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Abstract

As oceanic moisture evaporates, it leaves a signature on sea surface salinity. Roughly 10% of the moisture that evaporates over

the ocean is transported over land, allowing the salinity fields to be a predictor of terrestrial precipitation. This research is

among the first in published literature to assess the role of sea surface salinity for improved predictions on low-skill summertime

subseasonal timescales for terrestrial precipitation predictions. Neural networks are trained with the CESM2 Large Ensemble

using North Atlantic salinity anomalies to quantify predictability of U.S. Midwest summertime heavy rainfall events at 0 to

56-day leads. Using explainable artificial intelligence, salinity anomalies in the Caribbean Sea and Gulf of Mexico are found

to provide skill for subseasonal forecasts of opportunity, e.g. confident and correct predictions. Further, a moisture-tracking

algorithm applied to reanalysis data demonstrates that the regions of evaporation identified by neural networks directly provide

moisture that precipitates in the Midwest.
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 Regions of evaporation identified by neural networks provide a direct moisture source for 18 
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Abstract 21 

As oceanic moisture evaporates, it leaves a signature on sea surface salinity. Roughly 10% of the 22 

moisture that evaporates over the ocean is transported over land, allowing the salinity fields to be 23 

a predictor of terrestrial precipitation. This research is among the first in published literature to 24 

assess the role of sea surface salinity for improved predictions on low-skill summertime 25 

subseasonal timescales for terrestrial precipitation predictions. Neural networks are trained with 26 

the CESM2 Large Ensemble using North Atlantic salinity anomalies to quantify predictability of 27 

U.S. Midwest summertime heavy rainfall events at 0 to 56-day leads. Using explainable artificial 28 

intelligence, salinity anomalies in the Caribbean Sea and Gulf of Mexico are found to provide 29 

skill for subseasonal forecasts of opportunity, e.g. confident and correct predictions. Further, a 30 

moisture-tracking algorithm applied to reanalysis data demonstrates that the regions of 31 

evaporation identified by neural networks directly provide moisture that precipitates in the 32 

Midwest.  33 

Plain Language Summary 34 

Global water cycling plays a fundamental role in the climate system, directly impacting 35 

terrestrial water availability. Roughly 10% of the moisture that evaporates over the ocean is 36 

transported over land, eventually falling as precipitation. As moisture evaporates from the ocean, 37 

the waters below become saltier, leaving an imprint on the sea surface salinity pattern. These 38 

salinity signatures can potentially be used as a predictor of landfalling precipitation in the 39 

coming weeks. This study uses neural networks to quantify the predictability of summertime 40 

precipitation in the Midwest from 0 to 56 days in advance using salinity patterns in the North 41 

Atlantic. High salinity in the Caribbean Sea and Gulf of Mexico is found to provide skill for 42 

subseasonal forecasts of opportunity, e.g. confident and correct predictions at 21-day leads. A 43 

moisture-tracking model traces the origin of water that falls as precipitation and confirms the 44 

Caribbean Sea and Gulf of Mexico as direct moisture sources for Midwest precipitation.  45 

 46 

1 Introduction 47 

Global water cycling plays a fundamental role in the climate system, directly impacting 48 

terrestrial water availability. The hydrological cycle consists of moisture evaporation in one 49 

location which falls as precipitation in another location via a balance of atmospheric, oceanic, 50 

and terrestrial water transport (Adler et al., 2003; Gimeno et al., 2010). The majority of moisture 51 

(~90%) that evaporates over the ocean rains out over the ocean (Trenberth et al., 2007). 52 

However, the remaining 10% of the moisture evaporated is transported over land, eventually 53 

falling as terrestrial precipitation (Gimeno et al., 2012; Trenberth et al., 2011). Intense and 54 

persistent precipitation events over land cannot be sustained by local terrestrial moisture 55 

recycling alone (Brubaker et al., 1993; Dirmeyer et al., 2009; Koster et al., 2004; Trenberth, 56 

1999), highlighting ocean-derived moisture as a source of extreme terrestrial precipitation events 57 

from. 58 

Oceanic evaporation increasingly acts as a source of terrestrial precipitation due to 59 

anthropogenic climate change (Gimeno et al., 2020). Rising atmospheric temperatures have led 60 

to more rapid evaporation over the oceans than over the land. This climate change response has 61 

intensified the oceanic water cycle (Durack et al., 2012), increasing the importance of oceanic 62 

evaporation for continental precipitation (Findell et al., 2019). As oceanic moisture evaporates it 63 
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leaves a signature on sea surface salinity, allowing these fields to be a potential predictor of 64 

terrestrial precipitation (Schmitt, 2008).  65 

Sea surface salinity has emerged as a potentially useful indicator of evaporation and 66 

subsequent moisture export from the ocean (Bengtsson, 2010). A close link exists between the 67 

oceanic water cycle and the sea surface salinity anomaly signal: positive anomalies (e.g. saltier 68 

waters) indicate evaporation of ocean waters and negative anomalies (e.g. fresher waters) 69 

indicate precipitation into the ocean (Durack, 2015). This relationship has led to an investigation 70 

into sea surface salinity as a potential seasonal predictor of terrestrial precipitation in the African 71 

Sahel (L. Li et al., 2016b), Southwestern U.S. (T. Liu et al., 2018), China (Zeng et al., 2019), and 72 

Australia (Rathore et al., 2020). In addition, Li et al. (2016a) and a followup study by Li et al. 73 

(2022) showed a strong relationship between springtime sea surface salinity in the northwestern 74 

subtropical North Atlantic and summertime precipitation in the U.S. Midwest, revealing sea 75 

surface salinity as a skillful seasonal predictor of U.S. Midwest summertime rainfall.  76 

Here, we explore the predictability provided by North Atlantic sea surface salinity for 77 

subseasonal prediction of summertime U.S. Midwest precipitation. Subseasonal prediction (e.g. 78 

2 weeks to one season ahead) bridges the gap between weather and climate (Lang et al., 2020) 79 

and supports sufficient lead time for storm and flood preparedness and informed resource 80 

management (DeFlorio et al., 2021). Heavy Midwest rainfall events in the summertime are 81 

particularly challenging to predict (L. Li et al., 2022; Z. Li & O’Gorman, 2020), yet the damage 82 

from these events can be extensive (Trenberth & Guillemot, 1996). For example, historic 83 

flooding throughout the Midwest region in spring-summer of 2013, dubbed a 500-year flooding 84 

event by a U.S. Geological Survey press release, resulted in over 10 fatalities and $400 million 85 

damages. Given the difficult predictive nature of summertime heavy rainfall events, we focus on 86 

identifying “forecasts of opportunity”, e.g. predictions with high skill and confidence due to a 87 

predictable state of the climate system (Mariotti et al., 2020), and pinpointing their sources of 88 

predictability. To connect the climate model analysis to real-world dynamics, we employ a 89 

moisture tracking algorithm to determine the North Atlantic sources of evaporation that 90 

eventually fall in the Midwest as heavy precipitation events. This study reveals sea surface 91 

salinity as an effective subseasonal predictor for forecasts of opportunity of summertime 92 

Midwest heavy precipitation events.  93 

 94 

2 Data and Methods 95 

2.1 Climate Model Data Preprocessing 96 

Artificial neural networks are trained to ingest maps of sea surface salinity anomaly maps 97 

to classify precipitation events into light or heavy precipitation events over the U.S. Midwest at 98 

leads of 0-56 days. Training neural networks requires a large amount of data (Adi et al., 2020), 99 

but observed daily sea surface salinity fields are not readily available in a usable (e.g. gridded) 100 

format (H. Wang et al., 2022). The few reanalysis datasets that provide daily sea surface salinity 101 

fields either do not cover the North Atlantic region needed for this study (e.g. the Global 102 

Tropical Moored Buoy Array) or do not have a long enough time series for adequate training 103 

(e.g. only ~30 years are provided by the Global Ocean Forecasting System HYCOM, which is 104 

insufficient for training in this study). Therefore, we take advantage of the long-running daily, 105 

gridded data from the Community Earth System Model Version 2- Large Ensemble (CESM2-106 

LE; Danabasoglu et al., 2020) for analysis of 1,000 years of climate model data.    107 
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108 
Figure 1. a) Schematic of the neural network architecture used in this study for a 21-day lead. b) The 109 
accuracy vs. confidence for 5 testing (green) and validation (purple) members using 5 random seeds each 110 
(light lines; dark lines represent the average) for 21-day lead predictions. Confidence is computed using 111 
the softmax activation on the output layer of the network in (a). A random network is represented with the 112 
gray shading. The gold box highlights the 20% most confident predictions.  113 
 114 

We use 1850-1949 historical daily data from 10 CESM2 ensemble members, in which 115 

each ensemble member is considered to be an independent realization of the historical climate 116 

(Rodgers et al., 2021). Sea surface salinity fields in units based on the Practical Salinity Scale 117 

1978 (PSS-78) span May-August to capture the U.S. Midwest summer. Daily anomalies are 118 

computed via subtraction of the linear trend at each grid point of the ensemble mean for each 119 

calendar-day of the year to remove the forced response, then smoothed with a 3-day running 120 

mean. Sea surface salinity anomalies span the North Atlantic region from 8N - 50N, 265E - 121 

320E, including the Gulf of Mexico, but excluding all data from the Pacific (Fig. 1a left).  122 

We use raw precipitation fields (e.g. not anomalies) of a 3-day cumulative sum averaged 123 

over the Midwest region- defined as 36N - 49N, 254E - 270E (Fig. 1a right). A Poisson 124 

weighting strategy (Fig. S1) adapted from Ford et al. (2018) is applied to the precipitation time 125 

series to smooth data as lead time increases for a seamless transition across timescales assessed 126 

(Hoskins, 2013). This technique broadens the event window to shift from deterministic to 127 

probabilistic forecasts and account for uncertainty as lead time increases (Fig. S1) (Dirmeyer et 128 

al., 2018; Dirmeyer & Ford, 2020; Ford et al., 2018). Once smoothed, periods above the 80th 129 

percentile of precipitation are classified as heavy events, designated as a 1, and the remaining 130 

80% of the data classified as light events, designated as a 0.  131 

2.2 Neural Network Setup 132 

The feedforward artificial neural network approach consists of a 3-layer neural network: 133 

the input layer (3-day averaged sea surface salinity anomaly maps), 1 hidden layer, and the 134 
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output layer (classification of light or heavy precipitation event in the Midwest boxed region). 135 

Neural networks are trained separately for each lead time. Additional details on data pre-136 

processing and hyperparameter tuning are found in S1-2 and Tables S1-2. 137 

 138 

 2.3 Quantifying Forecasts of Opportunity 139 

 The final network output layer consists of the two nodes of our binary classification setup 140 

(Fig. 1a). The softmax activation function is applied to the final layer, transforming the two 141 

outputs to values which sum to 1, representing a probability estimate. This probability is used to 142 

select the predicted output in that the value which exceeds 0.5 is selected as the prediction. We 143 

leverage this output probability as our network confidence (Arcodia et al., 2023; Mayer & 144 

Barnes, 2021, 2022), allowing quantification of the prediction confidence. As confidence 145 

increases, accuracy also increases, suggesting that the network identifies intermittent patterns in 146 

the input salinity maps that lead it to be more confident in its prediction (Fig. 1b). Hereafter, we 147 

define the 20% most confident predictions, which are also found to be the most accurate 148 

predictions, as forecasts of opportunity (Fig. 1b; gold box). 149 

 150 

 2.4 Water Accounting Model 151 

We employ the Water Accounting Model 2-layers (WAM2layers, version 3.0.0), a Eulerian 152 

moisture-tracking model that can trace the path of water from its origin as evaporation, through 153 

the atmosphere as water vapor, and to its eventual fate as precipitation elsewhere (van der Ent et 154 

al. 2014; van der Ent et al. 2023). The model uses European Centre for Medium-Range Weather 155 

Forecasts v5 (ERA5; Hersbach et al. 2020) climate reanalysis data to verify that the oceanic 156 

evaporative moisture source regions identified by the neural networks provide the moisture to 157 

Midwest precipitation events in the real world. Additional WAM2layers model details are found 158 

in S3. 159 

3 Results 160 

 3.1 Subseasonal Forecasts of Opportunity 161 

Accuracy for all summertime Midwest precipitation predictions shows the highest skill at 162 

leads 14- and 21-days (Fig. 2; blue squares). For the forecasts of opportunity, e.g. the 20% most 163 

confident predictions, accuracy peaks at lead 21-days (Fig. 2; gold diamonds), demonstrating 164 

that sea surface salinity anomalies serve as a meaningful predictor on subseasonal timescales. 165 

Notably, leads 7- through 21-days reveal accuracy above 75% on average for forecasts of 166 

opportunity for precipitation event prediction. Skill drops quickly to that of random chance for 167 

leads of 35-days and beyond (Fig. 2; gray shading).  168 

Fig. 2a shows accuracies for balanced test data (see S1), meaning the likelihood of a 169 

heavy precipitation event is 50%. However, based on the definition of a heavy event (>80th 170 

percentile), the true likelihood of a heavy event is 20%. We use two skill scores: 1. Threat Score 171 

(Fig. 2b) and 2. Gilbert Skill Score (Fig. 2c); see S4 for definitions. These scores are verification 172 

metrics of forecasts in which a score of zero denotes no skill, or random chance, and a skill of 173 

one is a perfect score. Skill scores are used to evaluate the performance of the networks on 174 

unbalanced data to determine if network prediction skill is due to accurate predictions of both 175 

classes, or if the network has learned only the majority class. The variation in skill as a function 176 
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of lead time follows a similar pattern for the balanced and unbalanced datasets, with a peak in 177 

skill at subseasonal lead time of 21 days, particularly for forecasts of opportunity. Networks have 178 

learned patterns within the data to not only predict light but also heavy events, demonstrating the 179 

utility of sea surface salinity as a predictor for high-impact heavy precipitation events.   180 

 181 

 182 
Figure 2. a) Accuracy as a function of lead time in days for all predictions (blue squares) and forecasts of 183 
opportunity (gold diamonds). The lightly shaded shapes represent the averaged accuracy from five 184 
random seeds for each test ensemble member with balanced data, and the darker, larger shapes represent 185 
the average accuracy from all 5 test ensemble members. The gray shading denotes the 99% confidence 186 
intervals of a binomial probability (e.g. random chance). b) The Threat Score as a function of lead time 187 
computed on predictions with unbalanced data for all predictions (hexagons) and forecasts of opportunity 188 
(stars). c) Same as b) but for the Gilbert Skill Score. For (b) and (c), a score of zero denotes no skill, or 189 
random chance, and a skill of one is a perfect score. 190 
 191 

After determining that the networks can result in skillful and confident predictions on 192 

subseasonal lead time times, we want to know why the network made these predictions. We find 193 

that for skillful forecasts of opportunity for heavy precipitation, sea surface salinity anomalies in 194 

the Caribbean Sea and Gulf of Mexico are predominantly positive (Fig. 3a). That is, saltier 195 

waters in these regions imply evaporation and atmospheric moisture available for transportation 196 

out of the region. Conversely, for skillful light precipitation predictions, we find negative sea 197 

surface salinity anomalies, indicating precipitation (Fig. 3b). This pattern reflects less 198 

atmospheric moisture from the oceanic source region available to be transported away, resulting 199 

in a confident subseasonal predictions of no heavy rainfall event.  200 

We complement the salinity composite maps associated with forecasts of opportunity 201 

with explainable artificial intelligence (XAI) to pinpoint regions that the network deems as 202 

important in making its prediction (e.g. Arcodia et al., 2023; Mamalakis, Barnes, et al., 2022; 203 
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Mayer & Barnes, 2021; McGovern et al., 2019; Pegion et al., 2022; Rader et al., 2022). Here, the 204 

gradient method is applied to compute the gradient of the network output with respect to the 205 

input grid points to visualize the sensitivity of the networks to the salinity anomalies at lead 21-206 

days (Mamalakis, Ebert-Uphoff, et al., 2022) (Fig. 3c; composites and heatmaps for all leads in 207 

Figs. S3 and S4). For correct and confident heavy predictions, the sensitivity of the network to 208 

changes in salinity anomalies is most prominent in the Caribbean Sea and Gulf of Mexico. 209 

Saltier waters in these regions are found to increase confidence in heavy predictions. Regions 210 

with near-zero salinity anomalies south of Jamaica and negative salinity anomalies along the 211 

East Coast in the Gulf Stream region decrease confidence in heavy predictions. That is, network 212 

confidence for heavy subseasonal predictions strengthens as water becomes saltier in the 213 

Caribbean and Gulf of Mexico. Thus, anomalously salty waters in the Caribbean and Gulf of 214 

Mexico provide predictability for heavy precipitation events in the U.S. Midwest on subseasonal 215 

timescales.  216 

 217 

 218 

 219 

 220 

 221 

Figure 3. a-b) Composite of the sea surface salinity anomalies in PSS-78 for input maps of the 20% most 222 
confident, correct predictions for a 21-day lead for heavy predictions (a) and light predictions (b). 223 
Composites use input from each test ensemble member from the neural network initialized with the 224 
random seed that results in the highest accuracy. c) Saliency XAI composited heatmaps for the same days 225 
as the input maps as (a). The colorbar is a unitless measure of sensitivity. The number n represents the 226 
number of samples per composite.   227 
 228 
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 3.2 Moisture Tracking with ERA5 229 

The neural networks used thus far were trained, validated, and tested on 1,000 collective 230 

years of CESM2 historical climate model data. Unfortunately, like all climate models, CESM2 231 

exhibits biases which can result in limitations for its use for understanding the real world 232 

(Simpson et al., 2020). Therefore, we employ the WAM2layers model and present-day reanalysis 233 

data (van der Ent et al. 2023) to track where evaporation occurred, which would later fall as 234 

precipitation in a specific region. We track moisture within ERA5 using the WAM2layers model 235 

for May-August (MJJA) from 2008-2021 to pinpoint the origin of all moisture which eventually 236 

falls in the Midwest region (Fig. 4a). The majority of Midwest moisture is found to be locally 237 

recycled, consistent with Bosilovich and Schubert (2002) who showed the largest source of 238 

precipitation in the midwestern U.S. came from local moisture recycling. However, we also find 239 

that summertime Midwest precipitation has an oceanic moisture source in the Gulf of Mexico 240 

and the Caribbean Sea regions without recycling, consistent with the regions of sea surface 241 

salinity anomalies identified by the neural networks as relevant for forecasts of opportunity (Fig. 242 

3).  243 

Another primary moisture source region for the Midwest is the area directly to the south 244 

(Fig. 4a), indicating that the southern U.S. acts as an additional moisture source region. The 245 

WAM2layers results for moisture-tracking of the southern U.S. also highlight the Gulf of 246 

Mexico and Caribbean Sea (Fig. 4b). Moisture which evaporates over the Gulf of Mexico and 247 

Caribbean Sea likely acts as a moisture source for Midwest precipitation in 2 ways: 1) moisture 248 

is directly transported and precipitates in the Midwest, or 2) moisture falls as precipitation in the 249 

southern U.S. region which is then locally recycled and transported north to eventually 250 

precipitate in the Midwest. Thus, the networks have identified physically meaningful sources of 251 

predictability, consistent with the patterns found in the composite and XAI maps (Fig. 3), which 252 

can ultimately provide subseasonal prediction skill for U.S. Midwest heavy rainfall events.  253 

 254 

 255 
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Figure 4. The sum of the evaporated water (in cubic meters) which fell as precipitation in the red boxed 256 
regions computed using the WAM2layers backtracking algorithm for the Midwest (a) and South U.S. 257 
region (b) for May-August from 2008-2021. c) shows the same, but for the southern Midwest region (red 258 
box) for May 27-June 4, 2013.  259 
 260 

Lastly, we analyze a case study to verify the Gulf of Mexico and Caribbean Sea can 261 

provide moisture sources for specific heavy precipitation events in the Midwest. We analyze a 9-262 

day period of intense rainfall in the Midwest region from May 27 - June 4, 2013 when over 150 263 

mm of rainfall was recorded in the Missouri and southeastern Midwest areas (USGS, 2013) (Fig. 264 

4c). We find that the local region (red box), southern U.S., and Gulf of Mexico/ Caribbean Sea 265 

are the largest moisture source regions for the observed extreme precipitation. Approximately 266 

22% of the moisture originated from the Caribbean Sea and Gulf of Mexico region and was 267 

directly transported and precipitated in the Midwest during this event (see S5 and Fig. S4), while 268 

only 11% of the moisture was locally recycled. An additional case study is shown in 269 

Supplemental Fig. 5 for the 2011 Missouri River Flooding events from May-June in which 270 

approximately 21% directly originated from the Caribbean and Gulf of Mexico region and 14% 271 

of the moisture was locally recycled.  272 

The results from the WAM2layers water tracking model reveal that evaporation over the 273 

Gulf of Mexico and Caribbean Sea acts as a moisture source for precipitation over the Midwest 274 

in summertime. These results support our findings that evaporation in these regions indicated by 275 

sea surface salinity anomalies can provide predictive skill for heavy summertime Midwest 276 

precipitation events.  277 

4 Discussion 278 

This analysis has revealed that salty waters indicative of evaporation in the Caribbean 279 

and Gulf of Mexico (Fig. 3) provide predictability for subseasonal forecasts of opportunity for 280 

heavy Midwest precipitation events (Fig. 2). We discuss a potential physical link for how the 281 

evaporative moisture source regions, identified by neural networks, provide moisture that 282 

ultimately precipitates in the Midwest region. The Caribbean Sea has been documented to 283 

provide significant moisture sources for Midwest extreme precipitation events via dynamical 284 

links from low-level jets (Dirmeyer & Kinter, 2010). In the summertime, a branch of the 285 

Caribbean Low-level Jet (CLLJ) turns northward and connects with the Great Plain Low-level 286 

Jet (GPLLJ) (Amador, 1998; Cook & Vizy, 2010). This causes a shift in westward moisture 287 

transport over the Caribbean Sea to northward transport over the continental U.S. into the Great 288 

Plains and Midwest regions (C. Wang et al., 2007). The interactions of these jets are intimately 289 

tied to the North Atlantic Subtropical High (NASH), a robust atmospheric high pressure in the 290 

North Atlantic region which impacts the strength and location of the low-level jets and their 291 

surface evaporation (C. Wang et al., 2007). The lower branch of the NASH is reflected in the 292 

swooping evaporated water feature found from the WAM2layers analysis in Fig. 4, supporting 293 

the dynamical link between subtropical jet features and Midwest precipitation. Putting it all 294 

together, evaporation in the Caribbean and Gulf of Mexico increases atmospheric moisture 295 

availability which is then transported westward by the Caribbean Low-level Jet and northward 296 

into continental U.S. and Midwest by the Great Plains Low-level jet.  297 

Li et al. (2018) showed that a soil moisture feedback mechanism connects North Atlantic 298 

sea surface salinity anomalies to Midwest summertime precipitation. Enhanced moisture export 299 

from the subtropical North Atlantic contributes to extreme rainfall in the southern U.S. leading to 300 
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increased soil moisture. This soil moisture feedback causes enhanced evaporation and 301 

atmospheric convection, which intensifies the GPLLJ and transports moisture to the Midwest 302 

region. Additional research into the prediction of the location and intensity of these jets and the 303 

NASH (e.g. Ferguson, 2022; García-Martínez & Bollasina, 2020; Krishnamurthy et al., 2015; 304 

Malloy & Kirtman, 2020) could provide added predictive skill for forecasts of opportunity for 305 

Midwest precipitation events.  306 

 Sea surface salinity biases have been documented in CESM2 linked to precipitation 307 

biases (Simpson et al., 2020; Wei et al., 2021) with a slightly fresh overall salinity bias (Y. Liu et 308 

al., 2022). There are also discrepancies between satellite and in-situ sea surface salinity data due 309 

to both observational and sampling errors which provide constraints for ocean models 310 

(Vinogradova et al., 2019). Further, CESM2 sea surface salinity data is taken as the average of 311 

the upper 10m of the ocean. Boutin et al. (2016) show that near-surface stratification of salinity 312 

exists in the upper 1m and subseasonal prediction could vary based on this upper ocean 313 

resolution (Subramanian et al., 2019). We note that the predictive skill of heavy precipitation 314 

events using higher vertical resolution sea surface salinity data may vary as this could more 315 

effectively capture skin-layer evaporation intensity, rather than muted anomalies represented in 316 

the 0-10m volume average, but we leave this investigation for future work. 317 

5 Conclusions 318 

This study is the first peer-reviewed documentation to demonstrate the utility of North 319 

Atlantic sea surface salinity anomalies as a skillful subseasonal predictor of heavy Midwest 320 

summertime precipitation events. We employ a machine learning approach using neural 321 

networks to quantify the subseasonal predictability of heavy summertime rainfall events in the 322 

U.S. Midwest region using 3-day North Atlantic sea surface salinity fields. Using a statistical 323 

smoothing for a seamless transition across timescales, we assess predictability for lead times 324 

from 0-days to 56-days. We find that predictive skill is highest on subseasonal timescales with a 325 

peak at 21-day lead, particularly for forecasts of opportunity, e.g. predictions which are both 326 

confident and accurate. Output from neural networks allows us to identify predictions which 327 

result in forecasts of opportunity. Using explainable artificial intelligence, we create heatmaps of 328 

the most sensitive regions of salinity anomalies in the tropical and North Atlantic which provide 329 

skill for forecasts of opportunity. Positive sea surface salinity anomalies (which indicate 330 

evaporation and increased atmospheric moisture availability) in the Caribbean and Gulf of 331 

Mexico provide predictability for the forecasts of opportunity for heavy precipitation events. 332 

Consistent with previous research highlighting subtropical North Atlantic moisture as a source of 333 

U.S. terrestrial precipitation (Gimeno et al., 2010; L. Li et al., 2016a, 2022; van der Ent et al., 334 

2010), our results support a physically consistent link between evaporation in the Caribbean and 335 

Gulf of Mexico and heavy precipitation in the Midwest via low-level jets. Output from the 336 

WAM2layers moisture-tracking model reveals that the regions of evaporation identified by 337 

neural networks within CESM2 simulations provide moisture to the Midwest region in the ERA5 338 

atmospheric reanalysis. The Caribbean Sea and Gulf of Mexico are found to provide a direct 339 

oceanic moisture source for Midwest precipitation, in part without moisture recycling, linking 340 

the salinity anomalies to subseasonal predictive skill of Midwest precipitation. These results 341 

complement the explainable artificial intelligence findings to reveal robust and physically 342 

meaningful sources of summertime heavy Midwest precipitation predictability via Atlantic sea 343 

surface salinity anomalies.  344 
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Text S1. Data Preprocessing
Daily data from 10 CESM2 ensemble members (Table S1) are used from 1850-1949 for

May-August. All CESM2 data are interpolated from a 1x1 degree resolution to 2.5 x 2.5 degree
resolution via bilinear interpolation for computational efficiency. 

Sea surface salinity anomalies are computed via subtraction of the linear trend at each
grid point of the ensemble mean for each day of the year to remove the forced response and retain
only internal variability. A 3-day running average is applied to smooth the data while retaining
high frequency fluctuations. Similar analyses with a 1-day and 5-day running averages of the
precipitation data yielded similar results. The data are normalized by subtracting the mean and
dividing by the standard deviation at each grid point.

The precipitation data are raw CESM2 data (e.g. not anomalies) averaged over the
Midwest region (Fig. 1a). The daily precipitation in this region is summed cumulatively for 3
days.  

Our goal is to evaluate the predictability of precipitation events across lead times
spanning from the weather to subseasonal range. Therefore, we apply a Poisson weighting (Fig.
S1) to the data to smooth the timeseries as lead time increases. Large weights are applied to the
day being predicted for short-term forecasts (e.g. 7-day lead predictions; orange line in Fig. S1).
Weights are distributed more widely as lead time increases, eventually widening into a centered
nearly-Gaussian average as the upper limit of a Poisson distribution is the Gaussian distribution
(e.g. 56-day lead predictions, yellow line in Fig. S1). After the precipitation time series are
smoothed with the Poisson weighting (Fig. S1), the 3-day periods of precipitation are then ranked
by magnitude. Periods above the 80th percentile of precipitation are classified as heavy events,
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designated as a 1, and the remaining 80% of the time period are classified as light events,
designated as a 0. Predictions are made using the 3-day trailing average sea surface salinity map
to make the prediction of the 3-day forward-cumulative sum beginning with the day of each
respective lead time (0-day, 7-day, 14-day, 21-day, 28-day, 35-day, 42-day, 49-day, 56-day). For
example, a 0-day lead prediction made on May 4, 1850 uses the averaged salinity input from May
1-3 to classify the precipitation event as light or heavy for May 4-7, 1850. The same input map
would be used for a 7-day lead example, but to classify the precipitation event for May 11-14,
1850, and so on for all lead times. Classification is performed individually within each ensemble
member for each smoothed time series based on prediction lead time. 

Training of the neural networks is performed using seven ensembles with each network
initialized with 5 random seeds for robustness of the results. Two members are used for
validation, and one member is used for testing. The training, validation, and testing ensemble
members are then randomly reselected to train another set of neural networks with 5 random seed
initializations. This strategy ensures that training of networks is performed individually so that no
knowledge of the test data is used in the training of the networks. This process is repeated 5
times, for a total of 25 trained neural networks (5 networks with 5 random initializations each) per
lead time. 
Based on the nature of the classification of the output by percentile, the training, validation, and
testing data are heavily imbalanced. For effective training of the networks to learn both the light
and heavy precipitation event classes, we undersample our data via randomly selecting light
precipitation events to remove from the training set to balance the classes for an even 50-50 split
(e.g. Prusa et al., 2015). Although 60% of the data is discarded in this process, the benefit of large
ensemble climate model data used here ensures that we still have enough data

Text S2. Neural Network Architecture
The neural network architecture is depicted in the schematic in Fig. 1a. The

architecture is identical for networks trained for predictions from leads of 0-35 days and
then a slightly different architecture was used for leads of 42-56 days. Hyperparameter
tuning was performed using the KerasTuner (O’Malley et al., 2019) to find the optimal
set of parameters determined via validation accuracy. For the shorter lead forecasts, the
network architecture consists of 1 hidden layer with 128 nodes with a rectified linear
activation function applied (ReLU), a dropout rate of 50% and ridge regression
coefficient of 0.1 to reduce overfitting, batch size of 32 samples, and a learning rate of
1.618e-5. For the longer lead forecasts beyond 35 days, the network architecture consists
of 2 hidden layers with 160 and 192 nodes with a rectified linear activation function
applied (ReLU) to each, a dropout rate of 80% and ridge regression coefficient of 0.01 to
reduce overfitting, batch size of 32 samples, and a learning rate of 2.886e-6. All networks
have a set global seed of 147483648 and are initialized with the following random seeds:
6, 26, 19, 54, 68. Networks are trained using the categorical cross-entropy loss function.
Networks are trained with early stopping when the validation loss does not decrease after
25 epochs. 

We note that for the lead of 7 days, the network architecture with the highest
validation accuracy was slightly different than the one used here. However, the same
architecture which resulted in the highest validation accuracy for leads 0, 14, 21, 28, and
35 resulted in a validation accuracy on the order of 0.001 less than the highest performing
architecture. Therefore, we used the same architecture for all leads 0-35 days for
simplicity.
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Text S3. Water Accounting Model
The WAM2layers uses ERA5 climate reanalysis data, including hourly, 2-dimensional

surface pressure, evaporation and precipitation, and hourly 3-dimensional specific humidity, and
zonal and meridional winds. We use data from 2008-2021 for this analysis. We use the
backtracking function of the WAM2layers, which permits the tracing of precipitated water back
through the atmosphere to its origins as evaporation. In this study, we spin-up the model for six
months prior to the event of interest, to ensure full saturation of the atmospheric column.

Text S4. Skill Scores
The Threat Score is a biased verification metric for categorical forecasts in which the

score is based on the frequency of the event. It is defined as hits/(hits+false alarms+misses) in
which a hit is a correctly forecasted heavy precipitation event, a false alarm is the prediction of a
heavy precipitation event but it does not occur, and a miss is a prediction of a light precipitation
event but a heavy event occurred. It does not account for correct rejections, e.g. correctly
forecasted light events. The Gilbert Skill Score is an unbiased verification metric which accounts
for the number of hits due to random chance, i.e. chance hits. It is defined as (hits-chance
hits)/(hits+false alarms+misses-chance hits) where chance hits = (hits+false
alarms)*(hits+misses)/total number of forecasts. For both skill scores, a score of zero denotes no
skill, or random chance, and a skill of one is a perfect score. 

Text S5. Case Studies with the WAM2layers Model
We compute the percentage of moisture that originated from a certain location for the two

case studies. Specifically, we compute the amount of moisture that originated over the Caribbean
Sea and Gulf of Mexico region (262-320E; 11-30N) which eventually fell in the Midwest during
the event. This value is divided by the total moisture that precipitated in that region during the
event. The local moisture recycling percentage is computed by the amount of moisture that
originated in the analyzed region (e.g. red boxes in Fig. 4c and S5) divided by the total moisture
that precipitated in that region during the event. 

Figure S1. a) The Poisson distribution of the weights applied to the forecast period as a function
of lead time. b) An example time series of the 3-day cumulative sum of precipitation in the U.S.
Midwest for 1860 from ensemble member #0 showing the smoothed time series based on the
Poisson weighting in (a). No weights are applied to lead of 0 days, so the raw time series (Raw
TS; black line) and the time series for a lead of 0 days (Lead 0; blue line) are the same.
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Figure S2. Composite of the sea surface salinity anomalies in PSS-78 for input maps of the 20%
most confident, correct predictions for all leads for heavy predictions (top) and light predictions
(bottom). Green colors represent positive sea surface salinity anomalies, or saltier waters, while
pink colors represent negative sea surface salinity anomalies, or fresher waters. The number n
represents the number of samples per composite.
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Figure S3. Saliency XAI composited heatmaps for the same days as the input maps of the 20%
most confident, correct predictions for all leads for heavy predictions. Darker purple colors
designate increased network confidence for positive salinity anomalies, and vice versa for orange
colors. The colorbar is a unitless measure of sensitivity. The colorbar is a unitless measure of
sensitivity. The number n represents the number of samples per composite.  

Figure S4. Region over which the moisture origin source is computed. The black box outlines
262-320E; 11-30N.  
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Figure S5. The sum of the evaporated water (in cubic meters) which fell as precipitation in the red
boxed region computed using the WAM2layers backtracking algorithm for May 1 through June
30, 2011.
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Table S1. The naming convention of the ensemble members used in this study and the
corresponding CESM2 ensemble member for precipitation and sea surface salinity. We used the
smoothed biomass burning ensemble members (denoted by smbb). We italicize 1850-1949
because the data available are in 10-year increments. The data are downloaded then concatenated
for the full time series.

Table S2. The hyperparameter search space evaluated using the KerasTuner to select the neural
network architecture with the highest validation accuracy. The learning rate parameter space
follows a logarithmic scale. 25 trails were performed using a random combination of the above
parameters. Each network was trained for 5000 epochs with early stopping applied if validation
loss increased after 25 epochs (e.g. the patience was 25).
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