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Abstract

Recent advances in computing power triggered the use of Artificial Intelligence in image analysis in life sciences. To train these
algorithms, a large enough set of certified labelled data is required. The trained neural network is then capable of producing
accurate instance segmentation results, that will then need to be re-assembled into the original dataset: the entire process
requires substantial expertise and time to achieve quantifiable results. To speed-up the process, from cell organelle detection
to quantification across modalities, we propose a deep learning based approach for Fast AutoMatic Outline Segmentation
(FAMOUS), that involves organelle detection combined with image morphology, and 3D meshing to automatically segment,
visualize and quantify cell organelles within volume electron microscopy datasets. From start to finish, FAMOUS provides full
segmentation results within a week on previously unseen datasets. FAMOUS was showcased on a dataset acquired using a
focused ion beam scanning electron microscope (FIBSEM), and on yeast cells acquired by transmission electron microscopy.
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Abstract25

Recent advances in computing power triggered the use of Artificial In-26

telligence in image analysis in life sciences. To train these algorithms, a27

large enough set of certified labelled data is required. The trained neural28

network is then capable of producing accurate instance segmentation re-29

sults, that will then need to be re-assembled into the original dataset: the30

entire process requires substantial expertise and time to achieve quan-31

tifiable results. To speed-up the process, from cell organelle detection32

to quantification across modalities, we propose a deep learning based33

1



approach for Fast AutoMatic Outline Segmentation (FAMOUS), that34

involves organelle detection combined with image morphology, and 3D35

meshing to automatically segment, visualize and quantify cell organelles36

within volume electron microscopy datasets. From start to finish, FA-37

MOUS provides full segmentation results within a week on previously38

unseen datasets. FAMOUS was showcased on a dataset acquired using a39

focused ion beam scanning electron microscope (FIBSEM), and on yeast40

cells acquired by transmission electron microscopy.41

Research highlights42

Introducing a rapid, multimodal machine-learning workflow for 3D cell organelle43

segmentation. Applied successfully to diverse datasets and cell lines, it outper-44

forms manual methods, enabling high-throughput quantitative cell biology.45

Introduction46

Imaging in Life Sciences is currently experiencing a boost, and imaging data are47

growing exponentially. Biological processes, ultrastructure and molecules can48

now be visualized at unprecedented resolution in time, depth and scale [25] [26].49

Large volumetric reconstructions of entire cells can be routinely achieved at50

nanometer resolution using volume electron microscopy (vEM). Quantitative51

analysis of such large amounts of data is the novel bottleneck in biological52

projects. Within a decade, what used to be considered as extreme large datasets53

[14] and analyzed over a PhD period, is now routinely processed (12Gb RAM is54

common on laptops). One important goal in vEM is to quantitatively annotate55

and segment the volume stacks to quantify organelle distributions and shapes56

to understand the structure-function relationship. Many diseases are associated57

with abnormal organelle morphologies and distributions within cells, includ-58

ing a growing number of neurodegenerative diseases, such as Alzheimer’s [28]59

or Lewy- Body-Dementia [10]. EM visualizes ultrastructural details and rich60

contextual information based on protein/lipid or stain-density gradients. Not61

only the structures of interest are visible, but also all membrane-delineated ul-62

trastructural cell content. The signal-to-noise ratio is low and, up to date, at63

the expense of time, organelles have mainly been deciphered from one another64

based on their membrane delineation by the human eye. As conventional seg-65

mentation schemes are often based on thresholds or manipulations of the image66

histogram assuming that strong gradients match object boundaries, unsuper-67

vised binarization algorithms, such as minimum error thresholding, maximum68

entropy thresholding or Otsu’s single-level method [18], fail to reliably identify69

and segment organelles. In practice, automatic segmentations generated based70

on thresholds or manipulations of the image histogram usually require extensive71

manual post-editing to achieve the desired accuracy. Therefore, segmentation of72

cell organelles is currently mainly performed manually using segmentation tools73

included in commercial software, such as AMIRA [23] or Imaris [3], or freeware74
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tools, such as ImageJ/Fiji [21] [20], IMOD [15], or Ilastik [5]. For a whole HeLa75

cell imaged at 5 nm isovoxel resolution using a FIBSEM setup at 5nm isovoxel76

resolution, manual segmentation of important organelles (such as mitochondria,77

nucleus, ER or endosomes) will take several months if carried out by a single78

person and requires comparative segmentation to cross-validate the results.79

Progresses in computational methods for automatic segmentation of or-80

ganelles in vEM has led to increasingly accurate results [22], using for exam-81

ple training of classifiers to detect supervoxels that most likely belong to the82

boundary of the segmentation target [16]. While there are packages available83

that already use learning-based approaches, such as Ilasitk or Cell Profiler, they84

usually do not allow training on new datasets limiting their application to a85

specific and small range of datasets or require substantial expertise in image86

analysis.87

For light-microscopy datasets (acute signal-to-noise ratio), several deep-88

learning solutions for segmentation and quantification, such as cell detection89

or morphological measurements, have already been published [19], [13], [7]. Ob-90

ject detection is a technique that allows the computer to find the location (x and91

y coordinates, width and height) of a particular shape, or organelle in an image.92

Instance segmentation takes this one step further and isolates the foreground93

pixels of the shape or organelle. U-Net [19] was pioneering work in the field94

of instance segmentation that was initially applied to microscopy data. The95

U-shaped Deep Learning architecture is capable of capturing and generalizing96

high level descriptors of image data as the information reaches the convolutional97

valley of the U. By concatenating this encoded data with the finer convolutional98

layers from higher levels, the network can reconstruct the boundary of the shape99

instance. The U- Net architecture is used as the backbone of Etch a cell [2], a100

crowd- sourced approach to generate large quantities of labelled data.101

To the best of our knowledge, for comprehensive segmentation of all or-102

ganelles in large volumetric EM data sets, only a few open-access approaches103

have been suggested. The trainable WEKA segmentation toolkit [4] can train104

segmentation pipelines using generic hand-tailored image features. DeepEM3D105

[27] aims at improving reproducibility while providing open access to deep-106

learning algorithms for image segmentations using a cloud-based setup that107

does not require a local GPU. Other approaches focus on single imaging modal-108

ities, such as COSEM for automated identification of all intracellular substruc-109

tures within isotropic FIB/SEM datasets, or on specific organelle tools for semi-110

automatic 3D segmentation, including mitochondria or neuron tracing [12]. Last111

but not least, Ilastik 1.3.3 contains modules for pixel classification via training112

using simple brush strokes. This approach is designed for users without ma-113

chine learning expertise, and may prove useful in simple segmentation scenarios114

where optimizing the training parameters yields little benefit. The very first115

commercial solutions have also been launched [1] and rely on a large internal116

human expertise of the segmenting scientist to edit the final model.117

In summary, despite the urgent need in the vEM and structural biology118

communities, there is no quantitative segmentation workflow available that was119

proven successful for different biological single cells across volume EM modali-120
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ties. To improve the quantitative performance of automated image segmentation121

of large volumetric datasets, we identify the need for a generic, accessible and122

tractable segmentation software that is assesed against the current gold stan-123

dard of manual segmentation. YOLO [6] is a ‘you only look once’ framework124

for deep learning that accurately performs image based object detection in real125

time with minimal training data. It re-frames the object detection problem so126

that the model not only infers the category of the object, but also its position127

and size in the image at the same time.128

We present our machine-learning pipeline and algorithm for automated seg-129

mentation of organelles. We showcase the workflow for two different vEM ap-130

proaches: FIBSEM of a HeLA cell and an array tomography of yeast cells using131

TEM and quantitatively compare the results with manually segmented datasets132

as the current gold standard. Since it does not make any a priori assumptions133

about the morphology of the organelles to be segmented, the pipeline can be134

easily applied to segment diverse organelles across cell types and modalities,135

including Soft X-ray microscopy [25]. FAMOUS, although perfectible, yields to136

a comparable accuracy in classification and localization to manually segmented137

dataset, within a fraction of the period.138

Results139

The amount of data generated in vEM for life sciences usually ranges from140

gigabytes to terrabytes per dataset. It is practically impossible to manually141

segment out the information content of a vEM dataset in the reasonable time142

period of a publication, let alone to create meaningful statistics across cells.143

To automate image segmentation, we propose a simplified pipeline where we144

exploit innovative image analysis based on neural networks to deliver a full145

volume segmentation of cell organelles within a week.146

First all structures of interest within a limited subset of the data, i.e. from147

about only 1% of the entire 3D stack, need to be accurately flagged. This148

annotation is used to train the image recognition algorithm, isolate the struc-149

tures of interest, run the image-processing pipeline and feedback the resulting150

outlined structures into the 3D rendering software Blender [8] where the scien-151

tific analysis can be initiate her/his scientific analysis. Upon completion of the152

segmentation, a 3D dataset is recieved, composed of image stacks and all the153

organelles segmented and organized in groups. Singular organelles are unique154

objects and are grouped together into coherent classes, allowing arbitrary subset155

creation and visualization to focus on. (Figure 1)156

Detection and classification performance evaluation157

To evaluate the performance of our automated segmentation pipeline (denoted158

as stack F (green)), the dataset was segmented twice manually by two indepen-159

dent experts (denoted as M1(red) and M2(blue)). Comparative studies were160

conducted between the manually segmented stacks and the manual and the au-161
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Figure 1: The workflow from the developers point of view

Figure 2: FIBSEM final visualization - Early Endosomes - M1(red) - M2(blue)
- Automatic(green)
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Figure 3: FIBSEM final visualization - Late Endosomes - M1(red) - M2(blue) -
Automatic(green)

Figure 4: FIBSEM final visualization - Mitochondria - M1(red) - M2(blue) -
Automatic(green)
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Figure 5: FIBSEM final visualization - Lysosomes - M1(red) - M2(blue) - Au-
tomatic(green)

Figure 6: FIBSEM final visualization - Nucleus - M1(red) - M2(blue) - Auto-
matic(green)
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tomatically segmented stacks. This gave us insights into the deviation between162

two manual segmentations and served to benchmark the automatic segmenta-163

tion. The segmented organelles, in the FIBSEM dataset, were early endosomes,164

late endosomes, mitochondria, lysosomes and the nucleus. The difference in the165

numbers of detected organelles was quantified for each organelle category, and166

each diverging label or misdetection was identified and analyzed further. Taking167

both manual workflows as the ground truth, and the FAMOUS detection as the168

comparison, we classified all organelles into:169

– Objects correctly identified by FAMOUS are considered True Positives170

– Object inadequately identified by FAMOUS are False Positives171

– Object identified in the manual workflow and not identified by FAMOUS172

are False Negatives173

– Object detected by FAMOUS and missed by the manual workflow are true174

negatives175

In a few cases, FAMOUS wrongly identified one object as multiple objects176

that share the same space, the TP and FP values were adjusted accordingly, to177

avoid getting multiple positive identifications of the same object. To compare178

the performance of FAMOUS on the macroscopic level (detection efficiency,179

identification and classification performance), we used four separate criterions:180

– Precision - of all the classes how many were correctly predicted. Qualified181

as Precision = TP/(TP + FP )182

– Sensitivity - if a positive rate is predicted how often does this take place?183

Qualified as Recall = TP/(TP + FN)184

– The harmonic mean of Precision and Recall. Qualified as F1 = 2∗TP/(2∗185

TP + FP + FN)186

– The similarity between the manual and automatic segmentation. Qualified187

as Jaccard index as TP/(FP + TP + FN)188

Comparison of volumes, areas & evaluation metrics189

After the identification and classification, the organelles were segmented by190

applying conventional histogram-based filters to a cropped-out region and aver-191

aging noise out. This computationally efficient pipeline uses parallel processing192

(GPU) on each cropped-out region. No large computing capacity is required.193

To evaluate our segmentation approach, we conducted a volume compar-194

ison of each individual class (Figure 18). The total volume of all objects in195

an individual class was calculated for both the manual segmentations and the196

automatic workflows and plotted to quantify differences at the whole volume197

scale.198
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Figure 7: Yeast final visualization - Nucleus - M1(red) - M2(blue) - Auto-
matic(green)

Figure 8: Yeast final visualization - Mitochondria - M1(red) - M2(blue) - Auto-
matic(green)

Figure 9: Yeast final visualization - Golgi - M1(red) - M2(blue) - Auto-
matic(green)
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Figure 10: Yeast final visualization - Vacuole - M1(red) - M2(blue) - Auto-
matic(green)

Figure 11: Yeast final visualization - Multivesicular bodies - M1(red) - M2(blue)
- Automatic(green)

Figure 12: Yeast final visualization - Lipid droplets - M1(red) - M2(blue) -
Automatic(green)
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Table 1: Comparing Volume overlap between manual (M1, M2) and automatic
segmentation
- FIBSEM

Class Automatic-M1 Automatic-M2 M1-M2

Early Endosomes 65.04% 71.75% 86.31%
Late Endosomes 31.08% 9.95% 74.77%
Mitochondria 95.20% 94.94% 90.99%
Lysosomes 93.60% 69.91% 71.71%
Nucleus 98.31% 99.01% 99.54%

We then explored the intersection value, i.e. how much one unique object199

differs in its segmented properties (surface, periphery, center of mass etc) from200

one method to the other and what is the distribution amongst that class. This201

was achieved using a Boolean union operator, which joins two objects into one,202

while removing their intersection. The volume of the automatic workflow was203

subtracted from the total volume of both the automatic and manual workflows204

thus providing the difference between the two workflow volumes. The volumes205

were calculated in µm3(Table 1). The volume results are dependent on the cor-206

rect classification of objects into their classes and the position of the misclassified207

objects. As was expected from the previous metrics, there is a very good vol-208

ume overlap between all automatic and manually segmented organelles, which209

is in the range of that between the two manually segmented datasets. Only210

the late endosomes were not faithfully assigned. Late endosomes are volumet-211

rically the smallest class, and only a few misclassified organelles can create a212

large distortion in the total volume of the entire class, thus skewing the final213

numbers.214

The total volume distribution of the dataset is presented in in figures 13,215

14, 15, 16 and 17. As can be appreciated in Tables 2 and 3, the overall pre-216

cision, sensitivity and Jaccard Indices achieved by FAMOUS are comparable217

with those achieved between the two gold standards of experienced manual seg-218

mentators (Table 4). While the manual segmentation for the entire FIBSEM219

dataset was achieved by each segmentator in about 200 hours and that of the220

array tomography dataset within 120 hours, including visualization, our pre-221

sented automated segmentation pipeline required 12 and 8 hours, respectively,222

in terms of actual (guided) input time by the user, including the preparation223

of a training set. Within a about a sixteenth of time, FAMOUS reliably au-224

tomated a full-stack segmentation, visualization and quantification of an entire225

cell acquired by vEM - with an accuracy similar to the current gold standard.226

The workflow thus substantially facilitates quantification and analysis in high-227

resolution structural biology and can be quickly reproduced as described in the228

Methods section. A similar statistical analysis was done on the yeast dataset as229

well, and can be seen in tables 5, 6 and 7.230
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Figure 13: Volume comparison of the FIBSEM dataset - Early Endosomes

Figure 14: Volume comparison of the FIBSEM dataset - Lysosomes
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Figure 15: Volume comparison of the FIBSEM dataset - Late Endosomes

Figure 16: Volume comparison of the FIBSEM dataset - Mitochondria
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Figure 17: Volume comparison of the FIBSEM dataset - Total

Figure 18: Volume comparison of the Yeast dataset - Total
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Table 2: Precision, Recall, Jaccard index and F1 scores of the automatically
segmented data by FAMOUS compared to M1 - FIBSEM

Class Precision Recall Jaccard Index F1 Score

Early Endosomes 84.02% 79.33% 68.93% 81.61%
Late Endosomes 37.50% 14.29% 11.54% 20.69%
Mitochondria 84.43% 92.27% 78.85% 88.18%
Lysosomes 72.83% 82.72% 63.21% 77.46%
Nucleus 100.00% 100.00% 100.00% 100.00%

Table 3: Precision, Recall, Jaccard index and F1 scores of the automatically
segmented data by FAMOUS compared to M2 - FIBSEM

Class Precision Recall Jaccard Index F1 Score

Early Endosomes 82.42% 66.67% 58.37% 73.71%
Late Endosomes 17.50% 11.29% 7.37% 13.73%
Mitochondria 88.57% 92.81% 82.89% 90.64%
Lysosomes 74.19% 75.00% 59.48% 74.59%
Nucleus 100.00% 100.00% 100.00% 100.00%

Table 4: Precision, Recall, Jaccard index and F1 scores of the data - M1 vs M2
- FIBSEM

Class Precision Recall Jaccard Index F1 Score

Early Endosomes 85.47% 75.00% 66.52% 79.90%
Late Endosomes 39.05% 64.06% 32.04% 48.52%
Mitochondria 79.38% 92.22% 74.40% 85.32%
Lysosomes 88.89% 78.26% 71.29% 83.24%
Nucleus 100.00% 100.00% 100.00% 100.00%
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Table 5: Precision, Recall, Jaccard index and F1 scores of the data - M1 - yeast

Class Precision Recall Jaccard Index F1 Score

Cell 100.00% 100.00% 100.00% 100.00%
Nucleus 100.00% 100.00% 100.00% 100.00%
Mitochondria 100.00% 100.00% 100.00% 100.00%
Golgi 63.64% 75.90% 52.94% 69.23%
Vacuoles 100.00% 100.00% 100.00% 100.00%
Multivesicular bodies 62.50% 93.75% 70.00% 75.00%
Lipid droplets 37.50% 50.00% 27.27% 42.86%

Table 6: Precision, Recall, Jaccard index and F1 scores of the data - M2 - yeast

Class Precision Recall Jaccard Index F1 Score

Cell 100.00% 100.00% 100.00% 100.00%
Nucleus 100.00% 100.00% 100.00% 100.00%
Mitochondria 100.00% 100.00% 100.00% 100.00%
Golgi 46.46% 100.00% 46.46% 63.45%
Vacuoles 100.00% 100.00% 100.00% 100.00%
Multivesicular bodies 47.83% 84.62% 44.00% 61.11%
Lipid droplets 25.00% 100.00% 25.00% 40.00%

Table 7: Precision, Recall, Jaccard index and F1 scores of the data - M1 vs M2
- yeast

Class Precision Recall Jaccard Index F1 Score

Cell 100.00% 100.00% 100.00% 100.00%
Nucleus 100.00% 100.00% 100.00% 100.00%
Mitochondria 100.00% 100.00% 100.00% 100.00%
Golgi 95.65% 53.01% 51.76% 68.22%
Vacuoles 100.00% 100.00% 100.00% 100.00%
Multivesicular bodies 92.31% 75.00% 70.59% 82.86%
Lipid droplets 100.00% 33.33% 33.33% 50.00%

Discussion231

In this paper, we have presented a novel automatic segmentation tool for vEM232

datasets across modalities that segements cell organelles as reliably as manual233

segmentation by visual inspection, as quantified by Jaccard Indices and vol-234

ume comparisons. The workflow (FAMOUS) can analyse and quantify an entire235
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dataset of several terabytes within a few hours, i.e. in a fraction of time com-236

pared to manual segementation. FAMOUS will hence significantly contribute237

to high throughput and automation in vEM, and help to push the field towards238

quantitative imaging and statistically solid results.239

An important issue that arose early is that the manual segmentation can-240

not be viewed as fully and exclusively representative of the actual ground truth241

data, mainly due to human error. There were instances where the automatic242

segmentation identified organelles accurately, but the manual segmentation did243

not classify the organelles in the same class as the automatic or missed them244

entirely (Figure 20). In such cases, the automatically segmented organelle was245

labeled as an error. These cases biased the final accuracy numbers of the au-246

tomatic segmentation, and can only be corrected by visual inspection. The247

subjective assessment of the expert who carries out the manual segmentation248

plays a significant role in the final results, meaning that different experts classify249

the same organelle into different classes, as quantified by the Jaccard Indices250

below 1 between the two manually segmented datasets. For a better illustration251

of such cases, a 3D mesh intersection with the slice was done, after which an252

outline of the intersection was created. The automatically segmented outline253

is shown on the left in green, while the manually segmented outline is shown254

on the right in red (Figure 19). In addition, the automatic workflow identified255

organelles that the manual segmentation did not (Figure 20). The reverse situ-256

ation is also present, where the automatic workflow failed to identify organelles257

that the manual did. However, in these cases, the automatic workflow did not258

fail in recognizing that the organelle existed, but the organelle was identified259

as the wrong class. This issue only arises when two classes have similar visual260

features. In the FIBSEM dataset, the organelles that fall into this category are261

the late endosome and lysosomes.262

While the manual segmentation comparison shows better number for the263

late endosome class, when compared with the other classes, late endosomes are264

shown to be the most problematic there as well. For the FIBSEM dataset, the265

automatic segmentation outperforms the manual segmentations in the detec-266

tion of the early endosomes and mitochondria, and, as stated above, slightly267

underperforms in the detection of late endosomes and lysosomes. For the ar-268

ray tomography yeast dataset, FAMOUS and the manual segmentation yield269

similar accuracy in the detection and segmentation of the organelles (compare270

Tables 2 and 3), when comparing the mean Jaccard indices for both manual271

and automatic segmentations. We observe that our segmentation strategy does272

not overestimate the organelles in comparison to the manual segmentation.It is273

interesting to note that even experienced scientists cannot unambiguously agree274

upon assigning organelle structures in a cell volume, which provides another275

argument on why automation of the process (and hence objectifying it) is of276

utmost importance.277

FAMOUS only struggled with complex objects that were connected by small278

“bridges” between the larger, more rounded parts of the object (Figure 21). In279

these cases, the automatic segmentation sometimes identified every major part280

of the complex object as a separate entity and did not recognise them as a281
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Figure 19: Manual segmentation errors

18



Figure 20: Manual missed classification
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Figure 21: Failed complex objects

singular object, or mislabelled the organelle, as can be seen in Figure 21. The282

”bridge” parts of the objects proved to be problematic, as they are usually very283

thin in size and blend in to the background pixels. The workflow was precise284

enough to detect each individual part of the complex object. For visual clarity,285

only the first detected part of the complex object is shown. The issue is eas-286

ily remedied with the eye-test, and manually joining all of the separate parts287

of the complex object into one whole by adapting the filtering of the morpho-288

logical image operations (see Methods). However, automating this particular289

process has proven to be a difficult task, and as such remains unsolved in this290

version of the workflow. This issue was only relevant in the yeast dataset, and291

also explains the large number of small objects identifed by FAMOUS but not292

by the manual workflow. Specifically golgi, multivesicular bodies and liquid293

droplets had the mentioned issues, as these structures are complex and have294

many interconnections that FAMOUS did not detect.295

The problem with any manual segmentation, is the human factor. vEM im-296

age data usually consists of hundreds to thousands of images that need to be297

analysed. Such work is usually done by students, who may get only a short298

briefing and whose judgment must be relied upon. Differences in performance299

are to be expected. Often, not even the evaluation of the structures to be iden-300

tified is the biggest problem, but the completeness of the evaluation. Many301

organelles are overlooked. Certainly, the efficiency of manual segmentation also302

depends on the equipment, a person with a high-quality graphics tablet will get303

better results than someone with a small screen and a computer mouse. We304

consider it of outmost importance to hence ’objectify’ the process of organelle305

segmentation for vEM datasets and think that the FAMOUS pipeline is an im-306

portant step towards a high-throughput quantitative and standardized analysis307

of vEM datasets.308
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Methods309

FIBSEM sample preparation and data acquisition310

Hela cells were grown on a CryoCapsule [11] in DMEM culture medium con-311

taining 10% FBS for 3 days, then vitrified by High Pressure Freezing using an312

HPM Live µ(refs to add once the chapter is out, find the HPF curves to sup-313

port paper out).The samples were then freeze substituted in Dry acetone plus314

1% H2O, 0,05% Uranyl Acetate and 0.1% Glutaraldehyde X hours at -90°C,315

warmed up to -45°C at +5°C/hour rate, stay at -45°C for 5 hours, rinsed in dry316

acetone (3x10min) and impregnated in R221 resin (CryoCapCell, France) for 2317

hours at 25%, 50%, 75% in acetone. The temperature was raised to -20°C for318

the last impregnation in 100% R221 (overnight infiltration followed by a second319

step in 100% for 2 hours prior to UV polymerization). UV polymerization was320

conducted for 48hours at -20°C, then the temperature was progressively raised321

to +20°C at a 5°C/hours rate, and UV was continued for 48hours at +20°C.322

The samples were then evaluated for ultrastructure preservation by transmission323

electron microscopy prior to analysis by FIB-SEM.324

Focused ion beam scanning electron microscopy (FIB-SEM) data was col-325

lected using a Crossbeam 540 FIB-SEM with Atlas 5 for 3-dimensional tomogra-326

phy acquisition (Zeiss, Cambridge). Prior to loading into the SEM, the sample327

was sputter coated with a 10 nm layer of platinum. The cell of interest was328

relocated by briefly imaging through the platinum coating at an accelerating329

voltage of 20 kV. On completion of preparation for milling and tracking, images330

were acquired at 5 nm isotropic resolution throughout the region of interest,331

using a 10 µs dwell time. During acquisition the SEM was operated at an accel-332

erating voltage of 1.5 kV with 1 nA current. The EsB detector was used with333

a grid voltage of 1,200 V. Ion beam milling was performed at an accelerating334

voltage of 30 kV and current of 700 pA. Prior to segmentation, the dataset was335

cropped, inverted, and registered (using the plugin ‘Linear Stack Alignment336

with SIFT’ [20]). The volume of the final dataset was approximately 346.16 µm337

3 (1778 images, 10.22 µm x 3.81 µm x 8.89 µm).338

Yeast cell sample preparation and data acquisition339

Saccharomyces cerevisiae cells were grown in YPD media with 2% glucose to340

an optical density (OD600) of 0.5. The cells were the filtered using a 0.22um341

filter [9] and frozen in a Wohlwend Compact 3. The samples underwent freeze342

substitution in a Leica AFS2 in 2% uranyl acetate in anhydrous acetone for 1h at343

-90°C, followed by three washes in acetone and stepwise embedding into Lowicryl344

HM20 resin at -50°C. Finally, they were polymerised using UV light for 5 days345

whilst allowing the temperature to reach 20°C. Blocks were sectioned using a346

Reichert Ultracut S to serial 350nm sections onto formvar-coated copper slot347

grids, stained with 2% uranyl acetate and Reynold’s lead citrate. Gold fiducials348

(15nm) were added onto both surfaces. Tomograms were acquired using an FEI349

TF30 at 300kV (University of Colorado Boulder) on a Gatan OneView, at a350
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pixel size of 0.8578nm. Dual-axis tomograms were acquired over a ±60° range351

at 1.5° increments. Resulting pixel size after reconstruction: 1.7156nm.352

Manual segmentation353

To evaluate our automated segmentation approach, the same dataset was also354

manually segmented using Amira 6.0, Thermofisher software [23], using the355

brush tool and interpolation function of the segmentation editor. Organelles356

were identified based on their size, shape, and structure, mainly on the X-357

Y images, all along the Z axis. The orthoslice view was used to correct the358

Z-positioning of the labeling when necessary. Each segmented organelle was359

assigned to a morphological group. When the correct assignment was unclear,360

the orthoslice view was used to help the segmenting scientist. The final vol-361

ume classes were exported as *.stl files for quantitative comparison with the362

automatically segmented organelles and further analysis. The entire manual363

segmentation and visual examination for the FIBSEM dataset alone took about364

200 hours for the segmenting scientist.365

FAMOUS segmentation pipeline366

On a volumetric set of 1800 successive layers of FIB/SEM input images, we367

used the YOLOMark user interface to define the object classes. We randomly368

took 20 images from the dataset, and through the YOLOmark user interface,369

manually and tightly boxed out every compartment in each image according to370

the class/morphological group we were expecting the compartment to belong to.371

This preliminary work is the only one required by the end-user and is achieved372

in about 4 hours for 10 classes.373

We used this classification to train YOLOV4 to identify each individual374

compartment and assign it to a morphological group. This is the ‘Instance375

Segmentation’. Every organelle is classified and boxed out for each single plane376

of the stack. Given that we know the layer number for any given 2D organelle377

instance and the distance in nanometers between layers, we can infer the exact378

3D location for each organelle location.379

In addition, the workflow is fine-tuned to each morphological group to gen-380

erate a cloud of points outlining the individual compartment based on a con-381

ventional image-processing pipeline. On each layer, each identified structure382

seeks out for the structures located directly above and below itself and looks383

for correspondences in class. A larger 3D cloud of points outlining the organelle384

is then repositioned into the original volume, and post-processing is used to385

smooth the 3D shapes, remove noise, patch holes and re-assemble the cell com-386

partments. This hybrid method uses the YOLO network to classify and box387

out each compartment, then apply light weight conventional image processing388

pipeline to accurately segment each compartment class. The expertise of the389

biologist is used to identify structures in a reasonable time frame, while the390

image analyst focuses on YOLO training and class segmentation followed by 3D391

rendering ready for analysis. The processing power required is contained (one392
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GPU on a workstation is sufficient), and accurate results are generated within393

a week for one type of dataset with minor input by the end user.394

The computer hardware used in the FAMOUS machine learning and image395

processing pipeline was a regular desktop Windows machine, with 16GB RAM396

(DDR3, CL16, 2133Hz), Intel i7 7700K with a clock speed of 4.2 GHz, and an397

NVIDIA Geforce GTX 1060 GPU with 6GB VRAM.398

Image Processing399

YOLO is an object detection algorithm, meaning that it is able to draw bound-400

ing boxes around positive examples of classes of objects it is searching for, but401

it is not able to isolate the relevant pixels belonging to the object. We solved402

this problem using basic image processing techniques. A series of morphological403

operations (erosion, dilation, Gaussian blurring and thresholding) was used to404

achieve the separation of foreground and background pixels. Each class of or-405

ganelle had a custom, yet similar (excluding lysosomes) procedure for extracting406

pixels that belonged to the organelle in each identified region of interest.407

Algorithm 1: Early Endosomes segmentation

input : Image Iwidth,height, Set of bounding boxes
BBx,y,width,height,class=EarlyEndosomes

output: Set of points S of all pixels pertaining to Early Endosomes in
image Iwidth,height

for each bounding box b ∈ BB do
imageROI IR= set I to Region of Interest (ROI) of b;
IR = reduce to Grayscale(IR);
IR = Gaussian Blur(IR);
IR = erode(IR);
IR = dilate(IR);
IR = Otsu Threshold(IR);
C = the largest connected component in IR;
S = all points belonging to C;

end

408

We distinguished between early endosomes that are generally light areas409

against a dark background and late endosomes, mitochondria and nuclei that410

were the opposite. It was difficult to consistently morphologically isolate the411

pixels pertaining to lysosomes due to the nearly imperceptible difference between412

the foreground and background pixels. We therefore assumed that successfully413

detected lysosome pixels occupied the ellipse that best fit the bounding box of414

the YOLO detected instance, as seen in the Algorithm 3.415
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Algorithm 2: Late Endosome, Mitochondria, Nucleus segmentation

input : Image Iwidth,height, Set of bounding boxes
BBx,y,width,height,class=EarlyEndosomes

output: Set of points S of all pixels pertaining to Late Endosomes or
Mitochondria, or the Nucleus in image Iwidth,height

for each bounding box b ∈ BB do
imageROI IR= set I to Region of Interest (ROI) of b;
IR = bitwise Not(IR);
IR = reduce to Grayscale(IR);
IR = Gaussian Blur(IR);
IR = erode(IR);
IR = dilate(IR);
IR = Otsu Threshold(IR);
C = the largest connected component in IR;
S = all points belonging to C;

end

416

Algorithm 3: Lysosome segmentation

input : Image Iwidth,height, Set of bounding boxes
BBx,y,width,height,class=EarlyEndosomes

output: Set of points S of all pixels pertaining to Lysosomes in image
Iwidth,height

for each bounding box b ∈ BB do
imageROI IR= set I to Region of Interest (ROI) of b;
IR = reduce to Grayscale(IR);
IR = Gaussian Blur(IR);
IR = erode(IR);
IR = dilate(IR);
IR = Otsu Threshold(IR);
C = the largest connected component in IR;
S = all points belonging to C;

end

417

Organelle Composition from Layers418

The above-described methods of extracting salient pixels from bounding boxes419

is not without fault but does quickly result in usable 2D points that are assem-420

bled into point clouds in 3D space. For each of the 1800 FIBSEM input images,421

for example,we have n sets of 2D points that correspond to pixels of individual422

organelle instances, as well as the class of each identified organelle. This infor-423

mation effectively gives us the 3D positions of each point of each organelle in424

the entire sample. Next, we joined the identified organelle slices between layers425

into individual, coherent 3D organelles. Each bounding box is assigned an ID426
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number, where bounding boxes of organelles of the same class that meet the427

necessary criteria to form part of the same organelle are assigned the same ID428

number. Algorithm 4 describes this procedure.429

The resulting sets of 3D points are referred to as point clouds, since we still430

do not have complete 3D organelles at this point. Techniques for cleaning noise431

and outliers are used to create the final set of point clouds. Point clouds are432

transformed into 3D shapes via the meshing procedure described below.433

Algorithm 4: Organelle Composition from Layers

input : Images I1..1800, Set of bounding boxes
BBlayer,x,y,width,height,class

output : Set of object labels L for all organelle Bounding boxes
BB

parameters: integer layersToScanAboveMe = 50, double
tolleranceFromCenter = 0.2

labelIndex = 0;
for each imagei ∈ I1..1800 do

for each bounding box b ∈ BB in imagei do
bounding boxes bbtemplist= get all bounding boxes from BB
where

BBlayer < i AND BBlayer > i− layersToScanAboveMe AND
|((BBx +BBwidth)/2)− ((bx + bwidth)/2)| <
(tolleranceFromCenter ∗MAX(BBwidth, bwidth)/2) AND

|((BBy +BBheight)/2)− ((by + bheight)/2)| <
(tolleranceFromCenter ∗MAX(BBheight, bheight)/2);

if bbtemplist Not Empty then
blabel=label of first element of bbtemplist;

else
blabel = labelIndex;
labelIndex++;

end

end

end

434

Cleaning point cloud noise435

The output of the network is a set of 3D points, known as a point cloud. Every436

point is described by 4 parameters: the x,y,z coordinates in 3D space, as well as437

the normal vector direction of the point. Creating watertight 3D objects from438

such point clouds requires the use of surface reconstruction algorithms. Such439

algorithms are extremely sensitive to noise and outliers in the data. Due to440

this, a pre-processing of the data was implemented before the reconstruction441

was started. Each point in the point cloud can be described by the number442

of other points that surround it - neighbouring points. Statistical analysis of443

the point clouds, per class, output an average distance to neighbouring points.444
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Figure 22: Process of noise removal and reconstruction

Using this number as a threshold, points that do not meet the criterion for the445

distance are flagged as outliers and removed from the point cloud. This ensures446

that the sparsest parts of the point cloud are removed and will not influence447

the reconstruction. This step is done on a per class basis and outputs processed448

point clouds that can be used for further 3D reconstruction.449

Surface reconstruction450

The next step in the process consists of generating a single, watertight 3D451

representation of the point cloud. To generate the 3D representation, the point452

clouds are imported into Blender [8], a free, open source software for general453

work with 3D objects. A 3D object can be described as a set of points, edges454

and faces that define the shape of the object. A singular term for these building455

blocks of the object is object geometry. The number and distribution of these456

elements define the complexity and quality of the object itself.457

Element number 1 in figure 22 shows an example of raw point cloud data that458

was generated from the workflow with element number 2 showing the result of459

the initial, neighbour based, point removal. As the figures show, only the most460

extreme outliers in the point cloud were identified and removed, leaving noise461

that was not detected as such still present in the point cloud. Such points did462

not meet the criterion that was described in the Cleaning point cloud noise463

subsection. 3D Meshing was achieved through a 3 step process of noise clearing.464

The first step in the reconstruction was generating a rough approximation of465

the point cloud surface as a 3D mesh using Convex Hull operation. The Convex466

Hull of a set of points P represents the smallest convex set containing P, thus467

enveloping all of the points of the point cloud with a 3D mesh. Convex Hull468

trades precision for speed, thus it is prone to creating undesirable 3D artefacts469

in the reconstructed mesh is shown as element number 3 in figure 22. To resolve470

this issue, a remeshing algorithm was introduced. The process of remeshing471
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changes the geometric layout of an object, without changing the shape of the472

object. Element number 4 in figure 22 shows the differences between the initial473

Convex Hull geometry and the remeshed geometry. Improved geometry allows474

for more complex deformations of an object. We used Blender’s voxel remesh475

implementation that uses OpenVDB [17] to generate a new manifold mesh from476

the input geometry.477

In the second step the point cloud and the remeshed Convex Hull were478

loaded into the same environment and overlayed on top of each other as can479

be seen in element 5 in figure 22. After which, depending on the object shape,480

either the rough approximation is scaled by a dynamically calculated amount481

(1-3% of the full scale), or the rough approximation is projected onto the point482

cloud before the scaling is done. The object shapes where points are distributed483

in an uniform manner relative to the center of the object (i.e. all points are484

at relatively the same distance from the center) use the former, other objects485

use the latter. Projecting a 3D mesh onto another object is the process where486

the geometry of the mesh is deformed to the shape of the object on which the487

projection is being done in a gift-wrapping manner. The point cloud itself will488

serve as the underlying object around which the 3D mesh will be deformed. The489

remeshing step is what enables the projection to be successful, as the projection490

is directly dependent on the geometry layout of the object.491

In either case, the rough approximation was scaled and a number of points492

of the point cloud were exposed. The point cloud is now divided into interior493

and exterior points in regards to the convex hull approximation. The mesh494

projection is done once again, ignoring the exterior points thus eliminating any495

severe noise that remained in the point cloud. A visualization of the resulting496

point cloud is shown in figure 22 as element number 6.497

In the final step the Convex Hull of the cleaned-up point cloud was again498

calculated. In this part of the pipeline, the projection of the Convex Hull onto499

the point cloud cannot be omitted. As explained previously, if the projection500

is to be done, the Convex Hull mesh needs to be remeshed. In this case the501

remeshing was done to create a more dense geometry i.e. a geometry that can502

be deformed to a larger extent thus allowing for more detailed surface recon-503

struction. Once that step was completed, the mesh was projected onto the point504

cloud, as is shown in figure 22 as element number 7.505

As the figure shows, the mesh was deformed to every surface imperfection.506

However there still existed sharp edges on the mesh, that did not accurately507

represent the contour of the point cloud locally. We implemented a smoothing508

algorithm after the projection was completed. The final result of the reconstruc-509

tion is shown as element number 8 in figure 22.510
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