaluation of the large-scale
- 498 atmospheric circulation and its variability in CESM2 and other CMIP models. *Journal of*
- 499 *Geophysical Research*, *125*(13). https://doi.org/10.1029/2020jd032835
- 500 Subramanian, A. C., Balmaseda, M. A., Centurioni, L., Chattopadhyay, R., Cornuelle, B. D., DeMott, C.,
- 501 Flatau, M., Fujii, Y., Giglio, D., Gille, S. T., Hamill, T. M., Hendon, H., Hoteit, I., Kumar, A., Lee,
- 502 J.-H., Lucas, A. J., Mahadevan, A., Matsueda, M., Nam, S., ... Zhang, C. (2019). Ocean
- 503 Observations to Improve Our Understanding, Modeling, and Forecasting of Subseasonal-to-Seasonal
- 504 Variability. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00427
- 505 Trenberth, K. E. (1999). Atmospheric Moisture Recycling: Role of Advection and Local Evaporation.
- 506 *Journal of Climate*, *12*(5), 1368–1381.

- Trenberth, K. E., Fasullo, J. T., & Mackaro, J. (2011). Atmospheric Moisture Transports from Ocean to
 Land and Global Energy Flows in Reanalyses. *Journal of Climate*, 24(18), 4907–4924.
- Trenberth, K. E., & Guillemot, C. J. (1996). Physical Processes Involved in the 1988 Drought and 1993
 Floods in North America. *Journal of Climate*, 9(6), 1288–1298.
- 511 Trenberth, K. E., Smith, L., Qian, T., Dai, A., & Fasullo, J. (2007). Estimates of the Global Water Budget
- 512 and Its Annual Cycle Using Observational and Model Data. *Journal of Hydrometeorology*, 8(4),
- 513 758–769.
- 514 U.S. Geological Survey Office. (2013, June 3). Friday Storms Caused Record Flooding on Fourche
- 515 *LaFave River in Scott and Yell Counties U.S. Geological Survey Press release.* LegiStorm.
- 516 https://www.legistorm.com/stormfeed/view_rss/278658/organization/35286/title/friday-storms-
- 517 caused-record-flooding-on-fourche-lafave-river-in-scott-and-yell-counties.html
- 518 USGS. (2013). May-June 2013 Midwest Floods. https://www.usgs.gov/mission-areas/water-

519 resources/science/may-june-2013-midwest-floods

- 520 van der Ent, R. J., Savenije, H. H. G., Schaefli, B., & Steele-Dunne, S. C. (2010). Origin and fate of
- 521 atmospheric moisture over continents. *Water Resources Research*, 46(9).
- 522 https://doi.org/10.1029/2010wr009127
- 523 Vinogradova, N., Lee, T., Boutin, J., Drushka, K., Fournier, S., Sabia, R., Stammer, D., Bayler, E., Reul,
- 524 N., Gordon, A., Melnichenko, O., Li, L., Hackert, E., Martin, M., Kolodziejczyk, N., Hasson, A.,
- 525 Brown, S., Misra, S., & Lindstrom, E. (2019). Satellite Salinity Observing System: Recent
- 526 Discoveries and the Way Forward. *Frontiers in Marine Science*, 6.
- 527 https://doi.org/10.3389/fmars.2019.00243
- Wang, C., Lee, S.-K., & Enfield, D. B. (2007). Impact of the Atlantic Warm Pool on the Summer Climate
 of the Western Hemisphere. *Journal of Climate*, *20*(20), 5021–5040.
- 530 Wang, H., You, Z., Guo, H., Zhang, W., Xu, P., & Ren, K. (2022). Quality Assessment of Sea Surface
- 531 Salinity from Multiple Ocean Reanalysis Products. *Journal of Marine Science and Engineering*,
- 532 11(1), 54.

- 533 Wei, H.-H., Subramanian, A. C., Karnauskas, K. B., DeMott, C. A., Mazloff, M. R., & Balmaseda, M. A.
- 534 (2021). Tropical pacific air-sea interaction processes and biases in CESM2 and their relation to El
- 535 Niño development. Journal of Geophysical Research, C: Oceans, 126(6).
- 536 https://doi.org/10.1029/2020jc016967
- 537 Zeng, L., Schmitt, R. W., Li, L., Wang, Q., & Wang, D. (2019). Forecast of summer precipitation in the
- 538 Yangtze River Valley based on South China Sea springtime sea surface salinity. *Climate Dynamics*,
- *539 53*(9), 5495–5509.
- 540

541 **References from Supporting Information**

542 O'Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., & Others. (2019). KerasTuner.

543 https://github.com/keras-team/keras-tuner

- 544 Prusa, J., Khoshgoftaar, T. M., Dittman, D. J., & Napolitano, A. (2015). Using Random Undersampling to
- 545 Alleviate Class Imbalance on Tweet Sentiment Data. 2015 IEEE International Conference on
- 546 *Information Reuse and Integration*, 197–202.
- 547

Geophysical Research Letters

Supporting Information for

Sea Surface Salinity Provides Subseasonal Predictability for Forecasts of Opportunity of U.S. Summertime Precipitation

Marybeth C. Arcodia¹, Elizabeth A. Barnes¹, Paul J. Durack², Patrick W. Keys¹, Juliette Rocha³

¹Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA.

²Program for Climate Model Diagnosis and Intercomparison (PCMDI), Lawrence Livermore National Laboratory, Livermore, CA, USA.

³ Department of Atmospheric Science, Texas A&M University, College Station, TX, USA.

Contents of this file

Text S1 to S5 Figures S1 to S5 Tables S1 to S2

Text S1. Data Preprocessing

Daily data from 10 CESM2 ensemble members (Table S1) are used from 1850-1949 for May-August. All CESM2 data are interpolated from a 1x1 degree resolution to 2.5 x 2.5 degree resolution via bilinear interpolation for computational efficiency.

Sea surface salinity anomalies are computed via subtraction of the linear trend at each grid point of the ensemble mean for each day of the year to remove the forced response and retain only internal variability. A 3-day running average is applied to smooth the data while retaining high frequency fluctuations. Similar analyses with a 1-day and 5-day running averages of the precipitation data yielded similar results. The data are normalized by subtracting the mean and dividing by the standard deviation at each grid point.

The precipitation data are raw CESM2 data (e.g. not anomalies) averaged over the Midwest region (Fig. 1a). The daily precipitation in this region is summed cumulatively for 3 days.

Our goal is to evaluate the predictability of precipitation events across lead times spanning from the weather to subseasonal range. Therefore, we apply a Poisson weighting (Fig. S1) to the data to smooth the timeseries as lead time increases. Large weights are applied to the day being predicted for short-term forecasts (e.g. 7-day lead predictions; orange line in Fig. S1). Weights are distributed more widely as lead time increases, eventually widening into a centered nearly-Gaussian average as the upper limit of a Poisson distribution is the Gaussian distribution (e.g. 56-day lead predictions, yellow line in Fig. S1). After the precipitation time series are smoothed with the Poisson weighting (Fig. S1), the 3-day periods of precipitation are then ranked by magnitude. Periods above the 80th percentile of precipitation are classified as heavy events, designated as a 1, and the remaining 80% of the time period are classified as light events, designated as a 0. Predictions are made using the 3-day trailing average sea surface salinity map to make the prediction of the 3-day forward-cumulative sum beginning with the day of each respective lead time (0-day, 7-day, 14-day, 21-day, 28-day, 35-day, 42-day, 49-day, 56-day). For example, a 0-day lead prediction made on May 4, 1850 uses the averaged salinity input from May 1-3 to classify the precipitation event as light or heavy for May 4-7, 1850. The same input map would be used for a 7-day lead example, but to classify the precipitation event for May 11-14, 1850, and so on for all lead times. Classification is performed individually within each ensemble member for each smoothed time series based on prediction lead time.

Training of the neural networks is performed using seven ensembles with each network initialized with 5 random seeds for robustness of the results. Two members are used for validation, and one member is used for testing. The training, validation, and testing ensemble members are then randomly reselected to train another set of neural networks with 5 random seed initializations. This strategy ensures that training of networks is performed individually so that no knowledge of the test data is used in the training of the networks. This process is repeated 5 times, for a total of 25 trained neural networks (5 networks with 5 random initializations each) per lead time.

Based on the nature of the classification of the output by percentile, the training, validation, and testing data are heavily imbalanced. For effective training of the networks to learn both the light and heavy precipitation event classes, we undersample our data via randomly selecting light precipitation events to remove from the training set to balance the classes for an even 50-50 split (e.g. Prusa et al., 2015). Although 60% of the data is discarded in this process, the benefit of large ensemble climate model data used here ensures that we still have enough data

Text S2. Neural Network Architecture

The neural network architecture is depicted in the schematic in Fig. 1a. The architecture is identical for networks trained for predictions from leads of 0-35 days and then a slightly different architecture was used for leads of 42-56 days. Hyperparameter tuning was performed using the KerasTuner (O'Malley et al., 2019) to find the optimal set of parameters determined via validation accuracy. For the shorter lead forecasts, the network architecture consists of 1 hidden layer with 128 nodes with a rectified linear activation function applied (ReLU), a dropout rate of 50% and ridge regression coefficient of 0.1 to reduce overfitting, batch size of 32 samples, and a learning rate of 1.618e-5. For the longer lead forecasts beyond 35 days, the network architecture consists of 2 hidden layers with 160 and 192 nodes with a rectified linear activation function applied (ReLU) to each, a dropout rate of 80% and ridge regression coefficient of 0.01 to reduce overfitting, batch size of 32 samples, and a learning rate of 2.886e-6. All networks have a set global seed of 147483648 and are initialized with the following random seeds: 6, 26, 19, 54, 68. Networks are trained using the categorical cross-entropy loss function. Networks are trained with early stopping when the validation loss does not decrease after 25 epochs.

We note that for the lead of 7 days, the network architecture with the highest validation accuracy was slightly different than the one used here. However, the same architecture which resulted in the highest validation accuracy for leads 0, 14, 21, 28, and 35 resulted in a validation accuracy on the order of 0.001 less than the highest performing architecture. Therefore, we used the same architecture for all leads 0-35 days for simplicity.

Text S3. Water Accounting Model

The WAM2layers uses ERA5 climate reanalysis data, including hourly, 2-dimensional surface pressure, evaporation and precipitation, and hourly 3-dimensional specific humidity, and zonal and meridional winds. We use data from 2008-2021 for this analysis. We use the backtracking function of the WAM2layers, which permits the tracing of precipitated water back through the atmosphere to its origins as evaporation. In this study, we spin-up the model for six months prior to the event of interest, to ensure full saturation of the atmospheric column.

Text S4. Skill Scores

The Threat Score is a biased verification metric for categorical forecasts in which the score is based on the frequency of the event. It is defined as hits/(hits+false alarms+misses) in which a hit is a correctly forecasted heavy precipitation event, a false alarm is the prediction of a heavy precipitation event but it does not occur, and a miss is a prediction of a light precipitation event but a heavy event occurred. It does not account for correct rejections, e.g. correctly forecasted light events. The Gilbert Skill Score is an unbiased verification metric which accounts for the number of hits due to random chance, i.e. *chance hits*. It is defined as (*hits-chance hits*)/(*hits+false alarms+misses-chance hits*) where *chance hits* = (*hits+false alarms+misses)*/total number of forecasts. For both skill scores, a score of zero denotes no skill, or random chance, and a skill of one is a perfect score.

Text S5. Case Studies with the WAM2layers Model

We compute the percentage of moisture that originated from a certain location for the two case studies. Specifically, we compute the amount of moisture that originated over the Caribbean Sea and Gulf of Mexico region (262-320E; 11-30N) which eventually fell in the Midwest during the event. This value is divided by the total moisture that precipitated in that region during the event. The local moisture recycling percentage is computed by the amount of moisture that originated in the analyzed region (e.g. red boxes in Fig. 4c and S5) divided by the total moisture that precipitated in that region during the event.

Figure S1. a) The Poisson distribution of the weights applied to the forecast period as a function of lead time. b) An example time series of the 3-day cumulative sum of precipitation in the U.S. Midwest for 1860 from ensemble member #0 showing the smoothed time series based on the Poisson weighting in (a). No weights are applied to lead of 0 days, so the raw time series (Raw TS; black line) and the time series for a lead of 0 days (Lead 0; blue line) are the same.

Figure S2. Composite of the sea surface salinity anomalies in PSS-78 for input maps of the 20% most confident, correct predictions for all leads for heavy predictions (top) and light predictions (bottom). Green colors represent positive sea surface salinity anomalies, or saltier waters, while pink colors represent negative sea surface salinity anomalies, or fresher waters. The number n represents the number of samples per composite.

Figure S3. Saliency XAI composited heatmaps for the same days as the input maps of the 20% most confident, correct predictions for all leads for heavy predictions. Darker purple colors designate increased network confidence for positive salinity anomalies, and vice versa for orange colors. The colorbar is a unitless measure of sensitivity. The colorbar is a unitless measure of sensitivity. The number n represents the number of samples per composite.

Figure S4. Region over which the moisture origin source is computed. The black box outlines 262-320E; 11-30N.

Figure S5. The sum of the evaporated water (in cubic meters) which fell as precipitation in the red boxed region computed using the WAM2layers backtracking algorithm for May 1 through June 30, 2011.

Ensemble	CESM2 Ensemble Member Name for Precipitation Variable	CESM2 Ensemble Member Name for Sea Surface Salinity Variable
0	b.e21.BHISTsmbb.f09_g17.LE2-1231.011.cam.h1.PRECT.1850-1949.nc	b.e21.BHISTsmbb.f09_g17.LE2-1231.011.pop.h.nday1.SSS.1850-1949.nc
1	b.e21.BHISTsmbb.f09_g17.LE2-1231.012.cam.h1.PRECT.1850-1949.nc	b.e21.BHISTsmbb.f09_g17.LE2-1231.012.pop.h.nday1.SSS.1850-1949.nc
2	b.e21.BHISTsmbb.f09_g17.LE2-1251.013.cam.h1.PRECT.1850-1949.nc	b.e21.BHISTsmbb.f09_g17.LE2-1251.013.pop.h.nday1.SSS.1850-1949.nc
3	b.e21.BHISTsmbb.f09_g17.LE2-1251.014.cam.h1.PRECT.1850-1949.nc	b.e21.BHISTsmbb.f09_g17.LE2-1251.014.pop.h.nday1.SSS.1850-1949.nc
4	b.e21.BHISTsmbb.f09_g17.LE2-1281.015.cam.h1.PRECT.1850-1949.nc	b.e21.BHISTsmbb.f09_g17.LE2-1281.015.pop.h.nday1.SSS.1850-1949.nc
5	b.e21.BHISTsmbb.f09_g17.LE2-1281.016.cam.h1.PRECT.1850-1949.nc	b.e21.BHISTsmbb.f09_g17.LE2-1281.016.pop.h.nday1.SSS.1850-1949.nc
6	b.e21.BHISTsmbb.f09_g17.LE2-1301.017.cam.h1.PRECT.1850-1949.nc	b.e21.BHISTsmbb.f09_g17.LE2-1301.017.pop.h.nday1.SSS.1850-1949.nc
7	b.e21.BHISTsmbb.f09_g17.LE2-1301.018.cam.h1.PRECT.1850-1949.nc	b.e21.BHISTsmbb.f09_g17.LE2-1301.018.pop.h.nday1.SSS.1850-1949.nc
8	b.e21.BHISTsmbb.f09_g17.LE2-1281.017.cam.h1.PRECT.1850-1949.nc	b.e21.BHISTsmbb.f09_g17.LE2-1281.017.pop.h.nday1.SSS.1850-1949.nc
9	b.e21.BHISTsmbb.f09 g17.LE2-1251.019.cam.h1.PRECT.1850-1949.nc	b.e21.BHISTsmbb.f09 g17.LE2-1251.019.pop.h.nday1.SSS.1850-1949.nc

Table S1. The naming convention of the ensemble members used in this study and the corresponding CESM2 ensemble member for precipitation and sea surface salinity. We used the smoothed biomass burning ensemble members (denoted by smbb). We italicize *1850-1949* because the data available are in 10-year increments. The data are downloaded then concatenated for the full time series.

Tunable Parameter	Search Space
Dropout	[0.0, 0.1, 0.2, 0.5, 0.8]
Ridge Regression (L2)	[0.01, 0.1,0.5,1.0,2.0,5.0,10.0]
# of Hidden Layers	[1,2]
# of Nodes per Layer	[32, 64, 96, 128, 160, 192, 224, 256]
Batch Size	[32, 64, 128, 256, 512]
Learning Rate	[1e-7, 1e-6, 1e-5, 1e-4, 1e-3]

Table S2. The hyperparameter search space evaluated using the KerasTuner to select the neural network architecture with the highest validation accuracy. The learning rate parameter space follows a logarithmic scale. 25 trails were performed using a random combination of the above parameters. Each network was trained for 5000 epochs with early stopping applied if validation loss increased after 25 epochs (e.g. the patience was 25).