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Abstract

This paper proposes a 256-bit speed-area-efficient hardware elliptic curve point-multiplication engine (ECPM-engine) in GF(p)

over generic Weierstrass curves, which is optimized by a new speed-area-efficient radix-64 Montgomery modular multiplication

(R64MMM) and a novel Montgomery ladder scheduling. The R64MMM calls one 129-bit adder and one (64x64+129)-bit

multiply-accumulator (64-129-MAC) in parallel to make a trade-off between speed and area. The novel Montgomery ladder

scheduling is used to improve the utilization of MAC in ECPM operation. In this ECPM-engine, both MAC utilization in

R64MMM operations and R64MMM utilization in ECPM operations are close to 100%. The result shows that the proposed

ECPM-engine consumes 72k gates when the clock frequency is 714 MHz with a 90 nm standard cell library, and it computes

one 256-bit ECPM in 0.14 ms.
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A Speed-Area-Efficient Hardware
ECPM-Engine in GF(p) over Generic
Weierstrass Curves

Yujun Xie, Zhenhui He, Yuan Liu*, Xin Zheng*, Shuting Cai,
and Xiaoming Xiong

This paper proposes a 256-bit speed-area-efficient hardware elliptic
curve point-multiplication engine (ECPM-engine) in GF(p) over generic
Weierstrass curves, which is optimized by a new speed-area-efficient
radix-64 Montgomery modular multiplication (R64MMM) and a novel
Montgomery ladder scheduling. The R64MMM calls one 129-bit
adder and one (64x64+129)-bit multiply-accumulator (64-129-MAC)
in parallel to make a trade-off between speed and area. The novel
Montgomery ladder scheduling is used to improve the utilization of
MAC in ECPM operation. In this ECPM-engine, both MAC utilization
in R64MMM operations and R64MMM utilization in ECPM operations
are close to 100%. The result shows that the proposed ECPM-engine
consumes 72k gates when the clock frequency is 714 MHz with a 90 nm
standard cell library, and it computes one 256-bit ECPM in 0.14 ms.

Introduction: Elliptic curve cryptography (ECC) [1] is an effective
method to prevent data leakage, and Elliptic curve point-multiplication
(ECPM) is the most critical operation of the ECC. The dedicated
hardware accelerators can greatly improve the computational
performance of ECPM. However, large hardware resource consumption
is not benefit for lightweight IoT devices. It is a popular ECC research
direction recently by improving the hardware performance of ECPM
using speed-area-efficient hardware accelerators.

Many hardware accelerators of the ECPM are proposed [2-3, 6-
13]. Hu [2] and Choi [3] propose two hardware accelerators, which
use specific primes and curve domain parameters [4-5] to improve the
computational performance of ECPM. However, their methods do not
support generic Weierstrass curves. For the designs that support security
at different levels, some researchers focus on lightweight implementation
[6-10], developing ECPM processors to accelerate the ECPM operation.
A scalable dual-field ECC processor is designed by Satoh [6], which calls
one 64-bit multiplier to calculate the ECPM. Chen [7] presents a ECC
processor, which adopts a systolic arithmetic. An optimized resource
sharing mechanism in combined point doubling and point addition
hardware architecture is proposed by Kudithi [8] to reduce hardware
resources. Yeh [9] explores the hybrid modular arithmetic architecture to
reduce both area and energy costs of ECC processor. A flexible dual-field
ECC processor using the hardware-software approach is presented by Liu
[10]. The ECPM processors aim at high-speed are proposed by chung
[11], Hossain [12] , and Xie [13]. Their processors [11-13] consume too
much hardware resources for lightweight applications.

This paper designs a speed-area-efficient hardware ECPM engine to
accelerate the ECPM operation. To make a trade-off between speed
and area, we propose a new speed-area-efficient radix-64 Montgomery
modular multiplication (R64MMM) and a novel Montgomery ladder
scheduling to implement a 256-bit speed-area-efficient hardware ECPM-
engine in GF(p) over generic Weierstrass curves.

Preliminary: The coordinates (x, y) in GF(p) over Generic Weierstrass
Curves satisfies the equation E [14]:

E : y2 = x3 + ax2 + b mod p (1)

Where (4a3 + 27b2) mod p ̸= 0.
Let P = (xP , yP )∈E and Q= (xQ, yQ)∈E. The ECPM can be

expressed by:

ECPM :Q= [k]P = P + P + · · ·+ P︸ ︷︷ ︸
k times

(2)

The Montgomery ladder [15] is a general method to calculate the
ECPM. It can resistant against simple power attack (SPA). So far, the
Montgomery ladder formula proposed by Hamburg [16] is considered the
the state-of-the-art method in GF(p) for the generic Weierstrass curve.

Before the calculation of this Montgomery ladder method [14], P =

(xP , yP ) needs to be mapped to the Hamburg’s ladder state (SETUP):

XQP = 0

XRP = (3x2
P + a)2 − 2xP (2yP )2

YQ = (2yP )4

YR = (3x2
P + a)XRP + (2yP )4

G=X2
RP

(3)

where XQP , XRP , YQ, YR, and G are five values in Jacobian
coordinates. They are the input of the Hamburg’s Montgomery ladder.

The calculation of this Montgomery ladder is shown in algorithm 1
[16]. The values of XQP , XRP , YQ, YR, and G are updated in each
Montgomery ladder operation, and the M is used to restore the final result
of the Hamburg’s Montgomery ladder.

Algorithm 1 Montgomery Ladder algorithm (LADDER)
Require: (XQP , XRP , YQ, YR, G)

Ensure: (XQP , XRP , YQ, YR, G,M)

1: X′
QP =XQP ·G

2: X′
RP =XRP ·G

3: L= YQ · YR

4: H = YR · YR

5: J =X′
RP − L

6: M = J + X′
RP −H

7: XSP =H · L
8: K = J2

9: XTP =X′
RP · J + X′

QP ·H
10: XTS = (XTP −XSP

11: YS = (XTS −K) ·H
12: YT =M ·XTS + YS

13: G′ =X2
TS

14: (XQP , XRP , YQ, YR, G) = (XSP , XTP , YS , YT , G′)

After the calculation of Montgomery ladder algorithm, XQP , XRP ,
YQ, YR, G, and M need to exit the Hamburg’s ladder state and restore to
Q= (xQ, yQ) (EXIT).

xQ =
XQP

Z2
+ xP

yQ =
YQ

2Z3

(4)

Where 1
Z

=
2yP ((M/2)2−XQP−XRP )

3xP YP
and YP = YR −MXRP .

The ECPM claculation is shown in algorithm 2 [16].

Algorithm 2 Montgomery ladder ECPM
Require: k, p≤ 2n, p, P = (xP , yP )

Ensure: Q= (xQ, yQ) = [k]P

1: k = 2n + (k − 2nmodp)

2: (XQP , XRP , YQ, YR, G) = SETUP(xP , yP )

3: for i= n− 1 to 0 do
4: if ki == 1 then
5: (XQP , XRP , YQ, YR, G) = LADDER(XQP , XRP , YQ, YR, G)

6: else
7: (XRP , XQP , YR, YQ, G) = LADDER(XRP , XQP , YR, YQ, G)

8: end if
9: end for
10: (xQ, yQ) = EXIT(XQP , XRP , YQ, YR, G,M)

A New Speed-Area-Efficient R64MMM: The ECPM operation involves
three steps: 1) SETUP, 2) LADDER, and 3) EXIT. These three steps need
to call modular operations (modular multiplication (MM), addition and
subtraction, and inversion) to calculate. MM consumes the most of the
computation time of ECPM and it is the most critical operation in ECPM.

In order to improve the performance of the modular multiplication
(MM), Montgomery modular multiplication (MMM) [16] uses shift
operation instead of the division and subtraction operations of MM. The
proposed radix-64 Montgomery modular multiplication (R64MMM) call
one 64-129-MAC and 129-Adder in parallel. Algorithm 3 shows the
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process of R64MMM without the reduction step, which can be calculated
in 37 clock cycles. The calculation (z3, z2) = reg1 + reg2 of CN = 37
is computed in the first clock cycle of the next R64MMM.

Algorithm 3 Radix-64 Montgomery multiplication (R64MMM)
Input: x=

∑3
i=0 x(i)2ωi, y =

∑3
j=0 y(j)2ωj , m=

∑3
j=0 m(j)2ωj

ω = 64, m′ = (−m0)−1 mod 2ωj

Output: s= (z3, z2, z1, z0) = x · y · 2−256 (2m> s> 0)
CN 64-129-MAC 129-Adder

Round1: i= 0

1 reg1 = xi · y0 + z0

2 q = (reg1[63 : 0] ·m′ + 0)mod2ω

3 (c, z0) = (q ·m0 + reg1)

4 reg1 = (xi · y1 + z1)

5 reg2 = (q ·m1 + c)

6 reg1 = (xi · y2 + z2) (c, z0) = reg1 + reg2

7 reg2 = (q ·m2 + c)

8 reg1 = (xi · y3 + z3) (c, z1) = reg1 + reg2

9 reg2 = (q ·m3 + c)

Round2: i= 1

10 reg1 = xi · y0 + z0 i= 0: (z3, z2) = reg1 + reg2

11~18 Round2 64-129-MAC operation Round2 129-Addition
Round3: i= 2

19 reg1 = xi · y0 + z0 i= 1: (z3, z2) = reg1 + reg2

20~27 Round3 64-129-MAC operation Round3 129-Addition
Round4: i= 3

28 reg1 = xi · y0 + z0 i= 2: (z3, z2) = reg1 + reg2

29~36 Round4 64-129-MAC operation Round4 129-Addition
Next R64MMM Round1: i= 0

37 reg1 = xi · y0 + z0 i= 3: (z3, z2) = reg1 + reg2

c, z3, reg1, and reg2 are 129-bit registers.
z0, z1, and z2 are 128-bit registers.
q is a 64-bit register.
CN: Cycle Number.

Fig. 1 shows the proposed hardware architecture of the proposed
R64MMM. It consists of one 129-64-MAC, one 129-bit adder, four 129-
bit registers (c, z3, reg1, and reg2), three 128-bit register (z0, z1, and z2),
and one 64-bit register (q).

Fig. 1. Hardware architecture of the proposed R64MMM

A Novel Montgomery Ladder scheduling: To reduce the hardware
resources, the proposed Montgomery Ladder scheduling just need to call
one R64MMM and one 258 bit modular addition and subtraction (258-
MA).

Let x, y,m∈ GF(p), and 0≤ x, y≤m. MA is calculated by (x±
y)modm, which needs to call two 258-bit adders to calculate in one clock
cycle. Moreover, the 258-MA can be reused to calculate two independent
258-bit additions and subtractions or one radix-2 Euclidean modular
inversion (MI) [14] operation. The MI operation costs about 512 clock
cycles, which is calculated only once in ECPM.

Table I shows the proposed scheduling of the LADDER, which
requires 11 256-bit registers. R64MMM is used to calculate the MMM
without the reduction step, and 258-MA is used to perform the reduction
step (e.g. YQ← sYQ) and MA. Assume that two R64MMM operations
are s1 = x1 · y1 · 2−256 (2m>s1> 0) and s2 = x2 · y2 · 2−256 (2m>

s2> 0). The whole s1 = x1 · y1 · 2−256 requires 37 clock cycles,
includes two steps: 1) calculating the CN = 1~36 operation of the first
R64MMM (s1), and 2) using the 129-Adder of the second R64MMM (s2)
to calculate the CN = 37 operation of the first R64MMM (s1). Therefore,
if n consecutive R64MMM without data hazard are calculated, the clock
cycles are 36n+ 1.

Table 1: The proposed scheduling of the LADDER

Require: (XQP , XRP , YQ, YR, G)

Ensure: (XQP , XRP , YQ, YR, G,M)

Cycle R64MMM R64MMM-LAST 258-MA
1~36 sYQ = YQ · YR

37
sYR = YR · YR

sYQ (z3, z2)
38~72 YQ← sYQ

73
sXQP =XQP ·G

sYR (z3, z2)
74~108 YR← sYR

109
sXRP =XRP ·G

sXQP (z3, z2)
110~144 XQP ← sXQP

145

sZa=XQP · YR

sXRP (z3, z2)
145 XRP ← sXRP

146 J =XRP − YQ

147 M = J + XRP

148~180 M =M − YR

181
sZb=XRP · J

sZa (z3, z2)
181~216 Za← sZa

217
sXQP = YQ · YR

sZb (z3, z2)
218~252 Zb← sZb

253

sYQ = J · J

sXQP (z3, z2)
254 XQP ← sXQP

255 XRP =Za + Zb

256~288 XRQ =XRP −XQP

289
sYRQ =M ·XRQ

sYQ (z3, z2)
290 YQ← sYQ

291~324 YQ =XRQ − YQ

325
sYQ = YQ · YR

sYRQ (z3, z2)
326~360 YRQ← sYRQ

361
sG=XRQ ·XRQ

sYQ (z3, z2)
362 YQ← sYQ

363~396 YR = YRQ + YQ

397
Next-LADDER sYQ

sG (z3, z2)
398 G← sG

1. X← sX: X = (sX >modm ? sX −m : sX), required one 258-bit adder.
2. sX (z3, z2): The last R64MMM calculation of the i= 3: (z3, z2) = reg1 + reg2.

A Speed-Area-Efficient Hardware ECPM-Engine: We implement a
speed-area-efficient hardware ECPM-engine, which supports the
calculations of the SETUP, LADDER, and EXIT. To reduce the
hardware resources, the proposed ECPM-engine just calls one R64MMM
and one 258-MA. This ECPM-engine is used to calculate the 256-
bit ECPM, which needs 255 LADDER. The 255 LADDER requires
(255 · 11) · 36 + 1= 100, 981 clock cycles, and the whole ECPM needs
about cycleSETUP + cycleLADDER + cycleEXIT = 266 + 100, 981 +

512 + 297≈ 102k clock cycles.
This ECPM-engine is synthesized by Design Compiler with a 90 nm

standard cell library. The result shows that area costs about 72k gates
when the clock frequency is 714 MHz. One ECPM operation can be
calculated in 0.14 ms by the proposed ECPM-engine. We compare the
proposed ECPM-engine with other similar designs, which support 256-
bit generic Weierstrass curve [6-13]. The result is shown in Table2.

In Table 2, the hardware-software approach by Liu [10] can improve
flexibility but reduce speed. A hybrid modular arithmetic architecture is
proposed by Yeh [9] to reduce both area and energy costs. Kudithi [8]
designs an optimized resource sharing mechanism to reduce hardware
costs. Designs [11-13] aim at high-speed implementations, which achieve
high-performance ECPM operations. But they consume too many
hardware resources for lightweight applications.

The proposed speed-area-efficient design is focus on achieving lower
hardware resource and making a trade-off between speed and area. The
area of this design is the smallest in Table2 designs. In terms of the
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Table 2: Comparison with other Hardware Implementations of ECPM

Design Technology Supported Curve Area (gates) Frequency (MHz) Cycle (k) Time (ms) AT Normalized AT PA resistance
Ours 90nm Any 72k 714 102 0.14 10.08 1.0 SPA
[10] 55nm Any 189k 316 – 1.45 448.44 44.49 SPA,DPA,ZVP
[9]* 90nm Any 83k 250 212.5 0.85 70.55 7.00 SPA
[8] 40nm Any 214k 500 300 0.6 288.90 28.66 –
[7] 130nm Any 122k 556 562 1.01 85.31 8.46 –
[6] 130nm Any 120k 138 369 2.68 222.65 22.09 –
[13] 90nm Any 996k 329 5.9 0.017 16.93 1.68 SPA
[12] 65nm Any 447k 546 397 0.73 451.81 44.82 –
[11] 90nm Any 540k 185 22.3 0.12 64.80 6.43 SPA

AT = Area · Time · 90nm / Technology.
* indicates that the design supports 192-bit prime and binary fields, instead of a 256-bit prime field.

area-time (AT), this design is also at least 600% and 68% superior to
lightweight designs [6-10] and high-speed designs [11-13], respectively.

Conclusion: A 256-bit speed-area-efficient hardware ECC-engine in
GF(p) over generic Weierstrass curves is proposed in this paper. The
major contributions of this ECC-engine are:

1 A novel R64MMM: The R64MMM calls one 64-129-MAC and one
129-bit adder in parallel. The reduction step of MMM is moved to
the process of Montgomery ladder. The Mac utilization in R64MMM
operation is close to 100%.

2 A novel Montgomery ladder scheduling: This Montgomery ladder
scheduling just calls one R64MMM and one 258-MA to calculate
ECPM. The 258-bit MA can be reused to calculate the reduction step
of MMM and modular inversion. The R64MMM utilization in ECPM
operation is close to 100%.

3 The proposed ECPM-engine consumes 72k gates when the clock
frequency is 714 MHz with a 90 nm standard cell library, and it
computes one ECPM in 0.14 ms. These results are better than previous
designs in terms of AT.
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