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Abstract

Marine forecasts are essential for safe navigation, efficient offshore operations, coastal management, and research, especially in

areas with a such harsh conditions as the Arctic Ocean. They require accurate predictions of ocean currents, wind-driven waves,

and other oceanic parameters. However, physics-based numerical models, while precise, are computationally demanding. Con-

sequently, data-driven methods, which are less resource-intensive, may offer a more efficient solution for sea state forecasting.

This paper presents an analysis and comparison of three data-driven models: our newly developed convLSTM-based MariNet,

FourCastNet and the PhydNet, a physics-informed model for video prediction. Using metrics such as RMSE, Bias and Corre-

lation, we demonstrate the areas where our model surpasses the performance of the prominent prediction models. Our model

achieves improved accuracy in forecasting ocean dynamics compared to FourCastNet and PhyDNet. We also find that our

model requires significantly less training data, computing power, and consequently provides less carbon emmisions. The results

suggest that data-driven models should be further explored as a complement to physics-based models for operational marine

forecasting. They have the potential to enhance prediction accuracy and efficiency, enabling more responsive and cost-effective

forecasting systems.
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Key Points: 9 

 We developed a new data-driven model called MariNet for the short-term ocean state 10 

predictions. 11 

 MariNet outperformed two other prominent data-driven forecasting models in accuracy 12 

and the carbon emissions rate on the training phase. 13 

 Data-driven models can complement physics-based models for marine forecasting. They 14 

provide advantages in accuracy and cost-effectiveness.   15 
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Abstract 16 

Marine forecasts are essential for safe navigation, efficient offshore operations, coastal 17 

management, and research, especially in areas with a such harsh conditions as the Arctic Ocean. 18 

They require accurate predictions of ocean currents, wind-driven waves, and other oceanic 19 

parameters. However, physics-based numerical models, while precise, are computationally 20 

demanding. Consequently, data-driven methods, which are less resource-intensive, may offer a 21 

more efficient solution for sea state forecasting. This paper presents an analysis and comparison 22 

of three data-driven models: our newly developed convLSTM-based MariNet, FourCastNet and 23 

the PhydNet, a physics-informed model for video prediction. Using metrics such as RMSE, Bias 24 

and Correlation, we demonstrate the areas where our model surpasses the performance of the 25 

prominent prediction models. Our model achieves improved accuracy in forecasting ocean 26 

dynamics compared to FourCastNet and PhyDNet. We also find that our model requires 27 

significantly less training data, computing power, and consequently provides less carbon 28 

emmisions.  The results suggest that data-driven models should be further explored as a 29 

complement to physics-based models for operational marine forecasting. They have the potential 30 

to enhance prediction accuracy and efficiency, enabling more responsive and cost-effective 31 

forecasting systems. 32 

Plain Language Summary 33 

Accurate forecasts of conditions like winds, waves, and currents are important for safe 34 

ocean travel and coastal management, especially in harsh areas like the Arctic. Complex physics-35 

based computer models can make good forecasts, but take a lot of computing power. We 36 

developed a new artificial neural network called MariNet that makes forecasts directly from data, 37 

which uses less resources. We tested MariNet against two other prominent data-driven models. 38 

MariNet was more accurate at predicting ocean conditions, needed less computing power, and 39 

produced less carbon emissions. Overall, AI systems like MariNet complement physics-based 40 

models and have advantages in efficiency and responsiveness. They should be explored further 41 

to enhance marine forecasts in a cost-effective way, enabling better decisions on the oceans. 42 

1 Introduction 43 

Machine Learning is the process of making computer systems learn without explicit 44 

instructions by analyzing and drawing inferences from data patterns using algorithms and 45 

statistical models. One of the major limitations of Artificial Intelligence and Machine Learning 46 

has always been computational power, which has been a cause of concern for researchers. CPUs 47 

were not as powerful and efficient a few decades ago when it came to running large 48 

computations for machine learning. Hardware manufacturers have worked hard to create a 49 

processing unit capable of performing any AI operation. 50 

Though CPUs are no longer viable sources of computational power, they were the 51 

pioneers. Today, those CPUs are rightfully replaced by GPUs and AI accelerators, specifically 52 

designed for large computing. The main features considered while purchasing an AI accelerator 53 

are cost, energy consumption, and processing speed. 54 

The study of ocean circulation is crucial for many reasons, including the climate research, 55 

determining marine life distribution, shaping human activity, and more. Accurate prediction of 56 

currents can help forecast weather, estimate energy transfer rates in the ocean, predict the spread 57 

of oil spills and drift of the sea ice and icebergs. Sediment transport is another important 58 

correlated aspect correlated with the water circulation, affecting marine economic activities such 59 
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as fishing, transport, logistics, and tourism. Therefore, in the seas, especially in the high 60 

latitudes, the prediction of currents is crucial for port, pipeline, and logistics development, as 61 

well as for the analysis of sea ice drift for safe logistics. In this context, the development of a 62 

machine learning model for the prediction of sea water movement and sea level variations is 63 

essential.  64 

Sea currents and sea surface level prediction have a long history of development, starting 65 

with traditional empirical methods and evolving into modern AI methodologies. The early efforts 66 

held in the 17
th

 -19
th

 centuries (e.g. Halley, 1686; Maury, 1855) and relied on accindental in situ 67 

observations. With the transition from single observations to systematic measurements, the 68 

emergence of scientists specializing in hydrodynamics and ocean studies, the development of a 69 

network of observation stations and scientific equipment, analytical methods of describing 70 

observed phenomena were formed in (Navier, 1822; Stokes, 1845) and numerically solved in (V. 71 

Bjerknes, 2023; Vilhelm Bjerknes, 1903). In the early 20th century, V. Walfrid Ekman's research 72 

on wind-driven surface currents laid important groundwork for understanding ocean transport 73 

mechanisms. It laid the foundation of geophysical fluid dynamics and led to the pioneering work 74 

of numerical weather forecasting of (Richardson, 1922). The first numerical forecasts in 75 

oceanography were developed for the wind-driven waves by (Sverdrup & Munk, 1947). 76 

Development of numerical methods based on solving the Navier-Stokes equations continued in 77 

the ocean simulations with the first models (Bryan, 1969) and succeded in mesoscale ocean 78 

circulation forecasting by 1983 (A. R. Robinson, 1983). Over time, increased computational 79 

power and improved mathematical representations of ocean processes have enabled more 80 

sophisticated forecasting models. The satellite remote sensing era, that began nearly at the same 81 

time, provided massive volume of data for observing and assimilating sea surface height data 82 

into models.  83 

All it made the global ocean reanalysis and forecasting projects available. Operational 84 

forecasting centers like the European Centre for Medium-Range Weather Forecasts (ECMWF) 85 

and the National Oceanic and Atmospheric Administration (NOAA) began running global ocean 86 

prediction systems to support weather, climate and marine applications (Storto et al., 2019), 87 

while regional models with finer resolutions also emerged for areas like the Arctic (Chen et al., 88 

2009).    89 

With the availability of petabytes of oceanographic and remote sensing observations, 90 

with the outputs of numerical model simulations, with the growth of computational power, 91 

artificial intelligence (AI) tools are increasingly being leveraged in a variety of applications in 92 

oceanography (Dong et al., 2022). The high energy efficiency of the AI models (e.g. (Pathak et 93 

al., 2022) also contributes to their spreading. 94 

Various AI algorithms are now being used for the identification of mesoscale eddies (Du 95 

et al., 2019; Duo et al., 2019; Franz et al., 2018; Lguensat et al., 2018; Santana et al., 2020; Xu et 96 

al., 2019, 2021), forecasting surface waves (Buinyi et al., 2022; Fan et al., 2020; Gao et al., 97 

2021; Mandal & Prabaharan, 2006; Zhou et al., 2021), prediction of  features, like the Indian 98 

Ocean Dipole, with a multi-task deep learning model in (Ling et al., 2022), that outpermormed 99 

traditional numerical multiseasonal prediction.   100 

The topics of sea surface heights and currents forecasting are also covered with the AI 101 

methods. One approach is the use of deep learning methods such as ConvLSTMP3, which 102 

extracts spatial-temporal features of sea surface heights using convolutional operations and long 103 

short-term memory (LSTM) (Song et al., 2021). One more paper (Zulfa et al., 2021) uses LSTM 104 

to predict sea surface velocity and direction, achieving good results with low Mean Absolute 105 
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Percentage Error (MAPE) values in Labuan Bajo waters. In the paper (Ning et al., 2021) an 106 

optimized Simple Recurrent Unit (SRU) deep network was develped for short-to-medium-term 107 

sea surface height prediction with AVISO data.  108 

There are a lot of promising results in geosciences now. We have created MariNet, the 109 

ML architecture, and compared its output with two state-of-art ML models of different 110 

architectures to test their ability in the Arctic region forecasting. In the current work, we test the 111 

algorithms on the surface currents data and sea surface heights.  112 

2 Materials and Methods 113 

In the initial stages of our research, we harnessed PhyDNet and FourCastNet, two of the 114 

most promising machine learning architectures applicable to the ocean state forecasting available 115 

at the time, for the comparison with MariNet, our Neural Network. The neural networks are 116 

described below.  117 

2.1 MariNet neural network 118 

MariNet is an artificial neural network (ANN) based on the parallel encoder-decoder 119 

architecture within which ConvLSTM modules are embedded in latent space (Buinyi et al., 120 

2023). The ConvLSTM itself is introduced by (Shi et al., 2015) and described as a type of neural 121 

network architecture that combines convolutional and LSTM layers. Due to the successful 122 

architecture design it is used for spatiotemporal data analysis and prediction, such as a 123 

precipitation nowcasting (Shi et al., 2015), a temperature (Lin et al., 2019) or flood (Moishin et 124 

al., 2021) forecasting, predicting the arctic sea ice concentration (Liu et al., 2021) and seismic 125 

events (Fuentes et al., 2021) with relatively high reliability.     126 

The architecture of our model is shown on the Figure 1. MariNet consists of several 127 

interconnected encoder-decoder blocks, within which ConvLSTM modules are embedded 128 

between the encoder and the decoder. Each ConvLSTM module contains several parallel 129 

ConvLSTM cells connected in such a way that the sum of their outputs forms the resulting 130 

forecast of time series in the latent space. This design allows the neural network to 131 

simultaneously detect temporal dependencies at various frequencies without assumptions about 132 

frequency distribution and a priori defined data distributions. 133 
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 134 

 135 
Figure 1. The architecture of MariNet 136 

 The encoder-decoder blocks are interconnected in such a way that the input to each 137 

subsequent block is the result of subtracting the original data from the original data passed 138 

through the first convolutional layer in the block, which produces average pooling. Moreover, 139 

the size of the convolution in the first layer of the block varies for each block. This solution helps 140 

to hierarchically highlight patterns in images: first, the neural network is trained to work with 141 

larger patterns. Then it analyzes smaller patterns and their conditional dependencies on larger 142 

ones. 143 

A key feature of the model's operation is the forecasting algorithm. Here, we don’t use a 144 

typical recursive algorithm, where the forecast from the previous step is cyclically fed into the 145 

neural network to form a forecast for the next steps. Our neural network sequentially receives 146 

several previous values for the water velocity and sea surface heights. Therefore, instead of 147 

getting a single array for one time point, our neural network is initialized by the dynamics of 148 

such arrays, which allows for a more accurate assessment of the state of the forecasted values, 149 

and consequently, ensures a more precise forecast. 150 

2.2 Phydnet neural network 151 

PhyDNet is a deep learning model introduced in (Le Guen & Thome, 2020) and designed 152 

for unsupervised video prediction. Due to its architecture, the model integrates physical 153 

knowledge into the learning process, making it effective for tasks such as weather forecasting, 154 

fluid dynamics, and other physical phenomena prediction. The model leverages physical 155 

knowledge on dynamics and disentangles it from other unknown factors. To achieve this goal, 156 
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authors introduced a PhyDNet disentangling architecture, and PhyCell physically-constrained 157 

recurrent cell.  The recurrent block projects input video frames into a latent space. This 158 

projection is achieved through a deep convolutional encoder, which transforms the input video 159 

into a lower-dimensional representation. The latent space is where the disentanglement of 160 

physical dynamics and residual information occurs. Two parallel neural networks are responsible 161 

for it: PhyCell and ConvLSTM. PhyCell is a recurrent cell that models and solves Partial 162 

Differential Equations (PDE) with internal physical predictor computing and combining partial 163 

derivatives with convolutions. PhyCell allows exploiting prior physical knowledge to improve 164 

prediction of a model, add explainability and leverages physical constraints to limit the number 165 

of model parameters. The ConvLSTM network is trained to learn the residuals, or errors, of the 166 

physical model's predictions. By learning these residuals, the network can correct the physical 167 

model's predictions and improve the overall accuracy of the system. Learned physical and 168 

residual representations are summed before decoding to predict the future video frame. As a 169 

result, PhyDNet generates one-step-ahead prediction that can be extended by recursive feeding 170 

predicted frame into the model. It's important to note that predictions are reinjected as the next 171 

input only for the ConvLSTM branch, and not for PhyCell. This is because the PhyCell is 172 

designed to capture the deterministic physical dynamics, which should not be influenced by the 173 

predictions. 174 

In (Le Guen & Thome, 2020) PhyDNet has been compared with PredRNN, ConvLSTM, 175 

Causal LSTM, Memory in Memory (MIM), outperformed them and showed itself as one of the 176 

state-of-the-art model of its time. Therefore, we have chosen PhyDNet to compare with our 177 

model. 178 

2.3 FourCastNet neural network 179 

FourCastNet, or Fourier ForeCasting Neural Network is first described in (Pathak et al., 180 

2022). It is a data-driven global weather forecasting model that provides short to medium range 181 

predictions. It is trained with an ERA5 reanalysis from the European Centre for Medium-Range 182 

Weather Forecasts (ECMWF), which has hourly estimates of atmospheric variables at a 0.25° 183 

resolution. FourCastNet utilizes a Fourier transform-based token-mixing scheme (Guibas et al., 184 

2021) which is complemented with a vision tranformer (ViT) backbone (Dosovitskiy et al., 185 

2021). This method is grounded in the recent advancements in the Fourier neural operator, or 186 

Adaptive Fourier Neural Operator (AFNO) that has demonstrated success in modeling 187 

challenging partial differential equations (PDE), including fluid dynamics, in a resolution-188 

invariant manner (Li et al., 2020).  189 

According to (Pathak et al., 2022) the use of ViT backbone is preferred due to its ability 190 

to effectively model long-range dependencies. The combination of ViT and Fourier-based token 191 

mixing produces a high-resolution model that effectively resolves fine-grained features and 192 

scales well with the size and resolution of the dataset, leading to the training of high-fidelity 193 

data-driven models at an unprecedented resolution.  194 

The original version of FourCastNet models 20 variables at five vertical levels, that are: 195 

surface air pressure, mean sea level pressure, air temperature at 2m from the surface, zonal and 196 

meridional wind velocity 10m from the surface; zonal and meridional wind velocity at 1000, 197 

850, and 500 hPa; air temperature at 850 and 500 hPa; geopotential at 1000, 850, 500, and 198 

50hPa; relative humidity at 850 and 500hPa, and Total Column Water Vapor. Authors use the 199 

model to predict such variables as the surface wind speed, precipitation, and atmospheric water 200 

vapor. They propose FourCastNet to be implied for planning wind energy resources, predicting 201 
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extreme weather events such as tropical cyclones, extra-tropical cyclones, and atmospheric 202 

rivers. FourCastNet matches the forecasting accuracy of the ECMWF Integrated Forecasting 203 

System (IFS), a state-of-the-art Numerical Weather Prediction (NWP) model, at short lead times 204 

for large-scale variables, while outperforming IFS for small-scale variables, including 205 

precipitation.  206 

According to (Pathak et al., 2022), the FourCastNet uses such metrics as Root Mean 207 

Squared Error (RMSE), Anomaly Correlation Coefficient (ACC) at lead times of up to three 208 

days  and gives results comparable to the ECMWF Integrated Forecasting System (IFS), one of 209 

the best to the moment classical numerical model used by ECMWF to construct reanalyses and 210 

make weather forecasts.   211 

2.4 Metrics for the model output quality estimation 212 

We trained all three netwoks with the data on the surface water currents and the sea 213 

surface heights, started the inferences and compared their outputs with several metrics: Root 214 

Mean Squares Error (RMSE), Bias and Correlation. They are defined as: 215 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑥𝑖 )

2𝑁
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1

𝑁
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where 𝑥𝑖 is the original data value for a given timestep, 𝑦𝑖 is a predicted value for a given 222 

timestep, N – the length of the timeseries. 223 

In scholarly terms, the Root Mean Square Error (RMSE) quantifies the divergence in 224 

magnitude between the model's predictions and the actual observations. It is preferable for the 225 

RMSE to be smaller as this signifies a better alignment between predicted and actual values. 226 

Bias, on the other hand, signifies the systematic deviation of the approximated quantifier 227 

from the real value and can be interpreted as a consistent overestimation or underestimation of an 228 

output. It is desirable for the bias to be closer to zero, indicating that the estimates are nearer to 229 

the actual data. 230 

The correlation, in contrast, is a statistical measure that sheds light on the degree to which 231 

two variables share a linear relationship. This relationship is frequently deployed to depict the 232 

linear association between two contingent factors. Greater values of correlation denote a stronger 233 

relationship between the two variables. 234 

3 Data 235 

The Copernicus Marine Environment Monitoring Service (CMEMS) offers a 236 

comprehensive global ocean analysis and forecast system through its Global Ocean Physics 237 

Analysis and Forecast (CMEMS-GLO-PUM-001-024) product. The system operates at a high-238 
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resolution scale of 1/12°, updated daily, and provides global ocean forecasts for a 10-day period 239 

(Operational Mercator Global Ocean System). The dataset employs a combination of the 240 

numerical ocean model NEMO 3.6 with LIM3 Multi-categories sea ice model, ECMWF IFS 241 

HRES atmospheric forcing, and several data assimilation techniques, like SAM2 (SEEK Kernel) 242 

4D, allowing for seamless integration of in-situ and satellite observations.  243 

For our needs we choose the region bounded by 60°N-90°N and 5°E-150°W and obtain 244 

the hourly surface data of zonal sea water velocity (u), meridional sea water velocity (v), and sea 245 

surface height above geoid (zos) for 2019-2022. We interpolate them to the 6-hour temporal 246 

resolution and 0.25°x0.25° spatial resolution and feed the data to the ML models.   247 

4 Results 248 

MariNet model shows promising results. The figures representing metrics of FourCastNet 249 

model have artifacts. The average metrics are shown in Table 1. According to the table, MariNet 250 

model has minimal RMSEs for the sea surface heights and components of surface sea water 251 

velocities. The bias of the MariNet model is also the closest to zero among the mentioned 252 

models. Mean correlation between models in average is not significantly high. Nevertheless, the 253 

PhyDNet and MariNet demonstare here the highest correlation, that is about 0.5 for the sea 254 

surface velocities and 0.4 for the sea surface heights.   255 

Table 1  256 

Metrics of MariNet, FourCastNet and PhyDNet for zonal and meridional components of surface water velocities 257 

and Sea Surface Heights 258 

 
Model RMSE (m/s) Bias (m/s) Correlation 

u 

MariNet 0.027 -0.001 0.507 

FourCastNet 0.051 0.003 0.432 

PhyDNet 0.043 0.004 0.519 

v 

MariNet 0.028 0 0.515 

FourCastNet 0.051 0.002 0.428 

PhyDNet 0.044 0 0.524 

ssh 

MariNet 0.027 -0.001 0.430 

FourCastNet 0.082 -0.050 0.367 

PhyDNet 0.046 0.003 0.451 

 259 

Figure 3 demonstrates the temporal evolution of the RMSE for the sea surface velocity and the 260 

sea surface heights for the chosen models through the prediction time. As we see, all RMSEs 261 

monotonically grow. According to the plots, MariNet and PhyDNet demonstrate close results, 262 

their RMSEs grow from the 0.01 m/s and 0.01 m to about 0.04 m/s and 0.045 m for sea water 263 

velocity and sea surface heights respectively.   264 

 265 

 266 
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 267 
 268 

Figure 2. Plots of temporal evolution of RMSE for Zonal (upper image), Meridional (middle 269 

image) Components of Surface Water Velocity (m/s), and the Sea Surface Heights (m) above 270 

geoid for MariNet (blue line), PhyDNet (green line), and FourCastNet (orange line) models. 271 

 Figures 3-5 show maps of RMSE for zonal components of surface water velocity for the 272 

research area. All three models have similar spatial distribution of RMSEs, with the high values  273 

in the areas with more active ocean circulation and the low values in the eastern offshore areas. 274 

In average, MariNet results with a twice less RMSE compared with other two neural networks.  275 

 276 

 277 
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 278 
Figure 3. RMSE (in m/s) for Zonal Component of the Surface Water Velocity for MariNet model 279 

 280 

 281 
Figure 4. RMSE (in m/s) for Zonal Component of the Surface Water Velocity for FourCastNet 282 

model 283 

 284 
Figure 5. RMSE (in m/s) for Zonal Component of the Surface Water Velocity for PhyDNet 285 

model 286 

   287 



manuscript submitted to The Journal of Advances in Modeling Earth Systems 

 

 288 

 Computational Cost of MariNet 289 

With the CodeCarbon software package, we have calculated the carbon emissions and the energy 290 

consumption of the MariNet, FourCastNet and the PhyDNet for our calculations. Results are 291 

shown in the Table 2. Training of the MariNet model has the least carbon emission rate, but, due 292 

to the relatively large time of training, it takes the most energy. At the same time, PhyDNet wins 293 

the energy consumption and the emission rate challenges.   294 

Table 2  295 

Comparison of the carbon emissions and energy consumption during the models training and 296 

inference 297 

  

Model Training Model Inference 

Emissions 

Rate (g/s) 

Energy 

Consumed 

(kW) 

Time 

(hrs) 

Emissions 

Rate (g/s) 

Energy 

Consumed 

(W) 

Time 

(sec) 

FourCastNet 0.100 103.356 103.30 0.104 0.431 1.997 

PhyDNet 0.116 103.734 119.06 0.02353 0.001097 0.0224 

MariNet 0.083 214.788 257.90 0.0908 0.0973 0.515 

 298 

5 Conclusions 299 

In the study, we proposed a forecast model MariNet model, based on the encoder-decoder 300 

architecture, and compared it with FourCastNet and PhyDNet, the most promising ML models in 301 

the field weater prediction of their time. We have chosen the Arctic region, one of the hottest 302 

spots of the modern climate science research and obtained the hourly data on zonal and 303 

meridional velocities of the surface sea water and sea surface heights above geoid from the 304 

Copernicus Marine Data Store. We switched temporal resolution from 1 hour to 6 hours and fed 305 

the datasets to the MariNet model, PhyDNet and FourCastNet.  306 

 In comparison with the other mentiones ML models, the RMSE and bias of the MariNet 307 

model are significantly lower. At the same time, the mean correlations of all three models with 308 

the original data are moderate and located between 0.4-0.5.  309 

The above experimental results all show that the MariNet model has great potential in the 310 

mid-term predictions of the ocean dynamics. The further development of the model incudes 311 

imroving the efficiency of computational operations, expanding the number of parallel running 312 

modules of our model to capture more temporal and spatial features of data variability, and 313 

increase the number of variables used in training. 314 
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