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Abstract

Integrated hydrologic models can simulate coupled surface and subsurface processes but are computationally expensive to run

at high resolutions over large domains. Here we develop a novel deep learning model to emulate continental-scale subsurface

flows simulated by the integrated ParFlow-CLM model. We compare convolutional neural networks like ResNet and UNet run

autoregressively against our novel architecture called the Forced SpatioTemporal RNN (FSTR). The FSTR model incorporates

separate encoding of initial conditions, static parameters, and meteorological forcings, which are fused in a recurrent loop

to produce spatiotemporal predictions of groundwater. We evaluate the model architectures on their ability to reproduce 4D

pressure heads, water table depths, and surface soil moisture over the contiguous US at 1km resolution and daily time steps over

the course of a full water year. The FSTR model shows superior performance to the baseline models, producing stable simulations

that capture both seasonal and event-scale dynamics across a wide array of hydroclimatic regimes. The emulators provide over

1000x speedup compared to the original physical model, which will enable new capabilities like uncertainty quantification and

data assimilation for integrated hydrologic modeling that were not previously possible. Our results demonstrate the promise of

using specialized deep learning architectures like FSTR for emulating complex process-based models without sacrificing fidelity.
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Key Points: 14 

 Deep learning models can emulate a complex integrated hydrology model that simulates 15 

groundwater over the United States 16 

 We developed a new model architecture that is more robust over longer simulation 17 

periods than off-the-shelf neural networks 18 

 Deep-learning based emulators of complex models enable new applications such as real-19 

time forecasting and estimating uncertainties 20 
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Abstract 22 

Integrated hydrologic models can simulate coupled surface and subsurface processes but are 23 

computationally expensive to run at high resolutions over large domains. Here we develop a novel deep 24 

learning model to emulate continental-scale subsurface flows simulated by the integrated ParFlow-CLM 25 

model. We compare convolutional neural networks like ResNet and UNet run autoregressively against 26 

our novel architecture called the Forced SpatioTemporal RNN (FSTR). The FSTR model incorporates 27 

separate encoding of initial conditions, static parameters, and meteorological forcings, which are fused in 28 

a recurrent loop to produce spatiotemporal predictions of groundwater. We evaluate the model 29 

architectures on their ability to reproduce 4D pressure heads, water table depths, and surface soil moisture 30 

over the contiguous US at 1km resolution and daily time steps over the course of a full water year. The 31 

FSTR model shows superior performance to the baseline models, producing stable simulations that 32 

capture both seasonal and event-scale dynamics across a wide array of hydroclimatic regimes. The 33 

emulators provide over 1000x speedup compared to the original physical model, which will enable new 34 

capabilities like uncertainty quantification and data assimilation for integrated hydrologic modeling that 35 

were not previously possible. Our results demonstrate the promise of using specialized deep learning 36 

architectures like FSTR for emulating complex process-based models without sacrificing fidelity. 37 

 38 

Plain Language Summary 39 

Computational models are important for understanding and predicting terrestrial hydrology, but 40 

our most physically detailed models can be time-consuming and expensive to run over large 41 

regions. In this study, we trained deep learning models to emulate a complex hydrology model 42 

that simulates groundwater flow over the contiguous US. We developed a new model 43 

architecture called FSTR that captures spatiotemporal patterns better than standard deep learning 44 

models. FSTR is over 1000 times faster than ParFlow, the original hydrologic model. This 45 

enables new possibilities like forecasting groundwater changes and estimating uncertainties. Our 46 

results show that specialized deep learning architectures can accurately emulate complex 47 

hydrologic models while drastically reducing computation time.  48 

1 Introduction 49 

Computational models have been hugely successful in predicting and building understand of 50 

Earth and environmental systems. Since their early use in the mid twentieth century these models 51 

have increased in complexity to account for higher spatiotemporal resolution and physical 52 

process complexity. To achieve the highest possible degree of physical realism scientists and 53 

engineers often must run these models on high-performance computing clusters and 54 

supercomputers, which require large institutional investment to build and maintain. In addition, 55 

the computational complexity of using these models on such platforms requires considerable 56 

expertise to use effectively. As a result, these large-scale and highly complex models are 57 

typically only used by a small subset of researchers.  58 

Emulation (also referred to as reduced order models (ROMs) or surrogate models) has long 59 

been a popular method to reduce the computational complexity of running simulations in a 60 

number of domains (Astrid et al., 2008; Razavi et al., 2012; C. Wang et al., 2014). Reducing the 61 

computational complexity of process based models makes it possible to build more complex 62 

workflows such as building model chains, performing parameter calibration or sensitivity 63 

experiments (Cheng et al., 2023), and running more scenarios to better understand uncertainties 64 

(Kasim et al., 2021). One avenue that is becoming increasingly popular is the use of deep 65 
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learning (DL) based methods for building emulators of process based models (Doury et al., 2023; 66 

Leonarduzzi et al., 2022; Reichstein et al., 2019; Tran et al., 2021).  67 

Deep learning has recently and quickly become a standard piece of the computational 68 

modeling toolkit and offers almost universal applicability to modeling tasks (Jordan & Mitchell, 69 

2015). It has also proven very powerful in allowing researchers to take models from disparate 70 

applications and apply them to new problems (Khan et al., 2022). This is true in the Earth system 71 

sciences and related fields, where deep learning models have been used to simulate atmospheric 72 

phenomena (Brenowitz et al., 2020), predict flow in rivers (Kratzert et al., 2018), and monitor 73 

land use (Xu et al., 2017) among many other applications. Specifically in hydrology the majority 74 

of applications are based around streamflow modeling or other forms of “point-scale” 75 

applications where the models are trained on individual sites (Bennett & Nijssen, 2021; de la 76 

Fuente et al., 2023; Gauch et al., 2021). However, we know that in subsurface hydrology lateral 77 

flow occurs, and can have large impacts on both human and natural systems (Condon & 78 

Maxwell, 2019; Fan, 2015).  79 

Hydrologic models that treat both the coupled surface and groundwater systems as well as 80 

account for lateral flow in the subsurface are commonly referred to as integrated hydrologic 81 

models. These models are among the most complex and comprehensive representations of the 82 

terrestrial hydrologic cycle that have been developed. However, they are often difficult to run 83 

because they are data-hungry and computationally heavy. This is particularly true in the 84 

subsurface, where observations are sparse and parameters are hard to measure (Blöschl et al., 85 

2019). Even when data is available, it is often difficult to calibrate these models because of the 86 

computational complexity and large-dimensional search space over parameter configurations 87 

(O’Neill et al., 2021). It should also be noted that the lack of spatiotemporally complete 88 

observations/reanalysis data for groundwater is a large reason that purely data-driven approaches 89 

have not emerged as they have in the weather forecasting domain (Chen et al., 2023; Keisler, 90 

2022; Lam et al., 2022). Because of these challenges the use of emulator or surrogate models is 91 

an appealing approach to improving the usability of integrated hydrologic models.  92 

In this study we demonstrate the use of modern deep learning based emulators of a 93 

continental scale integrated hydrologic model, without sacrificing spatiotemporal or process 94 

fidelity. Specifically, we emulate subsurface flow of the ParFlow-CLM model, developed over a 95 

large portion of the contiguous US at a high spatiotemporal resolution (Maxwell et al., 2015; 96 

Maxwell & Condon, 2016; O’Neill et al., 2021). Previous work has shown that deep learning is 97 

an effective approach to this problem, showing good performance on synthetic benchmarks ( 98 

Maxwell et al., 2021)and on smaller domains (Leonarduzzi et al., 2022; Tran et al., 2021). 99 

In this work, we compare the ability of three different deep learning model architectures to 100 

emulate 3d subsurface pressure fields simulated by ParFlow. We compare ResNet, UNet, and 101 

Forced-SpatioTemporal-RNN (FSTR) architectures; the first two are off-the-shelf convolutional 102 

neural networks (CNN) that we apply in an autoregressive fashion to build up spatiotemporal 103 

predictions. That is, we feed the previous output of the model as an input to the next step of the 104 

prediction process, in addition to other features.  105 

The FSTR model is a novel adaptation of the PredRNN model with action-conditioning, 106 

which is a video-prediction model that has proven capable for atmospheric & hydrologic 107 

modeling as well as robotics (Tran et al., 2021; Wang et al., 2017). We make use of the robotics 108 

terminology of “action-conditioning” to explicitly account for the meteorological forcings acting 109 

on the hydrology in a way that is separate from the subsurface parameters/geology and the initial 110 

state of the domain that we are simulating.  111 
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We compare the performance of the three model architectures for emulating the evolution of 112 

both pressure heads at multiple depths as well as the derived soil moisture states and water table 113 

depths. We find that the ResNet produces unstable results over long simulation rollouts, while 114 

the UNet and FSTR both show good overall capabilities at matching spatial and temporal 115 

patterns. Our FSTR architecture consistently shows the best performance results, and is capable 116 

of simulating a year of the entire domain in less than an hour on a single 40 GB Nvidia A100 117 

GPU, showing a >1000 times speedup as compared to the original simulations run on >3000 118 

CPU cores. Based on these findings we believe that our FSTR architecture could form the basis 119 

for a new set of modeling capabilities to fine tune model parameters and enable real-time 120 

ensemble-based forecasting. 121 

2 Methods 122 

2.1 Modeling domain and data 123 

Our modeling domain is based on the ParFlow CONUS1.0 model which is documented by  124 

(O’Neill et al., 2021). The domain covers the majority of the contiguous United States, plus 125 

some small portions of Canada and Mexico (Figure 1). We are primarily interested in 126 

representing the subsurface hydrology in this domain at a 1km gridded spatial resolution, with a 127 

daily timestep. The gridded domain amounts to a regular grid of 3342 by 1888 km in the 128 

longitudinal and latitudinal directions, respectively. The depth layers of our simulations increase 129 

in the downward direction, starting with shallow surface layers and a large groundwater layer. 130 

The depths of each layer are 0.1, 0.3, 0.6, 1, and 100 m from the surface to the bottom for a total 131 

of 5 layers. 132 

The simulations that we use for training/validation/testing have previously been validated 133 

against many observational datasets across multiple variables (e.g. streamflow, 134 

evapotranspiration, snow) with favorable results given the default parameter sets (O’Neill et al., 135 

2021). These simulations cover water years 2003-2006 at an hourly timescale. We aggregate all 136 

the data to a daily timescale by taking the daily means, totals, minimums, and maximums where 137 

appropriate. 138 

 139 
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 140 
Figure 1. The extent of our modeling domain, covering most of the Contiguous United States 141 

(CONUS). We show the long-term average water table depth to highlight the spatial variability 142 

of the domain. 143 

In this study we are primarily concerned with modeling subsurface and surface water flow, 144 

which is represented in ParFlow with Richard’s equation (Richards, 1931) parameterized by the 145 

van Genuchten closure relations between pressure heads and saturation content (van Genuchten, 146 

1980). Specifically, our emulation target is the full four-dimensional (time+space) pressure head 147 

field. From this pressure head field we can use the closure equations and additional calculations 148 

to calculate soil moisture and water table depth. The governing equations that describe the 149 

dynamics of the subsurface flows are given as: 150 

 151 

𝑆𝑠𝑆(𝜓)
∂𝜓

∂𝑡
+ ϕ

∂𝑆(𝜓)

∂𝑡
= Δ(−𝐾𝑠(𝑥)𝑘(𝜓) ⋅ ∇(𝜓 − 𝑧)) + 𝑞 

 152 

Where  𝑆𝑠 is the specific storage [𝐿−1], 𝑆 is the relative saturation [−], 𝜓 is the pressure head 153 

[𝐿], 𝐾𝑠 is the saturated hydraulic conductivity [𝐿𝑇−1], 𝑘 is the relative permeability  [−], 𝜙 is the 154 

porosity  [−], and 𝑞 is a source-sink term[𝐿3𝑇−1]. 155 

2.2 Model architectures 156 

We explore three deep learning model architectures to emulate the simulations described 157 

previously. Here we will describe the overall structure of each of these models, but will leave the 158 

detailed input/output setup of them for the following section. We employ three model 159 

architectures in this study: a Residual Network (ResNet; He et al., 2015), a UNet (Ronneberger 160 

et al., 2015), and a newly developed architecture that we refer to as the 161 

ForcedSpatioTemporalRNN (FSTR) model. The first two of these are relatively “standard” 162 

models in the deep learning literature at this point and have been used for a large array of tasks. 163 

Their architectures of the ResNet and UNet are shown in schematic form in figure 2, while the 164 

FSTR architecture is shown in figure 3. 165 
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 The development of the ResNet architecture is considered a milestone in the development of 166 

machine learning to the task of image classification and paved the way for the modern deep 167 

learning revolution (He et al., 2015). We consider the ResNet a strong baseline architecture to 168 

compare against as has been adopted by other studies with similar approaches (Haber & 169 

Ruthotto, 2018; Kochkov et al., 2021; Ott et al., 2020). This model consists of stacks of “residual 170 

blocks”, usually convolutional layers followed by a nonlinear activation function. Following 171 

these stacks is a residual connection, which adds the input back to the output of the residual 172 

block. Architectures with residual connections have been found to train more effectively, 173 

especially in very deep networks. We stack two residual blocks, each consisting of 1 depthwise-174 

separable convolutional layer with a layer norm and activation function, and a final 175 

convolutional layer. We use four layers with each layer having a hidden dimension of 256 176 

channels for this study. 177 

The second architecture that we consider is the UNet, which is named as such because of its 178 

use of successive downsampling and upsampling layers (along with skip connections) which 179 

allow the model to capture spatial relationships at varying resolutions. This type of architecture 180 

is considered state of the art in image segmentation which has applications in both remote 181 

sensing (Yuan et al., 2021) and medical imaging (Ronneberger et al., 2015). Like the ResNet, the 182 

UNet is mainly composed of stacks of convolutional layers. However, the UNet makes use of 183 

downsampling and upsampling to get a “multi-resolution” view of the data. In our model, we use 184 

stacks of these downsampling and upsampling layers which are composed of convolutional 185 

layers that are either preceded by MaxPool layers or followed by bilinear interpolation layers for 186 

down and upsampling, respectively. Each downsampling and upsampling layer consists of two 187 

convolutions followed by an activation. At parallel levels in the downsampling/upsampling skip 188 

connections are used to transfer information at multiple resolutions to the upsampling, which 189 

helps to preserve spatial structure in the data. Here we set the base dimension for the 190 

convolutional layer to be eight at the input and output and double/halve the hidden dimension for 191 

each down/up sampling layer respectively. 192 

 193 
Figure 2. Diagrams of the two baseline model architectures used in our experimental setup. Left 194 

shows a ResNet architecture, which stacks convolutional blocks with residual connections that 195 
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propagate the input signal into deeper layers. The right panel shows the UNet architecture, which 196 

also consists of convolutional blocks, but differs from the ResNet by using them in successive 197 

downsampling and upsampling configurations, which consider multiple resolutions of the input 198 

data. 199 

We also develop a novel architecture based on the PredRNN model, which is itself based on 200 

the Convolutional LSTM model (ConvLSTM; Shi et al., 2015). It attempts to take best practices 201 

from image modeling via CNNs and sequence modeling from recurrent neural networks (RNNs), 202 

particularly with the application of Long Short Term Memory networks (LSTMs; Hochreiter & 203 

Schmidhuber, 1997). The key insights that the developers of PredRNN and associated models 204 

had over the ConvLSTM architectures was that an additional memory/hidden state would better 205 

reflect the spatiotemporal state of the system, and could be shared amongst model layers. This, 206 

along with several other procedural training techniques led the PredRNN model to be one of the 207 

most performant video prediction models available (Wang et al., 2017). In the original PredRNN 208 

paper, the authors also introduced an “Action-Conditioned” variant, which allows the input 209 

sequence of a robotic arm to be used as a part of the prediction algorithm. We make use of this 210 

modification because the input to the robotic system “acts” on the video stream in a similar way 211 

that meteorological forcings “act” on the evolution of hydrologic states. 212 

The main modification that we make to the PredRNN structure is the use of encoders to 213 

initialize the memory and cell states for the model. These states are updated throughout the 214 

recurrent loop, and by default, are initialized as zeros in the PredRNN structure. However, our 215 

insight is that the initial conditions and subsurface parameters can be considered a sort of 216 

byproduct of the true memory of the natural environment, and thus can be used to initialize these 217 

hidden states. We use the initial conditions (i.e. the 3-dimensional pressure heads for the domain 218 

being simulated) to initialize the memory state and the parameter values (e.g. porosity and 219 

permeability for each cell) to initialize the cell states. Both encoders consist of convolutional 220 

layers that project the inputs into a higher dimensional space that matches the hidden states of the 221 

Action-Conditioned ST-LSTM which forms the backbone of the FSTR model. The initial 222 

conditions are used as input to the memory encoder as well as used as the starting input pressure 223 

field to the model. We use two layers of the AC-ST-LSTM layer in our model, each having a 224 

hidden dimension of 64. 225 

 226 
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Figure 3. An architecture diagram of our proposed model architecture, the Forced Spatio 227 

Temporal RNN (FSTR). Tensor variables are represented in yellow colors, while neural-network 228 

layers with trainable weights are drawn in blue. The red “initialization” phase is only run a single 229 

time per training example, while the update arrow is run in a recurrent loop. Quantities in the 230 

orange outlined boxes represent the hidden states and model inputs. 231 

 232 

The core of the FSTR model is the Action-Conditioned SpatioTemporal LSTM layer (AC-233 

ST-LSTM), which was introduced in Wang et al. (2017). This layer modifies the ConvLSTM 234 

model in ways that allow it to take in external inputs on the system in the form of an action that 235 

is fused to the hidden state by an elementwise multiplication. The equations for the AC-ST-236 

LSTM layer are given by 237 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑔 ∗ 𝑋𝑡 +𝑊ℎ𝑔 ∗ 𝐻𝑡−1
𝑙 ) 

𝑖𝑡 = σ(𝑊𝑥𝑖 ∗ 𝑋𝑡 +𝑊ℎ𝑖 ∗ 𝐻𝑡−1
𝑙 ) 

𝑓𝑡 = σ(𝑊𝑥𝑓 ∗ 𝑋𝑡 +𝑊ℎ𝑓 ∗ 𝐻𝑡−1
𝑙 ) 

𝐶𝑡
𝑙 = 𝑓𝑡 ⊙𝐶𝑡−1

𝑙 + 𝑖𝑡 ⊙𝑔𝑡 

𝑔𝑡
′ = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑖

′ ∗ 𝑋𝑡 +𝑊𝑚𝑔 ∗ 𝑀𝑡
𝑙−1) 

𝑖𝑡
′ = σ(𝑊𝑥𝑖

′ ∗ 𝑋𝑡 +𝑊𝑚𝑖 ∗ 𝑀𝑡
𝑙−1) 

𝑓𝑡
′ = σ(𝑊𝑥𝑓

′ ∗ 𝑋𝑡 +𝑊𝑚𝑓 ∗ 𝑀𝑡
𝑙−1) 

𝑀𝑡
𝑙 = 𝑓𝑡

′ ⊙𝑀𝑡
𝑙−1 + 𝑖𝑡

′ ⊙𝑔𝑡
′  

𝑜𝑡 = σ(𝑊𝑥𝑜 ∗ 𝑋𝑡 +𝑊ℎ𝑜 ∗ 𝐻𝑡−1
𝑙 +𝑊𝑐𝑜 ∗ 𝐶𝑡

𝑙 +𝑊𝑚𝑜 ∗ 𝑀𝑡
𝑙) 

𝐻𝑡
𝑙 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑊1×1 ∗ [𝐶𝑡

𝑙 , 𝑀𝑡
𝑙]) 

𝑉𝑡
𝑙 = (𝑊ℎ𝑣 ∗ 𝐻𝑡−1

𝑙 ) ⊙ (𝑊𝑎𝑣 ∗ 𝐴𝑡−1) 

Where 𝑋𝑡 is the input, 𝑊∙∙ are the weight matrices, 𝐻𝑡
𝑙 is the hidden state, 𝐶𝑡

𝑙 is the cell state, 𝑀𝑡
𝑙 238 

is the spatiotemporal memory state, 𝐴 is the action tensor, 𝑖, 𝑓, 𝑔 are the gating functions (along 239 

with their primed counterparts), 𝑉𝑡
𝑙 is the action fusion which allows for external inputs to 240 

modify the system, and 𝑜𝑡 is the output for timestep 𝑡, and 𝑙 is the depth layer of the network. 241 

Finally, the update step for the AC-ST-LSTM layer is  242 

𝐻𝑡
𝑙 , 𝐶𝑡

𝑙 , 𝑀𝑡
𝑙 = 𝐴𝐶-𝑆𝑇-𝐿𝑆𝑇𝑀(𝑋𝑡 , 𝑉𝑡

𝑙 , 𝐶𝑡−1
𝑙 , 𝑀𝑡

𝑙−1) 
Our model structure considers the meteorological forcings to be “action” tensors rather than 243 

model inputs directly. This delineation of information partitioning between the initial conditions, 244 

parameter values, and meteorological forcings in FSTR is very similar to how ParFlow and many 245 

other hydrologic models operate. 246 

All models take in daily minimum temperature, daily maximum temperature, total 247 

precipitation, snowmelt, and bulk evapotranspiration as the boundary condition forcing. Static 248 

parameters that the models take as input are porosity, permeability, van Genuchten n, van 249 

Genuchten alpha, topographic index, elevation, and a measure of distance to the nearest stream 250 

based on the digital elevation map. The static parameters were chosen to include the major 251 

parameters required to solve Richard’s equation as well as represent major topographic features 252 

at both point and aggregated scales. The models output 4-dimensional spatiotemporal predictions 253 

of the subsurface pressure heads for all grid cells in the input domain. All models are run in an 254 

auto-regressive fashion, meaning they start with the initial conditions as a starting point and then 255 

evolve their output in response to the forcings and parameter value inputs, at which point they 256 

use their own prediction as the initial state for the next time step.  257 
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At inference time (that is, after the models have been trained) we use the models to produce 258 

the full 4D pressure head field, which is the quantity that is treated most fundamentally by the 259 

form of Richard’s equation that is used in the ParFlow simulations. However, when using 260 

ParFlow model outputs it is often more useful to calculate other quantities such as soil moisture 261 

and water table depth from the subsurface pressure head field. We make a similar conversion to 262 

the model outputs by processing them into water table depth and surface soil moisture. These 263 

quantities are calculated in the same way that they are in standalone ParFlow simulations, but 264 

rather than using the functionality to compute this translation from ParFlow we re-implemented 265 

the routines in a PyTorch compatible layer, which in theory could provide these translations at 266 

training time. We do not take this approach here, however, due to several technical challenges 267 

which will be discussed later but could form the basis for training a fully differentiable model 268 

directly to data in the future. 269 

2.3 Experimental setup 270 

In this study we explore the ability of the three neural network architectures to reproduce the 271 

3d ParFlow pressure heads across the CONUS domain. To quantify this, we train each model on 272 

water years 2003 and 2004 and validate them on water year 2005. The testing dataset that we 273 

evaluate against is from the water year 2006, and all results shown here are from this set. As 274 

mentioned previously, we aggregate variables to daily timesteps to reduce the overall complexity 275 

of the data. While we are interested in building emulators that maintain high spatiotemporal 276 

resolution we are primarily focused on seasonal to annual modeling, reflecting timescales that 277 

groundwater interactions tend to take place at. 278 

We train all models in two phases. For the first phase we use a one-cycle learning rate 279 

scheduler with a maximum learning rate of 1e-3. We train on square chips of 64 by 64 pixels in 280 

size, and rollout horizons of 35 timesteps. This balance between medium spatial sizes and time 281 

horizon provides the model a good baseline for matching both spatial and temporal patterns, 282 

which resulted in the best overall training performance. During this portion of the training we 283 

augment the L2 loss with an additional term that penalizes gradients in the spatial directions of 284 

the predictions (Serifi et al., 2021). This modified loss function is given as: 285 

ℒ(𝑦, 𝑦̂) = |𝑦 − 𝑦̂|2 + |∇𝑦 − ∇𝑦̂|2 

 286 

Following an initial training epoch on this setup we then set the loss function to a pure L2 287 

loss and continue training. At this point we train for another epoch using 48 pixel chips and a 288 

rollout horizon of 90 days. This helps stabilize the autoregressive loop of the model, as well as 289 

learn seasonal trends. Following this, we then train a final epoch using a 14-day rollout and 48 290 

pixel chips. This final epoch of training is aimed at improving the model’s ability to reproduce 291 

fast dynamics, particularly around responding to individual storm events. We found that training 292 

across all three phases improved the model prediction in terms of both stability of the predictions 293 

and the overall accuracy for all model types. However, the final training stage using the shorter 294 

rollouts helped the least. We also found that changing the ordering of the training phases led to 295 

degradation in performance. All models were trained on a single Nvidia A100 40GB GPU. 296 

Training times varied by model, but generally took roughly 50 hours each, with the ResNet being 297 

cheapest and FSTR being the most expensive. 298 
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3 Results 299 

To analyze the performance of each of the emulator architectures we calculated the overall 300 

root mean square error (RMSE) and Pearson correlation (hereafter, just correlation) for each grid 301 

cell in the domain with respect to the original simulations. The resulting spatial maps for these 302 

measures are shown in figure 4. From figure 4a we see that the ResNet shows pockets of high 303 

error, particularly in the Western portion of the domain, but also in the upper midwest and 304 

southern central regions. These spots of high error are due to model instability at the full lead-305 

time. We will further explore this later. The UNet and FSTR models show much lower RMSE in 306 

water table depth across the domain, with only some regions of higher error in the western 307 

portion of the domain. Overall, the FSTR model has the lowest RMSE, and highest correlations. 308 

All models had relatively low correlations on the western edge and sections in the central area of 309 

the domain. Interestingly, there are some differences in where the UNet and FSTR models show 310 

higher errors. For instance, FSTR has a region of low correlation in the plains on the western 311 

sides of Nebraska and Kansas, while the UNet seems to capture these correlations well 312 

(Although the FSTR model still showed lower overall errors in this region). The model 313 

performance improvement of FSTR over the UNet was primarily marked by reductions in RMSE 314 

over the eastern two thirds of the domain. 315 

 316 
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 317 
Figure 4. Spatial metrics of performance of each model architecture’s ability to emulate water 318 

table depth over the entire testing period of water year 2006. The left column (a-c) shows the 319 

root mean square error (RMSE), while the right (d-f) shows the Pearson correlation. 320 

Similarly, in figure 5 we examine the models’ ability to emulate the surface saturation levels 321 

as well. Here we find again that the ResNet is the worst performing overall, with the UNet in the 322 

middle, and FSTR performing best. The areas of highest error for surface moisture tend to be the 323 

same for all the models, unlike the results for the water table depth. Of note is the northeastern 324 

portion of the domain above and around the Great Lakes, which have been masked out, as well 325 

as some regions throughout the central part of the domain and in the southeast corner. These are 326 

quite different hydrologic systems, which suggests deficiencies in the input data or model 327 

training procedure are the underlying cause, though we were not able to diagnose the exact 328 

reasons for these patterns. 329 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

 330 
Figure 5. Spatial metrics of performance of each model architecture’s ability to emulate surface 331 

soil moisture over the entire testing period of water year 2006. The left column (a-c) shows the 332 

root mean square error (RMSE), while the right (d-f) shows the Pearson correlation. 333 

To better understand the temporal nature of error growth of the emulators, we also show the 334 

forecast error at increasing lead times in figure 6. Here we find that the ResNet tends to have 335 

reasonable forecast error out to about day 200, before growing rapidly, leading to the pockmark 336 

error patterns from figures 4 and 5. However, both the UNet and FSTR models have significantly 337 

lower error rates and no exponential blowup over the simulation period. The FSTR model 338 

maintains the lowest errors over the entire period, like what we saw in the spatial error analysis. 339 
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 340 
Figure 6. Growth of the error distribution of water table depth with increasing forecast length. 341 

The inset plot shows the full range of the error growth for the ResNet, which is more than ten 342 

times the error of the other two model architectures. The central lines show the median RMSE, 343 

while the shaded lines show the interquartile and 10-90% range of errors. 344 

So far, we have looked at the overall error characteristics in the forecasts across the full 345 

domain, but it is worth zooming in on some particular regions to see local performance spatially 346 

and temporally. First, in figure 7 we show a 256 by 256 km sub-domain in the midwestern US. 347 

We omit the ResNet results here because of its instability and low accuracy. Comparing the time 348 

series for this region we once again see that the FSTR model is able to much more accurately 349 

capture the dynamics of the system, as compared to the UNet. Most notably, the FSTR model is 350 

able to capture the seasonal dynamics in a much more robust way than the UNet, which shows 351 

good overall correlation, but drifts in magnitude from the ParFlow results. Similarly, the spatial 352 

plots show that FSTR is much more able to represent the spatial heterogeneity across seasons, 353 

particularly in regions with shallow water tables. This connects back to the timeseries picture, 354 

where we see the UNet consistently predicts a deeper water table, thus making it hard to form the 355 

surface river network. Neither model can perfectly capture the structure of the river network, 356 

although both show features that correlate well with the river network from ParFlow. 357 

 358 
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 359 
Figure 7. A zoom in of a region of the domain in the midwest highlighted in red on the upper 360 

right. Timeseries shown on the top are median values for the region, while the spatial plots 361 

correspond to time slices designated by dashed vertical lines in the timeseries. 362 

Similarly, to figure 7 we show a zoom in to the southwestern portion of the domain in figure 363 

8. This region is much more arid and has deeper water table depths on average. Here we see that 364 
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both the UNet and FSTR models can capture the long-term dynamics of the region and maintain 365 

spatial coherence over the simulation period as well. However, we do see that the FSTR model is 366 

better able to capture the fine-scale structure where shallow water table depths and rivers form in 367 

the basins. 368 

 369 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

Figure 8. A zoom in of a region of the domain in the southwest highlighted in red on the upper 370 

right. Timeseries shown on the top are median values for the region, while the spatial plots 371 

correspond to time slices designated by dashed vertical lines in the timeseries. 372 

In figure 7 we saw that one of the main deficiencies in the UNet output is drift in the longer-373 

term dynamics, which we found in other regions as well. To better understand what drives the 374 

accumulation of errors over time we looked at how the UNet and FSTR models respond to 375 

precipitation events. We accomplished this by selecting grid cells at varying levels of 376 

precipitation and then comparing the response of the surface level pressure heads before and 377 

after the storm events (Figure 9). Overall, we found that both model architectures show similar 378 

sensitivities to precipitation events, even in the extreme events. The FSTR model does show a 379 

closer match to the response of ParFlow at the 90th percentile and above, which this is likely 380 

contributes to the improved performance compared to the UNet. The ability of the emulators to 381 

respond accurately across a wide range of events is a promising result indicating potential ability 382 

to use them in evaluating the impacts of extreme precipitation events. 383 

 384 

Figure 9. Comparison of the response of the surface layer pressure head to different precipitation 385 

inputs. 386 

4 Discussion and future work 387 

In this study we chose to focus entirely on the subsurface and treat the snow and ET as inputs 388 

to the model. We chose this because ParFlow is substantially more computationally expensive to 389 

run than the land surface model CLM, which provides the simulation of the snow, evaporation, 390 

and vegetation processes. We plan to incorporate sub-modules that simulate these processes and 391 

can be connected to the subsurface component in another study. These processes could also be 392 
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added to the FSTR model, but this would require the ability to estimate their gridded initial 393 

conditions of snowpack and ET to be used in this framework. There are also many additional 394 

experiments that could be performed using the framework that we have developed here to further 395 

improve the capabilities of the emulators. 396 

One opportunity for further exploration is to modify the training routines that we use to 397 

produce more suitable emulators for specific time or spatial scales. Our aim of enabling 398 

subseasonal to seasonal groundwater prediction was our initial choice for the daily timestep that 399 

our models operate at, but we showed they can be rolled out to annual scales with little 400 

degradation in performance with our FSTR model. It may even be possible to combine training 401 

methodologies into a multi-stage model, similar to the approach taken by the FuXi weather 402 

forecasting architecture (Chen et al., 2023). 403 

Another aspect that we have not yet explored is in the translation from the pressure heads to 404 

water table depth and soil moisture during training time. The equations we used are implemented 405 

in the same way as they are in ParFlow, but are written as PyTorch layers which, in theory, could 406 

be appended to our model structures and trained on directly. It is possible that this could yield 407 

better predictions for these quantities but may sacrifice the fidelity of the more fundamental 408 

pressure heads. In future work we may explore this along with multi-objective training to capture 409 

a wider range of conditions. There are some technical challenges that remain before such 410 

experiments can be performed, though we believe this will be a necessary step in order to 411 

successfully emulate the overland flow component of ParFlow as evidenced by the overall 412 

difficulty of even the FSTR model to accurately reproduce the stream network via the surface 413 

soil moisture. 414 

One other potential limitation of our current emulation method is that the models are 415 

dependent on the soil and vegetation classifications that were used in the original simulations. 416 

Work is ongoing to develop strategies build ParFlow ensembles with varied parameters which 417 

would provide the basis for model training to be varied in more robust ways. We hope that this 418 

will provide an even stronger model which can be used to optimize the subsurface parameter 419 

values via simulation-based inference, in turn giving better simulation results as compared to 420 

observations. 421 

Going beyond improving the emulation of ParFlow simulations, this work enables new 422 

applications for large-scale simulations. For example, having a fast and stable emulator at the 423 

seasonal timescale allows for ensemble predictions, uncertainty analysis, and coupling to land 424 

surface and atmospheric models. If future work shows that such emulation approaches can be 425 

stable over the annual-to-decadal periods this will also enable more robust studies on the effects 426 

of climate change on groundwater. Additionally, our FSTR architecture should be suitable for 427 

modeling in other domains where external forcings act on the state of the system, particularly 428 

other areas of hydrologic and land surface modeling. Additionally, we believe that the action-429 

conditioning portion of the architecture provides a natural coupling point to other model types. 430 

5 Conclusions 431 

In this study we developed a deep-learning model architecture that is a viable approach to 432 

full-system emulation of a complex spatiotemporal groundwater model at high resolution. Our 433 

results show that off-the-shelf neural network architectures like the ResNet and UNet do not 434 

have the predictive capability needed for four-dimensional hydrologic simulations.  Our FSTR 435 

architecture is more accurate at reconstructing groundwater dynamics and is stable over long 436 

rollout times. Our emulators exhibit much lower computational cost compared to the original 437 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

simulations. This opens up many new opportunities to use emulated results for ensemble 438 

forecasting and model calibration through simulation-based inference. 439 

The FSTR model architecture developed in this study not only shows good overall 440 

performance at simulating continental-scale pressure heads, water table depth, and soil moisture 441 

but is also fast and scalable to run. As a side-benefit the model architecture is easy to 442 

conceptually understand because the model inputs directly correspond to the input data types 443 

used in most distributed hydrologic models. Initial conditions are used to set the model up for 444 

simulation, static physical parameters are used to modulate the time evolution of the system, and 445 

meteorologic forcings act on the internal state of the system. Currently each of these subsystems 446 

are processed via convolutional layers before being fed into the core AC-ST-LSTM model, but 447 

fundamentally could be any neural network component.  448 

The use of deep learning for geophysical modeling is still a rapidly developing field where 449 

most applications for land and subsurface modeling are either point-scale timeseries models or 450 

static spatially distributed models. In this work we have demonstrated a modeling approach that 451 

is not only fully spatiotemporal, but also can be used to represent multiple processes 452 

simultaneously. We consider this work to be a step in moving towards more advanced 453 

representations of the subsurface, which is currently lacking compared to capabilities for weather 454 

and atmospheric predictions.  455 
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