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Abstract

Climate change is likely to alter the selective pressures that drive shifts in adaptive variation. For species with long life histories
and low dispersion capacities, rapid climate change could impede the migration of beneficial alleles and their ability to track
changing environments. Disentangling the processes of adaptive genetic variation in tree species has important implications for
conservation and forest management. In this study, we used landscape genomic approaches and phenotypic data from range-
wide sampling to investigate the adaptive genetic and phenotypic variation of the oak Quercus longinuz, which is endemic in
Taiwan. Among 2,000 single-nucleotide polymorphisms (SNPs) generated by double-digested restriction-site associated DNA
(ddRAD) sequencing from 205 individuals, 35 drought- and freeze-resistance genes exhibited signatures of natural selection
driven by various environmental pressures. GradientForest and redundancy analysis showed that these putative adaptive
SNPs had elevated associations with climate and soil variations. The proportion of joint effects of demography, geology,
and environments was high, indicating covariation of environmental gradients and colonization history. Compared with other
populations, Q. longinuz var. kuoi, a unique variety limited to southern Taiwan, exhibited substantial phenotypic, ecological,
and adaptive divergence. Finally, we used the environmentally associated SNPs to estimate the genetic offset for each individual
under different climate change scenarios, which revealed that edge populations in northern and southeastern Taiwan may be
threatened by rising temperatures and reallocation of precipitation. Our study shed light on the pattern of environment-driven
adaptation and provides prediction for future vulnerability of island oaks in subtropical and tropical regions.
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1 Introduction

Trees profoundly influence global carbon cycles and ecosystem stabilization [1-3]. The effects of anthro-
pogenic climate change on precipitation and temperature patterns have altered the distribution, community
composition, and phenology of forest trees worldwide [4-7]. However, the impacts of climate change on focal
species vary [8-12]. For example, warming temperatures may have a positive effect on the growth rate of
trees from colder environments but a negative effect on trees from tropical regions [10, 13|. Higher tempera-
tures and increased aridity are predicted to increase stress reactions in forest trees under drought conditions,
especially tropical and subtropical tree species [14-17].

Studies of the potential response to climate change based on field experiments have emphasized the impor-
tance of phenotypic variation for adaptation to local climate and acclimation to drought and cold stresses
[18, 19]. However, field experiments are unrealistic for species with long lifespans, such as trees, or en-
dangered species with limited populations. An alternative approach is genotype—environment association
(GEA) analysis, which identifies environmental factors that select for genetic characteristics [20, 21]. By
predicting the vulnerability of forest trees to climate change and environmental factors that may restrict
future distribution, GEA analyses can provide a foundation for conservation projects and forest management
[22-24].



Although GEA studies have implied that standing genetic variation may enable some tree species to cope
with climate change, the long lifespans and low germination rates of tree species may limit the pace of
adaptation to acute and drastic environmental changes [25]. Moreover, the applicability of the results of
GEA studies to conservation projects may be confounded by several factors. For example, the geographical
distance between source and sink populations and the composition of natural barriers to gene flow may
influence pollen dispersal direction and germination rates for introgression between populations [26]. These
factors could reduce the spread of beneficial alleles (i.e., genetic rescue effects) [27]. Incorporating landscape
analyses into GEA studies could improve the evaluation of genetic vulnerability, assessment of vulnerable
populations, and inference of potential dispersal routes under climate change [28, 29].

The tree family Fagaceae is ecologically and economically important and has been widely studied in landscape
genetics research [30, 31]. The varied natural habitats of Fagaceae species offer ideal study systems for
exploring the effects of environment on genetic diversity, local adaptation, and the response to climate
change [32, 33|. Studies have shown that environmental factors, such as precipitation and temperature,
significantly affect the adaptive divergence of Fagaceae species [34], but the impacts of other abiotic factors,
such as wind, topology, and soil, have largely been ignored [35, 36]. Field experiments have shown that
wind and soil factors are prominent drivers of local adaptation of plant morphology and physiology [37,
38|, but the potential impacts of these factors on genomic architecture and phenotypic variation across the
heterogeneous landscape of Fagaceae species have not been comprehensively established [19, 37, 39, 40]. This
is particularly true for Fagaceae species on the subtropical island of Taiwan, where the mountainous terrain
and diverse climate have created a range of habitats [41-43].

The rapid development of novel analytic methods in landscape genomics provides unprecedented opportu-
nities to examine new hypotheses and assess vulnerable populations using different statistical assumptions
in the context of climate change [2]. If climate change disrupts the allele frequencies that underlie current
genetics—environment relationships, vulnerable populations may become less resilient or even extinct locally
[44-47]. In this study, we adopted Quercus longinuz Hayata, an endemic Fagaceae species in Taiwan, as the
study species to evaluate the complex effects of environment on local adaptation and the response to climate
change. Q. longinuz inhabits mountainous ranges across Taiwan, from low to middle elevations (500 m to
2,200 m above sea level) [48]. Based on its wide distribution along latitudinal and altitudinal gradients, Q.
longinuz is classified into three varieties (i.e., var. longinuz, var. kuoi, and var. lativiolaciifolia), and large
morphological variations in fruits and leaves between habitats have been observed [48]. Q. longinux var.
longinux and var. lativiolaciifolia grow sympatrically at low to middle elevations in Taiwan. By contrast, Q.
longinuz var. kuoi is allopatric with the other varieties and is limited to southeastern Taiwan. Compared
with the other two varieties, Q. longinuz var. kuoi has longer, broader leaves that are green on both sides
when fresh and have a non-violet abaxial surface when dried [48]. Environmental variations may influence
several leaf traits associated with photosynthetic efficiency and acclimation to abiotic stresses [49-51]. Iden-
tifying variations in not only genetic data but also leaf morphology that are associated with environment
could shed light on the processes that gave rise to the unique Q. longinuz var. kuoi in southern Taiwan.

This work was guided by three objectives. First, we aimed to infer genetic structure and assess the con-
sistency of relationships between genetic data, ecological niches, and phenotypic traits for Q. longinux var.
kuoi, a special allopatric variety limited to southern Taiwan. We hypothesized that the distinct habitats
in southern Taiwan influence population structures and result in differentiated genetic characteristics that
correspond with morphological traits. Second, we aimed to identify environmental features that affect spatial
genetic variation and adaptive genetic divergence. We hypothesized that classic temperature and precipita-
tion factors influence genetic divergence and that wind- and soil-related factors participate in adaptation to



heterogeneous habitats in Taiwan. Third, we aimed to use adaptive genetic variants to evaluate the vulner-
ability of populations to climate change. We hypothesized that edge populations and populations subject to
the most severe environmental changes will experience the highest genetic offsets and face the highest risk
of local extinction.

2 Materials and methods

2.1 Sampling, sequencing, read mapping, and variant calling

We collected 26 populations spanning all known distributional regions of Q. longinuz in Taiwan (Fig. S1;
Table S1). From each selected tree, a branch with more than ten mature leaves was collected for morphological
measurements. Fresh leaves were stored in silica gel at 4°C until DNA extraction.

DNA was extracted using the modified CTAB method based on Doyle [52]. DNA quality and quantity were
evaluated with a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA) and
Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, United States), respectively. After quality control,
DNA from 205 individuals was used for dd-RAD library construction. The library was double digested by
Sbfl and Msp! and ligated to Illumina sequencing adapters with individual barcodes and library indices.
Fragments of 250-500 bp were selected and amplified by polymerase chain reaction (PCR). Finally, the
fragments were sequenced using Illumina HiSeq X (Illumina, USA) to generate 150-bp paired-end reads.

We trimmed the raw reads to remove adapters, reads < 50 bp, and reads with quality < 30 using fastp [53].
The clean reads were mapped to the reference genome of Q. robur [54] using the mem algorithm of BWA
[55]. Aligned reads with a mapping quality score < 20 were discarded. PCR duplicates were marked with the
Picard Toolkit (http://broadinstitute.github.io/picard/). We further performed realignment around indels
using ABRA2 [56]. Summary statistics, including read number, mapping rate, and coverage, were calculated
from SAMtools [57]. Variants were called with BCFtools [58]. We first generated genotype likelihoods at
each genomic position with coverage using the BCFtools mpileup command and called the variants with
default parameters. After removing indels, we retained biallelic SNPs with missing rates < 0.4, minor allele
frequencies > 0.01, genotypes with quality scores >30, and mean minimum depths > 3 as filtering thresholds
in VCFtools [59].

2.2 Genetic diversity, genetic structure, and demographic analysis

To evaluate and visualize the genetic clusters of Q. longinuzx, we first performed principal component analysis
(PCA) using a genetic matrix in which missing data were replaced with mean values of each site in the R
package adegenet [60]. Next, pairwise Fgr, population-specific Fist, and permutational multivariate analysis
of variance (PERMANOVA) were performed with the R packages hierfstat [61] and vegan [62] to evaluate
differentiation among defined genetic clusters. A neighbor-joining (NJ) tree was also constructed based on
the Nei distances from the R package ape [63]. We then employed StrAuto [64] analysis to assess the pattern
of admixture among populations using 100,000 steps of MCMC chains with 25,000 steps burn-in and 10
iterations from K = 1 to 8. The results were uploaded to the CLUMPAK [65] server to generate consensus
plots and evaluate the best K according to the AK value.

A stairway plot was used to infer historical changes in the effective population size (Ne) of Q. longinux [66].
We first generated the site frequency spectra (SFSs) from easySFS (GitHub repo: https://github.com/
isaacovercast/easySFS) using all SNPs and selected the projection values with the highest segregating sites
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for each group. We then ran bootstrapping 1,000 times to estimate median sizes and 95% CIs, assuming a
mutation rate of 1.01 x 108 per bp per generation and a generation time of 50 years for oak species [67].

2.3 Environmental variables and GIS processing

Three categories of environmental variables were collected: 105 climate variables, eight soil variables, and
four topological variables (Table S2). The climate variables included BIO01-19, seven monthly precipitation
factors, temperature, solar radiation, and wind speed downloaded from WorldClim2 [68] and two aridity-
associated layers [69]. Eight physicochemical soil characteristics downloaded from SoilGrids 2.0 were used
as the soil variables [70]. For topography, the altitude layer was downloaded from GOV.DATA.TW (htt-
ps://data.gov.tw/), and three altitude-derived layers (i.e., roughness, aspect, and slope) were computed with
the R package raster [71]. All variables were resampled to a resolution of 1 km? for the downstream analyses.
To address the issue of multicollinearity, variables with VIF > 10 and Pearson correlation coefficient |r| >
0.8 were discarded, leaving 20 environmental variables among the three categories (Table S3; Supplementary
data) for use in the subsequent analyses. We compared differences in the environmental variables between
groups using analysis of variance (ANOVA) and Tukey’s honestly significant difference test applied in the R
package stats [72].

2.4 Assessment of ecological and morphogenetic divergence
2.4.1 Niche differentiation assessment

To harness the power of GEA analysis to evaluate a species’ ability to cope with future climate change, it
is crucial to include non-genetic factors that may be associated with fitness to local environments, such as
niche characteristics and phenotypic traits. To investigate and quantify the niche overlap and diversification
between the three (eastern, western, and southern) genetic groups revealed in our results, we first assessed
the overlap of the realized niche using the first two axes from the environmental PCA performed with the
20 retained environmental variables in the R package ecospat [73]. Five hundred pseudo-absence points were
added to the analyses as background. In addition, we calculated two niche overlap indices: Schoener’s D and
the standardized Hellinger-transformed Warren’s I based on occurrence density grids. Next, we conducted
the equivalency test with 100 permutations and the background test with 100 runs to evaluate the significance
of niche differentiation at p < 0.05. The equivalency test and background test were implemented with the R
package ENMtools [74].

2.4.2 Phenotypic trait analysis

To quantify the contributions of genetic and environmental factors to phenotypic variations, we measured
12 morphological leaf traits that are commonly used in morphological studies of Fagaceae and other plants
(Table S3; Fig. S2; Supplementary data) [75-77]. A total of 826 dried leaves of 191 individuals from 26
populations (1-5 leaves per individual) were recorded with a digital camera and measured using ImageJ [78].
Because the measured traits may be highly correlated with leaf size, an additional six computational traits
that are not typically correlated with leaf size were added [77]. We first performed PCA and PERMANOVA
with the six computational traits (i.e., shape-related traits and specific leaf area (SLA)) and abaxial surface
color to quantify morphological differences among groups using the R package vegan [62]. Biplots of the
attributes and contributions were visualized with the R package factoextra [79]. Differences in traits between
groups were compared using ANOVA and Tukey’s post hoc test. Next, we performed partial redundancy
analysis (RDA) to evaluate the contributions of geography, demography, and environment to phenotypes
using all scaled phenotypic traits as the response.



To further investigate the associations between morphological variables and environmental predictors, we
constructed univariate generalized linear models (GLMs) with one of the leaf traits as the response (Table
S4) and one of the environmental variables as the predictor in the R package MASS [80].

2.5 Detection of local adaptation and underlying gene functions
2.5.1 Identification of environment-associated genetic variants

We integrated two Fgp-based outlier detection methods and one genotype—environment association (GEA)
approach to detect environment-associated SNPs. First, we implemented BayeScan [81] and PCAdapt [82] to
identify SNPs with a significant departure of allele frequency from neutrality while controlling for background
genetic structure. BayeScan was run with posterior odds (PO) = 100, and SNPs with ¢ < 0.01 were retained
as putative outliers. PCAdapt was performed with the number of K principal components (PCs) selected by
the decreasing order of the percentage of variation explained by each PC. We further implemented Benjamini—
Hochberg correction [83] on the results and retained the SNPs with a false-discovery rate (FDR) < 10% as
candidate outliers.

Second, we utilized a univariate approach, the latent factor mixed models (LFMM) algorithm [84, 85], to
discover SNPs that were significantly correlated with environmental variables while accounting for population
genetic structure. Imputation of missing data and determination of latent factors (K) were performed by
the snmf function in the R package LEA [84]. LFMM was performed in the R package LEA [84] using
the retained environmental variables with ten runs, and Z-scores from each run were combined. To further
adjust the p-values, the Benjamini-Hochberg procedure [83] was used, and FDR < 10% was used to identify
putative adaptive outliers. SNPs that overlapped between significant environment-associated outliers and the
BayeScan or PCAdapt outliers were regarded as putative adaptive SNPs for use in downstream analyses.

To investigate and compare the roles of geography, demography, and environment in shaping the genetic
variation of adaptive and all SNPs, we decomposed the relative contributions of each group of predictors using
three methods. First, Mantel tests were used to test for associations between Fgr/(1-Fgr) and geographic
distance (isolation by distance, IBD) and environmental distance (isolation by environment, IBE) using the R
package vegan [62]. Environmental distances were represented by the Euclidean distances of scaled climatic,
soil, and topographical variables. Values of pairwise F'st between populations were calculated with the R
package hierfstat [61]. Differences in Fgr between adaptive and all SNPs were compared by ANOVA in the
R package stats [72].

Second, we performed partial redundancy analysis (RDA) using three predictor datasets: (1) proxies of
geographic structure obtained by converting the geographic coordinates to uncorrelated axes using principal
coordinates of neighborhood matrices (PCNM) in the R package vegan [62] and retaining half of the positive
axes; (2) proxies of demographic history obtained by performing PCA using the genetic matrix of all SNPs
and retaining the PC scores from PC1 to PC2; and (3) the 20 retained environmental variables. The genetic
metrics calculated from the adaptive or all SNPs were used as the response variables. To further quantify the
variation explained by each group of environmental variables, we performed another partial RDA using the
20 environmental variables, which were classified into (1) climatic, (2) soil, and (3) topographical variables,
as predictors of the two genetic metrics as the response. The significance of the full models and pure fractions
was assessed using 999 permutations with the function anova.cca() of the R package vegan [62].



Third, we used GradientForest (GF), a non-linear and machine-learning approach derived from the random
forest algorithm [86]. GF was performed with the genetic metrics of the adaptive or all SNPs. The number
of regression trees was set to 500, the maximum number of splits was set using the formula logs (0.368 X
number of individuals/2), and the correlation threshold r was set to 0.5, as suggested in a previous study
[86]. The importance of each group of predictors was evaluated by the percentage of weighted R2.

2.5.2 Gene annotation and enrichment analysis

To further investigate the potential gene functions of putative environment-associated SNPs, we retrieved
the closest genes with a physical distance < 10 Kbps as potential underlying genes using BEDOPS [87].
The closest genes were further annotated to the Arabidopsis thaliana genome using KOBAS-T [88] with the
criterion of e-value < 107°. After retrieving the homologous genes, gene enrichment analysis was performed
with the GO and KEGG databases to detect enriched pathways using KOBAS-I. Significance was assessed
with Fisher’s exact test [89], and FDR was corrected with the Benjamini and Hochberg procedure [83]. FDR
< 5% indicated significantly enriched GO terms or pathways.

2.6 Investigating the influences of current landscape variables on genetic differentiation

To compare landscape characteristics that shaped the differentiation of adaptive or all SNPs, we construc-
ted IBD, IBE, and isolation by resistance (IBR) models using Fgr/(1-Fgr) calculated from adaptive or
all SNPs as a response. Six predictor matrices were generated, including a geographical Euclidean distan-
ce metric (IBD), three environmental Euclidean distances calculated from the climate, soil, and topology
factors (IBEciimate; IBEsoil, and IBEopology), and two circuit-theory-based resistance layers calculated with
CIRCUITSCAPE [90] using distribution maps of ecological niche modeling from the factors of climate and
topography (e'g'a IBRclimatm IBRtopography)-

We used two complementary approaches to compare the models. First, reciprocal causal modeling (RCM)
[91] was performed to evaluate the relative importance of each model based on the relative values of partial
Mantel tests estimated from each focal and alternative model. All partial Mantel tests were computed using
the R package vegan [62] with 999 permutations. Second, we implemented the maximum likelihood population
mixed-effects model (MLPE) [92] to compare each predictor based on the AIC values. Models with DAIC
> 2 were considered to have different model fits. MLPE was implemented with mlpe_rga in the R package
ResistanceGA [93]. In addition, we performed an estimated effective migration surfaces (EEMS) analysis
[94] to visualize geographic regions deviating from the assumption of IBD. Missing data were imputed and
converted to genetic distance using the function bed2diffs. Next, EEMS was executed with RunEEMS_SNPS
with a Deme number of 500. A total of 500,000 Markov chain Monte Carlo (MCMC) iterations were run
after a burn-in of 150,000 and a thinning interval of 9,999.

2.7 Investigating the impacts of future climate change on genetic adaptedness
2.7.1 Ecological niche modeling

To investigate the current potential distribution range of Q. longinuz, we performed ecological niche modeling
(ENM) using an ensemble approach based on the true skill statistic (T'SS)-weighted combination of six
methods in the R package sdm: maxent, glm, svin, gam, mda, and mlp [95]. Five hundred pseudo-absence
data were generated and added to the analyses. A total of 60 runs with 10-fold cross-validation analyses were
performed. We then used the area under the receiver-operator curve (AUC) to evaluate model performance.
Finally, the habitat prediction was transformed into a binary map that classified suitable and unsuitable
regions using the threshold of maximum test sensitivity plus specificity.



2.7.2 Genetic offset assessment

We applied five temperature and precipitation variables (i.e., BIO1, BIO3, BIO12, PREC4, and PREC10)
selected from the obtained factors with accessible prediction layers to assess the influence of climate change on
Q. longinuz. We downloaded and averaged the predictions from three future models (CCSM4, MIROC-ESM,
and MIROCS5) in 2070 to account for model variability. We also considered two contrasting representative
concentration pathways (RCPs): a low-emission model (RCP2.6) and a high-emission model (RCP8.5) from
CMIP5 for 2070. Three complementary approaches were used to evaluate genetic offset. We first calculated
the risk of non-adaptedness (RONA), which represents the theoretical changes needed in allele frequency
to maintain the linear environment-genotype relationships with correction on weighted R?, implemented
in pyRONA [96]. We retained the top three representative climatic variables with the highest number of
significant outliers.

Second, as a complementary method to RONA, we used a random forest algorithm to model the non-
linear relationships between adaptive SNPs and the same climatic variables as RONA in the R package
GradientForest [86]. PCA was performed on the GF model to visualize the prediction of genetic variation in
spatial regions, and the first three principal components (PCs) were assigned to a red—green—blue palette.
The genetic offset in the GF model was calculated as the Euclidian distance between the current and future
genetic composition at each grid. The binary map generated by ENM was used as a mask to limit prediction
within suitable habitats.

Third, following Gougherty, Keller [97], we integrated migration to predict maladaptation to future climate
using a generalized dissimilarity modeling (GDM) algorithm [2] with local, forward, and reverse genetic
offsets. Local offset represents the predicted in situ change in allele frequencies with no migration. Forward
offset was calculated by selecting the minimum offset between each grid in the current range and all grids
in the future climate, and reverse offset was calculated by identifying the minimum offset between each grid
within the current range in the future and all grids in the current climate. For forward offset, the distance
required to migrate to the place with minimum forward genetic offset and the direction (bearing) of migration
were also recorded. No dispersal limitation was assumed for forward and reverse offsets to any locations in
the suitable habitats. Finally, to simultaneously visualize local, forward, and reverse offsets, we mapped the
three metrics as red, green, and blue in an RGB image.

3 Results
3.1 Population structure and demographic history

On average, 70.9% of reads per sample were successfully mapped to the reference genome of Q. robur. We
recovered 624,451 SNPs and retained 1,933 high-quality SNPs with an average individual missing rate of
11%. StrAuto revealed three genetic clusters (Fig. 1a): the eastern and western clusters, which are mainly
separated by the central mountain range (CMR), and a cluster in the Henchung Peninsula that was limited
to southern Taiwan, denoted as HC. Multiple individuals showed admixture with other clusters (Fig. 1b).
PCA and the neighbor-joining (NJ) tree produced consistent patterns (Fig. 1c; Fig. S3a-b). Fgr was higher
between genetic clusters than within groups, and divergence was highest between HC and either the eastern
or western cluster (Fig. S4c). Similar results were obtained by PERMANOVA (Table S5). According to the
stairway plot (Fig. S4d), Ne has differed between HC and the other two clusters since 1 million years ago
(Fig. S4d). The apparent population decline of HC 1 million years ago was preceded by a period of larger
population size. By contrast, the eastern and western clusters underwent a relatively recent population
decline in the last 100,000 years.
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Figure 1: Spatial genetic structure of Q. longinuz in Taiwan. (a) Sampling populations annotated with
ancestral components inferred by StrAuto according to K = 3. (b) Results of StrAuto from K = 2 to 3.
The height of each colored segment represents the possible ancestry of each individual derived from inferred
ancestors. (c) Results of PCA with different colors reflecting different groups.

3.2 Influence of landscape factors on population genetic divergence

We identified 182 Fgr outlier SNPs (PCAdapt + BayeScan) and 540 SNPs that were significantly associated
with one or more environmental variables by LEMM (Fig. 2). A total of 105 putative adaptive SNPs
(identified by the overlap between LFMM and Fgr outliers) were found in 35 genes (Table S6) that were
widely distributed across the genome and did not cluster in specific regions.
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Figure 2: Results of the genetic scans. The Venn diagram shows the overlap of the loci identified by each
method.

Fgr was stronger and more significant when the adaptive SNPs were used instead of all SNPs (mean Fgr
all loci = 0.09; mean Fgr outlier = 0.59; p < 0.05), indicating that selection may drive the spatial genetic
differentiation between populations. Compared to all loci, the adaptive loci exhibited stronger IBD and
IBE patterns (Fig. 3a). Using reciprocal causal modeling (RCM) and a maximum likelihood population
mixed-effects model (MLPE), IBE was consistently identified as superior to other competitive models using
adaptive SNPs when controlling population structure, indicating that genetic differentiation of the adaptive
SNPs was mainly influenced by environmental variation (Fig. 3b-c; Table 1). Furthermore, the divergence
of the genetic structure of HC from those of the other clusters was greater when divergence was assessed
by adaptive SNPs than by neutral SNPs (Fig. S4a-b). By contrast, IBR based on topographical resistance
was selected as the best model by MLPE and RCM using all sites, suggesting that the overall genetic
differentiation of the species was mainly influenced by topographical dispersal barriers (Fig. 4a-b; Table 1).
The conductance layers generated by the CIRCUITSCAPE algorithm and the estimated effective migration
surface (EEMS) analysis also supported topographical resistance across regions, with greater barriers to
dispersal at higher elevations (Fig. 4c-d).
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Table 1: Results of the MLPE models on the datasets for outlier loci and all SNP sites. Note: AAIC is the
difference in AIC values between the specific model and the best-supported model (lowest AIC); logLik, log
likelihood.

a b All loci
25 25 E-E.IBE_climate EO.A
204 204 IO o 0 [-0.1[-0.5 001 [ 020/ IBR _climate |
% %
w15 w15
= - 0
E 1.0 . - T IW.O- ////
0.5 SBleR 054 / * 02
0.0 | R 0.0 | IR §os
. v ' i \ : ' -
0 1 2 3 2 4 6
Geographic distance Soil distance
257 2.5
c Outlier loci
2,04 2.0 oo o] oe i B
P Y = -0.18 0. 018/ IBE_climate
i : Type  maey
U 1.5+ U154 1048 0.00 [-0.07| IBR_climate
%1.0- S5 L Alloct 0o v | 1BD 04
] b ' ;
w 9 oo w ¥ ol Outliers * BE_soil 0
| - J -
0.5 1 0.51° S P BE_topo
0.04 ——x,—-wr'—r—' ;—' gl R 048 0.00 |IBR_topo g
2 4 6 8 01 2 3 45 T DD DD [02
Climate distance Topology distance 'T \f ° 'T i L
55 2838
o o o
T T

Figure 3: Landscape genetics of Q. longinuz and factors influencing genetic divergence. (a) Isolation by
distance (IBD) analysis and three isolation by environment (IBE) analyses based on adaptive sites (green dots
and upper lines) or all SNP sites (red dots and lower lines). (b) Results of reciprocal causal modeling using
all SNP sites or (¢) adaptive loci. The y-axis represents focal models, and the x-axis represents alternative
models. The colors of the heatmap indicate differences in Mantel’s R between the focal and alternative
models. Fully supported focal models are marked with asterisks.
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Figure 4: Maps of the potential barriers and corridors to gene flow of Q. longinuz. (a) Results of the EEMS
analysis of regions significantly deviating from isolation by distance (IBD). The blue, white, and orange
colors illustrate regions with high dispersal rates (dispersal corridor), IBD, and low dispersal rates (dispersal
barrier), respectively. (b) Results of the effective diversity (i.e., the modeled dissimilarity between pairs of
individuals from the same location) estimated by the EEMS analysis. Blue and orange represent regions of
high and low genetic diversity, respectively. The black dots indicate the sampling locations. (c) Potential
corridors for gene flow in the isolation by resistance (IBR) models constructed using climatic factors and
(d) topographical factors. Lighter colors represent greater ease of movement (conductance) through the
landscape.

The results of partial RDA indicated that pure environment was the most significant variable affecting the
genetic variation of adaptive SNPs among three pure-effect portions; whereas pure demography was the
most important pure-effect portions of all SNPs when controlling other factors (Fig. S5; Table 2). Forward
selection also identified population structure as the most significant variable affecting the genetic variation of
adaptive SNPs (Table S7). Environmental variables contributed to 80% of the explained variation in adaptive
loci but 60% of the explained variation in all loci (Fig. S5). For adaptive loci, the three groups of variables
explained a large proportion of the joint effects (45% of explained variation) (Fig. S5; Table 2). Another
partial RDA that decomposed the contributions of climate, soil, and topography to the genetic variation in
either the adaptive or all SNPs revealed that pure climate and soil variables explained significantly more of
the genetic variation in adaptive SNPs than topography variables (Fig. S5). In agreement with the results
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of partial RDA, GF analysis demonstrated that demography was the top variable with the highest weighted
R? (Table S8; Fig S6), although geography explained a higher proportion of variation after summing the
total weighted R? (demography: 32%; geography: 47%).
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lier SNPs
SNPs
Partial RDA p Proportion of Proportion p Proportion of Proportion
models (LF) explainable of total (LF) explainable of total
variation variation variation variation
Full model 0.0 1 0.42 0.0 1 0.14
*okok *kk
Pure environment 0.0 0.16 0.07 0.0 0.19 0.03
KoKk *kk
Pure geography 0.0 0.1 0.04 0.0 0.14 0.02
*okok *okk
Pure demography 0.0 0.08 0.03 0.0 0.24 0.03
*okok *kk
Joint environ- 0.66 0.28 0.44 0.06
ment/geography /demography
total unexplained 0.58 0.86

Table 2: Results of partial RDA performed with different datasets to decompose the influences of climate,
geography, and demography on genetic variation. *p<0.05, **p<0.01, ***p<0.001. Note: The statistical
significance is given for each model (*** [7] 0.001) together with the percentage of explained genetic
variance compared to the variance explained by the full model and compared to the total variance.

3.3 Functional annotation of adapted loci

Several Q. longinuz loci involved in climate and soil adaptation were associated with environmental variables
(Table S6). Two functional pathways were significantly enriched in adaptive loci: oxidative phosphorylation
and photosynthesis.

Furthermore, the allele frequencies of the annotated loci were associated with environmental gradients (Fig.
5a), indicating adaptation signals. Wind and soil gradients were significantly associated with the allele
frequencies of ATPD, NF-Y19, cob, rpoB, and ABCG34 (Fig. 5b; Table S6). Some outliers, such as ADH1
orthologs, were associated with annual mean temperature and precipitation in spring (Fig. 5a). Other genes,
including AT2G40435, the NET1D ortholog, and the HSP70 ortholog, were also involved in precipitation-
and temperature-associated adaptation (Fig. 5b; Table S6).
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Figure 5: Results of environment-dependent outlier detection. (a) Associations between allele frequencies
and environmental variables. The black dots represent the average allele frequencies of all adaptive loci
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sites associated with WIND10, PREC04, CLYPPT, and BIO01. The orange dots represent significant loci
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3.4 Analyses of ecological niche and morphometric distinctiveness

Consistent with the genetic data, niche analysis of the first two axes of the environmental PCA and both
overlap indices showed that the eastern and western clusters had a higher degree of niche overlap with each
other than with HC (Fig. S7). HC was characterized by niches with higher mean annual temperature
and lower precipitation in spring compared to those of the other clusters (Fig. S7). The equivalency test,
background test, and ANOVA demonstrated that the three clusters occupied significantly different ecological
niches (Fig. S7; Fig. S8).

The PCA and RDA of phenotypic traits were also congruent with the genetic analyses and showed that HC
was morphologically and ecologically differentiated from the other clusters (Fig. 6a-b; Fig. S9; Fig. S10),
which was classified as Q. longinux var. kuoi. Although the eastern and southern clusters had a high degree
of overlap according to the first two PC axes, PERMANOVA indicated significant differentiation between
the two clusters (Table S9). Partial RDA using all phenotypic traits as responses demonstrated that pure
geography contributed more variation than pure environment, and a large intersection between their interac-
tions was found (Fig. 6¢-d; Table S10). The GLMs revealed that leaf traits were significantly associated with
environment, but the directions of the relationships (i.e., positive or negative) differed depending on the trait
and environmental variable (Fig. S11). For example, leaf thickness was positively correlated with annual
temperature (r = 0.22, p < 0.01), whereas leaf length was negatively correlated with annual precipitation
(r =-0.22, p < 0.01).

3.5 Genetic offset and prediction of the response to future climate change

The high AUC value (average AUC = 0.81) suggested a good model fit for the predicted distribution of Q.
longinuz (Table S11; Fig. S12). As the predictions under different RCPs were highly correlated (Table S12),
we inferred RONA based on the average values from both predictions. Substantial variations in the RONA
estimates between populations and the top three representative environmental variables were observed (Fig.
Ta-c; Table S10). The RONA estimates were larger in regions with greater differences between current and
future climates (Fig. Ta-c). Whereas the eastern and western populations had relatively low RONA values
(< 0.2) for the three variables, the northern populations were predicted to suffer from severe winter rainfall
(precipitation in October, Fig. 7a) in the future and had much higher RONA values (> 0.6).

The GF model constructed with five climatic variables suggested that precipitation in winter was the most
influential variable with the highest weighted R? (Fig. S13). The focal species exhibited strong spatial
patterns, indicating adaptation to local climate conditions (Fig. 7d). Consistent with the results of the
RONA analysis, the GF model estimated highly correlated results between RCPs with similar genetic offset
patterns (Fig. 7e-f). Both the RONA analysis and the GF model indicated that the northern populations
were the most vulnerable to future climate change (Fig. 7e-f).
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Figure 7: Prediction of genetic offset under future climate change based on (a, b, ¢) RONA and (d, e, f) GF
methods. (a), (b), and (c¢) reflect the RONA values estimated for PREC10, BIO12, and BIO03. The color
gradients represent the average differences in climatic variables between current conditions and 2070 climate
change scenarios. (d) RGB map of the first three PC axes based on the GF prediction, which depicts the
genetic turnover of adaptive loci. (e) and (f) illustrate the genetic offset throughout the range of Q. longinux
under the RCP2.6 (c¢) and RCP8.5 (d) scenarios in 2070. The colors of the cells represent the values of
genetic offset estimated based on the GF procedure.

Although the predicted patterns of local, forward, and reverse offsets varied throughout the range of Q.
longinuz, these offsets were consistently predicted to be highest in the northernmost and southeastern popu-
lations (Fig. 8a-b). More migration events were predicted for the northern populations, with longer distances
to minimize forward offsets in the RCP8.5 model than in the RCP2.6 model (Fig. 8c-f).
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Figure 8: Map of the GDM-predicted genetic offset across the distribution of Q. longinuz under the RCP2.6
(a, ¢, e) and RCP8.5 (b, d, f) climate change scenarios. (a) and (b) show the RGB maps of local (red),
forward (green), and reverse (blue) offsets under RCP2.6 (a) and RCP8.5 (b) in 2070. Brighter cells represent
relatively high values along each of the three axes, whereas darker cells indicate relatively low values. (c) and
(d) depict the direction of forward offsets among the distribution range of Q. longinuz under RCP2.6 (c)
and RCP8.5 (d) in 2070. (e) and (f) represent the estimated distances between source cells with the lowest
forward offset to sink cells under RCP2.6 (e) and RCP8.5 (f) in 2070.

4 Discussion

We analyzed genomic data and phenotypic traits to explore the genetic architecture of several environment-
associated adaptations of Q. longinuz, a dominant evergreen forest tree species on the subtropical island
of Taiwan in East Asia. We identified several SNPs with strong effects on adaptation to environmental
factors, including some factors that have rarely been discussed in GEA studies (e.g., soil- and wind-related
factors). We found that leaf traits were influenced by the interaction of demographic and environmental
factors. Moreover, we determined that the populations in northern and southeastern Taiwan are the most
vulnerable to future climate change. Finally, we identified populations with unique genetic and phenotypic
characteristics in southern Taiwan. These populations are potential targets for conservation efforts in forest
management to preserve unique and adaptive genetic resources.

4.1 Distinct genetic separation of southern populations from eastern and western populations
in Taiwan
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Three putative genetic clusters were classified using PCA and StrAuto. The eastern and western clusters
were mainly separated from each other by the CMR and were mixed in northern and southern Taiwan.
Similar patterns of east—west divergence have been observed for other plants in Taiwan [98, 99], implying
that the mountain ridges and rugged topography act as profound barriers to gene flow and contribute to the
divergence of species occupying low-to-middle elevations in Taiwan. The third cluster, HC, was limited to the
Henchung Peninsula in southern Taiwan, which has been identified as the main glacial refuge in Taiwan for
other Fagaceae species, such as Q. glauca and Castanopsis carlesii [100, 101]. The EEMS analysis revealed
higher genetic diversity in HC and genetically admixed populations in southern and northern Taiwan. The
populations of HC were genetically differentiated from other populations, as suggested by higher pairwise
Fg7 and distinct trajectory of changes in Ne in the past 1,000 years. Taken together, our results reveal
significant genetic differentiation between the eastern cluster, western cluster, and HC and suggest that HC,
morphologically classified as Q. longinux var. kuoi, in the southernmost part of Taiwan may have diverged
earlier than the other two clusters.

A distinct group of Q. longinuz populations, group HC, with unique leaf and fruit traits in tropical marine
climates in southern Taiwan was previously classified as Q. longinuz var. kuoi. This variety has no whitish
epicuticular wax coating on abaxial surfaces [48]. The classification of this variety is consistent with the
genetic and morphological separation of the southernmost population from other populations of Q. long-
inux that we observed in the present study. Niche analyses also demonstrated that the habitats harboring
Q. longinux var. kuoi were significantly different from those of the other populations, with no ecological
overlaps, indicating that Q. longinux var. kuoi may face different environmental pressures. Moreover, we
found evidence of adaptive divergence between Q. longinuz var. kuoi and other populations. For example,
the low spring precipitation and high clay content in habitats in southeastern Taiwan may act as strong
environmental stresses that initiate genetic and phenotypic adaptation (e.g., drought resistance) in response
to local conditions. In plant species, hostile environmental conditions in edge populations prompt local
adaptation processes [102]. The substantial divergence, relatively high genetic diversity, and high offsets of
the populations in southern Taiwan indicate that Q. longinux var. kuoi is a conservation unit that should be
prioritized for protection as a source of adaptive genetic variations related to high temperature and drought
resistance under climate change.

4.2 Topography as a key driver of genetic differentiation in Quercus longinuzx

The IBR model caused by the topographical barrier was the most influential factor restricting gene flow and
driving the overall genetic differentiation of Q. longinux. The conductance layers of topographical barriers
and the EEMS analysis also revealed significantly higher resistance in regions at high elevations. The diverse
topography and mountainous areas of Taiwan have led to genetic diversification of various plants and animals
[103, 104]. Elevation has been recognized as the main driver of genetic differentiation in other Quercus species
distributed in temperate regions [105]. We found that topographical resistance in alignment with mountain
ridges was the most profound factor contributing to genetic differentiation on Taiwan Island. Fagaceae
typically disperse their seeds through rodents or birds, while their pollens are transported by wind [106-109].
Rodents are the primary carriers and predators of several Quercus species in temperate ecosystems [110,
111] and subtropical forests [112]. Studies suggest that genetic clusters of rodents found at mid-elevations
in Taiwan, where most Fagaceae species grow, are separated by mountain ridges and rugged topography
[113-115]. Therefore, the dispersal distance of Quercus seeds in Taiwan may be limited by the dispersal
abilities of sympatric rodents. Monteiro, Veiga [116] also suggested that elevational barriers are a common
obstacle to gene flow for animals in tropical and subtropical regions. Animals in these areas face difficulties
in crossing high elevations due to their inability to acclimate to sudden changes in temperature [117].

4.3 Environmental heterogeneity drives adaptive genetic divergence and phenotypic variation
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IBE was the most strongly supported model based on putative adaptive loci, whereas IBR mainly drove
genetic differentiation based on all SNPs. PCA also revealed less genetic admixture when genetic differentia-
tion was assessed by GEA outliers compared to neutral SNPs, indicating that the three genetic clusters (i.e.,
eastern, western, and HC) were exposed to different environmental pressures and had undergone adaptive
divergence. However, the partial RDA revealed a large intersection of explained variation (45%) shared by
environment, geography, and colonization history, suggesting that environmental variation highly covaried
with other confounding factors. Similar covariations have been observed for other evergreen species. For ex-
ample, the south-to-north postglacial expansion of the red spruce along the Appalachian Mountains created
high collinearity between genetic structure, climate gradients, and geographic distributions [118]. Similarly,
evergreen subtropical trees in Taiwan underwent south-north expansions after the Last Glacial Maximum
and may have developed adaptations to latitudinal gradients of temperature and precipitation, resulting in
confounding relationships between geography, genetic structure, and adaptation. Consequently, it was chal-
lenging to attribute and disentangle the genetic variation explained by each category of predictors, leading
to a non-significant impact of pure climate variables.

Leaf shape is affected by various environmental factors, such as precipitation and temperature, which maxi-
mizes photosynthetic efficiency and adaptation to harsh environments [75, 119-121]. We found that several
leaf traits of Q. longinuz were influenced by environmental factors (Fig. S11; Table S10). The negative
correlation between leaf length and annual precipitation contradicts previous findings [51, 122]. However,
we observed a positive correlation between annual precipitation and wind speed in winter and a negative
correlation between annual precipitation and solar radiation in summer (Fig. S14). Strong wind and weaker
solar radiation may counteract the effects of increased annual precipitation on leaf length. Similar confound-
ing effects of climatic factors on leaf growth and elongation were observed in Fagus sylvatica [76]. We
demonstrated that the interaction of environment and geographic relationships mainly contributed to the
explained variation in leaf traits. Demographic history provided only a limited contribution to leaf variation,
suggesting that phenotypic plasticity or local adaptation contributed by local climate surpasses the impact
of demographic history on leaf traits.

Temperature and precipitation are known drivers of genetic adaptation in Fagaceae [34]. This study expands
the environmental factors considered compared to previous GEA studies and demonstrates that significant
selection is initiated by multiple environmental factors in an endemic Quercus species. First, we found that
wind speed in cold seasons influenced leaf traits and adaptive genetic variation (Table S7; Fig S11). Wind
intensity has been shown to reduce plant growth and height and increase stem thickness [123, 124]. Wind
also influences transpiration rates and stomatal conductance, indirectly affecting photosynthetic efficiency
and water requirements [125, 126]. Some genes correlated with wind speed were also significantly associated
with precipitation-related factors (e.g., ATPD, NF-YCP), implying that elevated evaporation rates caused
by strong wind may result in drought-like stress, which plants may respond to through similar genetic
pathways. Second, we determined that soil-related variables contributed 60% of the variation in adaptive
divergence, indicating critical roles of these variables in local adaptation of Q. longinuz. The characteristics
of soil particle sizes represent the potential water content and salt stress in local soils. In general, soil
particle size is negatively correlated with water availability, implying potential abiotic pressure from water
deprivation during dry seasons [36, 127]. Consistent with this conclusion, we observed a correlation between
genes involved in the response to drought and grid size. In summary, our findings provide a new perspective
for future GEA studies by indicating that some environmental variables with important but rarely tested
physiological impacts can be used to unravel the intricate mechanisms by which plants respond and adapt
to heterogeneous environments.

4.4 Adaptive genes underlying local adaptation in Quercus longinux
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We identified several genes involved in adaptation to the local environment (Table S6). We also identified
two significantly enriched functional pathways, oxidative phosphorylation and photosynthesis, which have
been implicated in plant adaptation and physiological responses to abiotic stress [128, 129]. Oxidative
phosphorylation helps regulate reactive oxygen species (ROS) generation by plant mitochondria under abiotic
stresses. The efficiency and regulation of photosynthesis strengthen the plant and sustain its growth and
development under stressful or unfavorable conditions [130]. These results suggest that the identified adaptive
SNPs underlie the response to different abiotic stresses. We also observed associations between the allele
frequencies of the annotated genes and environmental gradients. For example, loci of ADHI are strongly
associated with annual mean temperature and precipitation in spring. ADHI is responsive to multiple
abiotic stimuli, including low temperature, hypoxia, flooding, salt, and dehydration [131-133]. In legumes,
ADH1 is a target of miRNA regulation under water-deficit to coordinate ROS levels [134]. Under stressful
cold situations, ADH1 plays a crucial role in maintaining the stability of membrane structure to enhance
cold resistance in plants [128]. Other genes involved in precipitation- and temperature-associated adaptation
include orthologs of AT2G40435, which is involved in responses to biotic and abiotic stresses [135, 136];
NET1D, which is expressed in root tissues and mediates uptake in response to stress [137]; and HSP70,
which stabilizes and refolds heat-inactivated proteins to protect cells from heat damage [138].

Although we used several procedures to evaluate the putative adaptive SNPs identified in this study, the
interpretations of the constructed GEA relationships and identified outliers are subject to limitations. First,
we scanned the outliers using relatively few loci (approximately 2,000 SNPs), which may bias the identified
loci and elevate the false-positive rate in GEA approaches [139]. Second, a large proportion of the variation
was explained by several confounding factors simultaneously, making it challenging to detect true adaptive
signals from spatial autocorrelation and colonization history [118]. Controlling for genetic structures may
reduce the false-positive rate but cause many or most adaptive loci to be missed [118, 139]. To minimize
the false-positive rate, we used two other Fgp-based outlier analyses in addition to LEMM. This approach
strongly reduces the false-positive rate but may bias the scanning toward strong selective sweeps by excluding
several small-effect loci that may be equally important in shaping adaptive variation.

4.5 Assessing genetic vulnerability and climate adaptation in Quercus longinux

The projections of genetic offset from GF and RONA revealed that the populations in northern Taiwan might
experience the most considerable turnover of genetic composition to cope with future climate change (Fig.
7). Winter precipitation in northern Taiwan is expected to more than double according to both emission
models (current: 302 mm, RCP2.6: 682 mm, RCP8.5: 635 mm). The drastic increase in winter precipitation
will negatively impact forest productivity [140] because the complex relationship between precipitation and
water availability affects plant growth and phenology [140, 141]. Winter precipitation significantly impacts
the phenology of oaks, including the onset and duration of flowering, bud bursting, and leaf flushing, and
thus may greatly affect the likelihood and extent of gene flow between populations [142]. Considering the
long generation time of oaks and the difficulty of juvenile growth in occupied forests, the expected changes
in allele frequency to adapt to increased winter precipitation in the northern populations (RONA > 0.6)
may not be achievable through standing genetic variation alone.

Under the emission model of intensified global warming (RCP8.5), southward migration over long distances
(> 200 km) will increase to minimize forward genetic offset. Although we accounted for migration in es-
timating genetic offset, the northernmost and southeastern populations consistently showed relatively high
local, forward, and reverse offsets. Our results indicate that no current populations across the distribution of
Q. longinux are preadapted to future climates in these regions. The northern and southeastern populations
are crucial genetic sources for climatic adaptation in other regions and should be prioritized in conservation
strategies and protection efforts. Moreover, the rugged topography in mountainous regions may further ham-
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per the movement of populations to higher elevations. Assisted gene flow from other populations preadapted
to future climates may help marginal populations mitigate the effects of climate change [143]. For example,
southern populations (e.g., HC) may act as potential sources of adaptation to high temperatures and sea-
sonal arid climates for populations at higher altitudes and latitudes where higher future temperatures are
predicted. However, the source populations must be selected carefully to ensure genetic compatibility with
the sink populations and new environments [143].
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