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Abstract

The process of estimating the number of individuals within a defined area, commonly referred to as people

counting, is of paramount importance in the realm of safety, security and crisis management. It serves as a

crucial tool for accurately monitoring crowd dynamics and facilitating well-informed decision-making during

critical situations. In our current study, we place a special emphasis on the utilization of the WiFi finger-

print technique, leveraging probe request messages emitted by smart devices as a proxy for people counting.

However, it is essential to recognize the evolving landscape of privacy regulations and the concerted efforts by

major smart-device manufacturers to enhance user privacy, exemplified by the introduction of MAC addresses

randomization techniques. In this context, we designed a crowd monitoring solution that exploits Bloom fil-

ters for ensuring a formal deniability, aligning with the stringent requirements set forth by regulations like the

European GDPR [1] . Our proposed solution not only addresses the essential task of people counting but also

incorporates advanced privacy-preserving mechanisms. Importantly, it seamlessly integrates with trajectory-

based crowd monitoring, offering a comprehensive approach to managing crowds while respecting individual

privacy rights.
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Abstract—The process of estimating the number of individuals
within a defined area, commonly referred to as people counting,
is of paramount importance in the realm of safety, security and
crisis management. It serves as a crucial tool for accurately mon-
itoring crowd dynamics and facilitating well-informed decision-
making during critical situations. In our current study, we place
a special emphasis on the utilization of the WiFi fingerprint
technique, leveraging probe request messages emitted by smart
devices as a proxy for people counting. However, it is essential
to recognize the evolving landscape of privacy regulations and
the concerted efforts by major smart-device manufacturers to
enhance user privacy, exemplified by the introduction of MAC ad-
dresses randomization techniques. In this context, we designed a
crowd monitoring solution that exploits Bloom filters for ensuring
a formal deniability, aligning with the stringent requirements set
forth by regulations like the European GDPR [1]. Our proposed
solution not only addresses the essential task of people counting
but also incorporates advanced privacy-preserving mechanisms.
Importantly, it seamlessly integrates with trajectory-based crowd
monitoring, offering a comprehensive approach to managing
crowds while respecting individual privacy rights.

Keywords—Crowd Monitoring, People counting, WiFi, Probe
Request, Bloom filter, Anonymization noise

I. INTRODUCTION

In the aftermath of the COVID-19 pandemic, social dis-
tancing measures have reshaped our world, leading to un-
precedented restrictions on public gatherings. Even with the
subsiding pandemic, limitations on gathering sizes continue to
affect public events. Despite these challenges, we anticipate
a resurgence of large public events in the post-COVID era,
heralding excitement and also posing formidable challenges.
The return of these mass gatherings introduces significant
security and congestion management challenges. In this con-
text, the role of crowd management analytics is essential
for facilitating effective decision-making and ensuring public
safety. The ability to meticulously assess crowd dynamics, esti-
mate resource requirements, and optimize emergency response
efforts is critical for authorities tasked with managing large
public events. Nevertheless, the task of accurately counting
and tracking individuals within large-scale gatherings remains
a complex challenge. Traditional techniques, including the
use of surveillance cameras, LiDAR and infrared systems, as
well as WiFi and Bluetooth fingerprint tracking, have been
extensively employed for this purpose. Nonetheless, these
methods are now grappling with a set of new challenges,
most notably those stemming from the European General Data
Protection Regulation (GDPR) [1] and heightened concerns
regarding user privacy, especially from prominent smart device

manufacturers. Apart from pandemic-related concerns, crowd
monitoring is crucial for ensuring safety during large events for
several reasons. It enables authorities to anticipate and mitigate
potential security threats, manage crowd flows to prevent
stampedes or congestion, and allocate resources effectively in
emergencies. In the event of an unforeseen crisis, such as a
terrorist threat or a natural disaster, accurate people counting
and crowd tracking can be instrumental in orchestrating rapid
evacuations and providing timely medical assistance.

In this study, we harness IoT technology to address the
challenge of simultaneously characterizing flows of people and
quantifying the number of devices/people in a crowd, all while
safeguarding user privacy.

Within our proposed crowd counting framework, we have
harnessed a versatile data structure capable of facilitating
both single scanner counting and flow analysis involving
multiple scanners. When handling data captured from the
WiFi scanners, our process begins with an initial stage of
outlier removal. Subsequently, we leverage a derandomization
technique, as proposed in [2], to address the randomization
of MAC addresses. This technique allows us to assess the
probability that different probe requests, each with distinct
randomized MAC addresses, belong to the same device.
This step significantly enhances the counting accuracy. The
output of the derandomization process is then stored in a
Bloom filter, which is initialized with a set of n random
MAC addresses. This initialization aligns with the previously
introduced anonymization noise technique [3]. Through this
technique, we establish the formal concept of 1-deniability.
This ensures that for every MAC address present in the Bloom
filter, there exists at least one other MAC address not in the
filter that, if queried, would yield an indistinguishable result
from the original, thereby allowing us to deny its presence with
certainty. Essentially, for every element stored, there is at least
one other element not in the Bloom filter that, if added, would
not change the filter’s bitmap. With the added security of the
1-deniability property, we can securely transmit the Bloom
filters over the network and perform server-side intersections.
This allows us to analyze the flow of people within a specific
time window or simply count the number of elements stored
within a Bloom filter.

The remainder of this paper is structured as follows: In
Section II, we delve into pertinent related work. Section III
provides an in-depth exploration of the methodology and tech-
niques employed in designing our privacy-preserving crowd
monitoring solution. Subsequently, Section VI presents an in
depth analysis on the anonymization noise applied to Bloom
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filters, showcasing the effectiveness of 1-deniability and intro-
ducing the concept of γ−K− anonymity. Section VII unveils
the flows-monitoring architecture, offering a comprehensive
overview of the entire pipeline, starting from data detection
and culminating with Bloom filter intersection for harnessing
flow data. Lastly, in Section VIII, we present our concluding
remarks and insights.

II. RELATED WORKS

In recent years, the importance of estimating crowd sizes
and understanding people’s movements in specific areas has
become increasingly evident. This knowledge can significantly
improve the overall management of various situations and
events.

Over the past few years, numerous techniques have been
proposed to address the challenge of people counting. In [4],
[5], the authors exploit a multi-camera surveillance system.
Their method combines partial body detection and person re-
identification to accurately count individuals in overlapping
areas. In contrast, recent works, such as [6], [7], have em-
ployed LiDAR sensors, which, compared to video camera
techniques, address privacy issues. However, in both solutions,
hardware costs play a pivotal role and the suitability of
LiDAR in different environmental scenarios remain problem-
atic. Moreover, due to the recent regulations imposed by the
GDPR [1], recording and storing face detection data raises
privacy concerns.

Conversely, studies presented in [2] and [8] explore the use
of WiFi probe request messages as an effective method for
crowd-monitoring in various scenarios, achieved by collecting
WiFi fingerprints from mobile devices. Solutions utilizing
such messages can be applied in both indoor and outdoor
settings, demand budget-friendly equipment, have low com-
putational requirements, and can mitigate privacy concerns.
New approaches investigate the possibility to apply artificial
intelligence algorithms to divide probe requests to identify the
single devices that sent them. An example is explained in [9]
and [10], where the authors employed clustering techniques to
retrieve groups of messages, each one representing a device.
The former focused on some probe requests fields, such as
MAC addresses, arrival timestamp, throughput capabilities
and RSSI. While the latter considered the length of probe
request fields values. Nevertheless, WiFi fingerprints have their
limitations, primarily linked to the absence of ground truth
data essential for testing and fine-tuning counting algorithms.
In particular, all the reported works obtained some results that
are not comparable with any certain ground truth. The number
of devices that send messages inside the captures can only be
estimated with methods that are approximate and not easy to
apply, especially in highly-crowded environments.

In light of recent developments in European regulations,
the GDPR [1] imposes significant restrictions on the storage
and management of sensitive information. As previously men-
tioned, mobile devices regularly emit probe request messages
that contain details, such as MAC addresses, which are crucial
for device identification and monitoring. Notably, the GDPR
categorizes MAC addresses as personal data, necessitating the

implementation of privacy protection measures [11]. Numer-
ous approaches have been presented in literature to tackle
this challenge, including [12] and [13]. Both these solutions
address privacy concerns by utilizing Bloom filters to store
MAC addresses information and employing an asymmetric
homomorphic encryption system to process the data within
the Bloom filter. Unfortunately, as demonstrated in [14], while
Bloom filters can indeed safeguard the privacy, they may
fail to meet the stringent anonymity constraints mandated by
the GDPR. Additionally, the authors of [14] introduce two
essential concepts for safeguarding anonymity: γ− deniability
and γ − K− anonymity. In simple terms, a small number
of inserted elements do not guarantee anonymity. Regrettably,
this observation is not taken into account in [12] and [13],
rendering their proposed solutions viable only for sufficiently
large crowds.

In this current work, we present an extensive analysis of
privacy techniques applicable to Bloom filters. These tech-
niques are designed to meet the stringent privacy requirements
mandated by GDPR regulations. Additionally, we introduce a
crowd-monitoring framework, which is focused on understand-
ing the dynamics of crowd movement across multiple scanners.
Importantly, all of our approaches adhere to GDPR-compliant
privacy standards, guaranteeing the protection of user data.

III. CROWD MONITORING THROUGH WIFI PROBE
REQUEST MESSAGES

As we have detailed earlier, our methodology harnesses
WiFi signal detection and subsequent data analysis to precisely
estimate the presence and variety of smart devices, encompass-
ing smartphones, tablets, laptops, and smartwatches, among
others. Our method involves scanning the WiFi spectrum to
capture packets emitted by these smart devices. The process
begins when a smart device activates its WiFi interface,
emitting probe requests as it searches for nearby Access Points
(APs) – a fundamental step for establishing a connection to
a WiFi network. In the ensuing discussion, we will provide
an overview of the fundamental characteristics of WiFi that
we exploit to garner valuable insights from the probe request
messages. Furthermore, we will introduce the Bloom filter data
structure, which is integral to our development of the concept
of 1-deniability.

Probe requests constitute a specific category of WiFi man-
agement frames primarily utilized for the purpose of network
discovery. Notably, these frames lack encryption, as their
primary role is to facilitate the identification of available
networks. Whenever a device activates its WiFi interface, it
automatically initiates the transmission of these broadcast mes-
sages. Furthermore, even when a device is already connected
to a network, it continues to send probe request messages
with the objective of identifying potentially better access
points, thereby aiming to enhance the quality of its network
connection. Upon dispatching a probe request, a Probe Timer
is initialized. If the device fails to receive a response, it
automatically switches to the next channel frequency and
reiterates the network discovery process. In the event a probe
response is received, the device proceeds to initiate the au-
thentication process. This authentication procedure involves
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Fig. 1: Flows-monitoring pipeline through WiFi scanner leveraging WiFi probe request messages.

the exchange of authentication frames with the access point,
ensuring validation of the device’s adherence to IEEE 802.11
standards and compatibility with the target network.

It is worth noting that this behavior bears a resemblance to
Bluetooth, where similar messages are referred to as inquiry
requests and inquiry responses. These Bluetooth messages
serve a parallel purpose of discovering nearby devices and
establishing connections.

Within the probe request messages, the MAC address serves
as a primary key field. This 48-bit identifier is designed
to uniquely distinguish each device globally. However, since
2014, device manufacturers have increasingly adopted MAC
address randomization techniques as a means of bolstering
user privacy [15]. These privacy-enhancing techniques involve
the use of ”pseudo” or ”fake” MAC addresses when transmit-
ting probe request messages. The objective of this technique,
denoted as MAC randomization, is to make it more challenging
to track a device, thereby safeguarding people’s identity.
Notably, there is no standardized method for randomizing
MAC addresses, resulting in a variety of methods employed
by different vendors.

In our earlier research [16], we highlighted this evolving
trend, particularly prevalent in newer devices. Our observa-
tions have revealed variations in MAC address randomization
practices among these devices. While some devices choose to
randomize the entire 48-bit MAC address, others selectively
randomize only the second half of the address, retaining the
first 24 bits, which are known as the Organizationally Unique
Identifier (OUI). This selective approach to randomization
strikes a balance between user privacy and network compat-
ibility, ensuring seamless interaction with existing network
infrastructure while enhancing personal data protection.

Some past works focused on derandomization methods,
which are able to identify approximately the same device
behind a set of random MAC addresses. Works [2], [9], [10],
[17] represent only a portion of the extensive body of literature
contributing to the field of derandomization techniques in the
context of probe request messages. Actually, such methods are
heuristic and their accuracy depends on the device models and
on the usage conditions.

A possible framework designed for the analysis of crowd
monitoring and the study of people’s movements, based on
multiple access points distributed over a wide area, is depicted
in Figure 1. It provides an overview of the operations con-
ducted by the sniffer. The process starts with the sniffing of
the WiFi probe request messages, followed by the application
of a filter, i.e., based on RSSI signal strength. This filter is
instrumental in eliminating potential outliers from the analysis.
Subsequently, a derandomizer script is employed to counter-
act the effects of MAC address randomization. Finally, the

resulting MAC addresses are stored in a Bloom filter, which
is initially populated with random MAC addresses, referred to
as anonymization noise.

IV. BLOOM FILTERS AS A PRIVACY TOOL

Bloom filters are a probabilistic data structure well known in
the literature [18], [19] which have been introduced to solve
the approximated set membership problem. They have been
devised to optimize the performance of data storage systems,
whenever a set must be efficiently implemented with minimum
memory footprint.

A Bloom filter is used to represent a collection of elements.
It is constructed using an array of bits, represented as BF ∈
{0, 1}m, where m is the array’s length, and k independent hash
functions, denoted as H1, H2, . . . ,Hk. These hash functions
map an input element x to one of the m bits within the bit
array. We refer to the i-th bit of BF as BF [i]. Initially, all bits
are initialized to 0. When adding an element x to the Bloom
filter (a visual representation can be found in Figure 2), the k
hash functions are applied to x, and the bits in BF associated
with the positions generated by the hash functions are set to 1:

BF [Hi(x)] = 1 ∀i = 1, . . . , k (1)

Fig. 2: When adding a new element to the Bloom filter, the
input is processed using a set of k independent hash functions.
The resulting values from these hash functions (i.e., 0,2,8)
serve as indices to access the Bloom filter array. At each
corresponding index, the bit is set to 1. This process is repeated
for each new input value.

To confirm the presence of an element in a Bloom filter, the
element undergoes the same set of k hash functions, and the
resulting output is cross-referenced with the current values of
the corresponding bits in the Bloom filter (BF ). If all the 1s in
the output align with the corresponding bits in BF (i.e., both
are set to 1), the element is regarded as likely present in the
Bloom filter. This means that an element could be considered
within the Bloom filter, even if this is not correct. This event
is named “false positive”. On the contrary, if even a single bit
in the match is set to 0, the element is conclusively deemed
absent in the Bloom filter. It is crucial to emphasize that a

3



Bloom filter has the potential to yield false positives, i.e., it
may incorrectly indicate that an element is present in the set
when it is not. However, it does not yield false negatives,
meaning it cannot erroneously indicate that an element is
absent when it is, in fact, present.

Notably, it is only possible to add elements in a Bloom
filter, and it is not possible to remove elements. Thus, for the
WiFi scanner scenario, the Bloom filter keeps accumulating
MAC addresses and its probability of false positive increases,
until it saturates (i.e., all bits are ones). To avoid saturation,
the bloom filter must be periodically reset.

It is worth highlighting that:
• A smaller value of k raises the number of 0 bits in

the array, making them more likely to be available for
elements that are not part of the set S.

• Conversely, a larger value of k heightens the likelihood
of encountering at least one 0 bit for an element that is
not a member of S.

To minimize false positives, using standard results [19], it is
possible to determine analytically the optimal value of k based
on the available memory m according to (2):

kopt =
m

n
log(2) (2)

Bloom filters offer a versatile solution for storing MAC
addresses observed by a WiFi scanner. To illustrate the process
of parameter tuning, we will examine three different scenarios
where the Bloom filter is reset periodically with a period
denoted as T .

In the first scenario, denoted as A, at most 1,000 people are
expected to be observed by the scanner in a period of time of
120 s, so the flow rate is approximately 8 people per second.
Assuming to have a memory of 10,000 bits, the optimal value
kopt of hash functions, according to (2), is equal to 7. This
first scenario can be a use case where we want to monitor the
flow of people in a very crowded plaza. Let us now consider a
different scenario, denoted with B, where we want to analyze
the flow of people and cars at an intersection during the green
light phase. In this case, the period of time is shorter than
before, let us assume it is 40 s and that we expect to collect
4 probe requests per second, with only 1,000 bits available.
In this case the value of kopt is 4. Finally, we will focus on
a different use case, e.g., the monitoring of people entering a
lecture hall in the morning. In this case, we can use a longer
period, e.g., 10 minutes, with an expected turnout of around
200 people. With a 2,000-bit Bloom filter, the optimal value
for k would be 8. Table I provides a concise summary of the
three previously mentioned scenarios.

Tuning the parameters of a Bloom filter is a fundamental
aspect related to the specific use case under consideration,
because it depends on the number of bits available, the length

TABLE I: Real-world examples for Bloom filter settings

Scenario person/s T m kopt

A 8 120 s 10,000 bit 7
B 4 40 s 1,000 bit 4
C 0.3 600 s 2,000 bit 8

of detecting time window and the number of people/devices
expected to be detected.

To determine the count of elements stored within a Bloom
filter, following [20], we can resort to the following formula-
tion (3):

c = −m

k
log

(
1− t

m

)
(3)

where m corresponds to the total number of bits in the Bloom
filter, k represents the count of used hash functions, and t
indicates the number of bits set to 1.

V. DENIABILITY AND ANONIMITY

False positive events have been traditionally considered as
weaknesses, but authors in [14] instead showed the potential of
using Bloom filters to “hide” the presence of elements in the
bitmap, thus achieving formal levels of privacy. Specifically,
they introduced the concepts of deniability and anonymity.

Deniability refers to the ability to plausibly deny the pres-
ence or association of specific elements within the Bloom
filter. It implies that, even if an entity gets hold of the Bloom
filter, there can be no certainty as to whether a particular
element was added or not.

Anonymity, instead, pertains to the protection of the identity
or specific information associated with the elements stored in
the Bloom filter. It ensures that the elements themselves remain
concealed or unidentifiable when queried or retrieved from the
Bloom filter.

In a more formal way:

Definition 1: (taken from [14]) Hiding Set: A set V is called
Hiding Set for a Bloom filter BF (S) if V contains all the
elements vi ∈ U such that vi /∈ S and a query for vi in
the Bloom filter returns 1. Where |U | represents a large set,
approximately equal to 248 ≈ 2.8 1014.
In other words, a hiding set is a set of elements not present
in the Bloom filter that, when queried, falsely indicate their
presence in the filter.

Figure 3 shows an example of “Hiding Set”. In this case,
a 10-bit Bloom filter, using 2 hash functions, has been em-
ployed to insert 3 elements x1, x2, x3. Additionally, 3 elements
v1, v2, v3, belonging to the Hiding Set are incorrectly identified
as false positives when querying the filter, yielding positive
results for these elements.

Definition 2: (taken from [14]) γ− Deniability: An element
x ∈ S inserted in BF (S) is defined deniable if ∀i ∈ {1..k}
exist at least one element v ∈ V , such that ∃j ∈ {1..k} such
that Hi(x) = Hj(v). A BF (S) is γ− deniable whenever a
randomly chosen element x ∈ S is deniable with probability γ.

In other words, an element is termed “deniable” when it can
be replaced with items not originally included in the Bloom
filter’s stored set, all without altering the filter’s bit map.

It is essential to emphasize that the 1-deniability approach
ensures that an element correctly inserted into the filter is
indistinguishable from just one element that was never part
of the filter to begin with.
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Fig. 3: Elements v1, v2, v3 belonging to the hiding set of
Bloom filter of 10 bits storing x1, x2, x3. Arrows indicate the
bits that are set to one according to two hash functions H1

and H2.

To enhance the level of protection, we can resort to the
concept of anonymity outlined in Section 3.

Definition 3: (taken from [14]) γ−K−Anonymity: Consid-
ering a Bloom Filter BF (S) and x ∈ S inserted in BF (S), x
is K− Anonymous if exists at least K−1 hiding set elements
⟨v1...vK−1⟩ ∈ V , with K ≥ 2, such that ∀i ∈ {1 . . . k}
∃ ⟨j1...jK−1⟩ ∈ 1..k such that Hi(x) = Hj1(v1) = ... =
HjK−1

(vK−1). Consequently, it is possible to say that a Bloom
filter BF (S) is γ−K− anonymous if each randomly chosen
element is K− anonymous with probability γ.

Using (4) proposed in [14] is possible to compute the level γ
related to the γ−K− anonymity property for a specific Bloom
filter storing n MAC addresses, according to the following
formula, for K ≥ 2:

γ(K,BF (S)) ≈
(
1− exp

(
− hk

m(1− e−kn/m)

)

×
K−2∑
i=0

(
hk

m(1−e−kn/m)

)i

i!


k

(4)

with h computed as

h = (|U | − n)(1− e−kn/m)k (5)

where |U | is the number of all the possible MAC addresses,
equal to 248.

VI. ANONYMIZED COUNTING

We introduce the concept of anonymization noise applied
to a Bloom filter. It is a privacy-enhancing technique that
introduces uncertainty and randomness into the Bloom filter’s
data, making it more challenging to infer specific elements
from the filter’s contents. This concept is particularly useful
when preserving the anonymity and confidentiality of data
elements stored in a Bloom filter is of utmost importance.

The anonymization noise involves adding random mac
addresses to the Bloom filter whenever the Bloom filter is
reset. These random mac addresses are not associated with
any actual data but are used to obscure the data subsequently
stored in the filter. The inclusion of anonymization noise

makes it impossible, if the 1-deniability property is satisfied,
for an external observer to make any assumption if an element
is stored in the Bloom filter or not, thereby protecting the
anonymity of the actual elements. This adds a layer of privacy
and security to the Bloom filter. It is worth to note that while
anonymization noise enhances privacy, it can also introduce a
trade-off by potentially increasing the rate of false positives.
If the anonymization noise introduced is too much then we
will have a very good privacy but a bad accuracy as the false
positive rates increase. While, too little noise will brings to bad
privacy, not satisfying the 1-deniability property, but a good
accuracy in terms of false positive rate.

In essence, it is essential to strike the right balance when de-
termining the optimal number of fake elements to be inserted
as anonymization noise. This balance ensures that the level
of privacy and anonymity is maximized while minimizing the
impact on the filter’s performance and accuracy.

Due to the recent GDPR regulations in terms of users’
private information, sniffing and analyzing WiFi probe request
messages has become a sensitive issue. Therefore, it is crucial
to incorporate anonymization noise. This ensures that from the
very first insertion of legitimate MAC addresses, each of them
is shielded by a minimum of K − 1 additional elements.

Figure 4 visually represents the results of applying (4)
to a Bloom filter with m = 10, 000 bits and k = 7, for
various values of K. This graph facilitates the evaluation of
cKmin in a manner that ensures, for each element randomly
drawn from the filter, there are at least K − 1 non-inserted
elements available to provide the necessary cover and privacy
protection. E.g., setting cmin = 30 is enough to guarantee
1−K− anonymity for K = 2, 3, 4.

Fig. 4: Achievable level of γ-deniability, for different values
of anonymity K, when n MAC addresses are inserted into a
Bloom filter with m = 10, 000 bits and k = 7.

We now explore the counting process in a Bloom filter
while ensuring the 1-deniability through the anonymization
noise. In Algorithm 1, we present the pseudocode algorithm
to demonstrate the key steps involved, including initialization
of the Bloom filter, insertion, and count estimation while
accounting for the anonymization noise.
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More in detail, at the beginning of every new iteration the
Bloom filter is initialized with all bits equal to 0. Then the
random noise, consisting in cmin “fake” MAC addresses, is
inserted into the Bloom filter. Notably, thanks to the standard
properties of independent hash functions used in Bloom filters,
an efficient implementation of this step requires just to gener-
ate cmin × k random positions in the Bloom filters, since this
is equivalent to adding cmin elements with k hash functions.
After this initialization phase, for every new probe request
detected the MAC address is inserted into the filter, setting the
proper bits to 1. The indexes of the bits are given by the output
of the k hash functions applied to the MAC address. When
the capturing window is over, the first operation is counting
the number of ones in the Bloom filter and then (3) is applied
to estimate the number of element present in the filter. Finally
from the estimated value, a cmin value is subtracted, due to
the anonymization noise inserted at the beginning.

Algorithm 1 Counting algorithm with anonymization noise
Input: Bloom filter (BF ) of size m bit, Number of elements cmin

for the anonymization noise, k independent hash functions
Output: Estimated count of elements inserted

procedure RESET(BF, cmin)
for i = 1, . . . ,m do

BF [i] = 0 ▷ Reset each bit
end for ▷ Add the anomization noise
for c = 1, . . . , cmin × k do

i =random-int(1,m) ▷ Choose a random bit to set
BF [i] = 1 ▷ Update the bit

end for
end procedure

procedure INSERT(BF , mac)
for i = 1, . . . , k do

BF [Hi(mac)] = 1 ▷ Set bit to 1 in the Hi index
end for

end procedure

procedure COUNT(cmin)
t = 0 ▷ Init t
for i = 1, . . . ,m do

if BF [i] = 1 then
t = t+ 1 ▷ Count number of 1 in BF

end if
end for
c = −m

k
log

(
1− t

m

)
▷ Apply (3)

return c− cmin ▷ Compensate for the anonymization noise
end procedure

VII. APPLICATION TO CROWD-FLOW ANALYSIS

Analyzing crowd flows through WiFi probe requests entails
identifying common MAC addresses among various WiFi
scanners. Consequently, the analysis cannot be performed
within a single scanner; instead, the data from each scanner
must be transmitted to a central server. This central server then
analyzes the data from different scanners to derive insights
and valuable information regarding crowd flows. In order
to preserve privacy in this task, we exploit Bloom filters
beyond the representation of individual sets; indeed, they can
also facilitate set unions and intersections. The intersection

operation is particularly crucial, especially in the context of
flow detection. The core concept is that by performing the
intersection of two Bloom filters, we can determine the number
of MAC addresses that have been detected in both Bloom
filters. Consider two subsets, S1 and S2, derived from the
universal set U . Each subset is respectively represented by
Bloom filters BF1(S1) and BF2(S2), configured with the
same parameters (m and n). In order to find the intersection
between these subsets, a bitwise logical AND operation is
executed between the two Bloom filters. This operation yields
a new Bloom filter:

BF3 = BF1 ∧BF2

representing the intersection. To determine the count of
elements within this intersection, taking into account the
anonymization noise, we can leverage (6), derived from [21].

c =
log

(
m− t3 ×m− t1 × t2

m− t1 − t2 + t3

)
− log(m)

k × log(1− 1

m
)

− cmin (6)

where ti represents the number of bits set to 1 in BFi. This
approach allows for efficient determination of the cardinality
of the intersection between the sets represented by these
Bloom filters.

It is worth to notice that the approach can be extended
to the intersection of any number of Bloom filters, allowing
to identify very specific paths across a sequence of WiFi
scanners.

A. Numerical evaluation

In order to evaluate the accuracy of the intersection between
two Bloom filters we ran an experiment where we started from
two empty Bloom filters, namely BF1 and BF2, with the
configuration of m = 10, 000 and k = 7. We set cmin = 30,
according to the reasoning done when discussing Figure 4.
Then we proceeded through the following steps:

1) Reset each Bloom filter with anonymization noise equal
to cmin.

2) Insert 200 random MAC addresses into BF1.
3) Insert 200 random MAC addresses into BF2.
4) Generate nc random MAC addresses and insert all of

them into both BF1 and BF2.
5) Compute the resulting Bloom filter BF3 computed from

the intersection of BF1 and BF2.
6) Count the MAC addresses observed in both WiFi scan-

ners based on (6) minus cmin (to compensate for the
anonymization noise).

At the end of step 3, by construction, the two Bloom filters
have no common MAC addresses. At the end of step 4, the
two Bloom filters have stored 200 + cmin different MAC
addresses, plus nc common MAC addresses, modeling nc

devices detected by both scanners.
Table II shows the estimated number of common MAC

addresses, computed on BF3, and compares it to the actual
number nc. The results show an accurate estimation of the
common MAC addresses. Notably, when no common address
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is present in the two Bloom filters (i.e., nc = 0), the estimator
is still quite accurate, even if 200 + cmin distinct MAC
addresses were previously inserted for each of the Bloom
filters. This is due to the approximations behind the adopted
formulas and the adopted probabilistic approach.

TABLE II: Numerical results of the estimation of common
MAC addresses

Common MAC Common MAC
addresses addresses
(real nc) (estimated nc)

0 0.31
10 10.02
50 50.99

100 100.54
200 200.76
500 500.58

Figure 5 shows the relative error in estimating the common
MAC addresses, based on the complete data set from which
the results in Table II were derived. Clearly, the relative error
keeps very small also for a large number of common MAC
addresses, thanks to the law of large numbers.

Fig. 5: Relative error in counting the number of MAC ad-
dresses resulting from the intersection of two Bloom filters.

B. Implementation

As illustrated in Figure 1, the comprehensive data cap-
ture and processing pipeline terminates with the insertion of
detected MAC addresses into a Bloom filter. This Bloom
filter is subsequently relayed over the network to a central
server, which serves as the hub for collecting, storing, and
processing incoming Bloom filters from various access points.
The architectural depiction in Figure 6 provides a visual
representation of this seamless flow.

This approach extends our capabilities beyond merely as-
sessing individual Bloom filters derived from single scanners.
It allows us to perform intersections on the Bloom filters
originating from diverse access points, each corresponding to
distinct geographical areas. Through this intersection process,
we gain the capacity to extract precious insights into the
movement and flow of individuals across these areas. This

level of analysis yields rich data that is instrumental in
understanding crowd dynamics and behavior.

Fig. 6: Architecture for crowd-flow analysis. Each AP scanner
sends periodically its Bloom filter to the server, where all the
Bloom filters are processed to infer crowd flows.

VIII. CONCLUSIONS

In this paper we have tackled the significant challenge of
crowd counting and tracking within large-scale gatherings,
with a strong focus on the growing importance of privacy and
compliance with regulations, such as the European GDPR.

Our proposed crowd monitoring framework leverages IoT
technology and utilizes WiFi probe request messages as a key
tool to offer an innovative solution that not only accurately
characterizes people flows and quantifies crowd size but also
places paramount importance on preserving individual privacy.
The core objective is to ensure precise people counting while
simultaneously upholding the principles of privacy, align-
ing our approach with the stringent regulations set out in
the GDPR. We have employed advanced techniques like 1-
deniability and anonymization noise within Bloom filters to
guarantee the formal deniability of each element’s presence.
This approach ensures privacy when transmitting data over
the network and conducting server-side intersections for flow
analysis.

Looking ahead, our future research endeavors will focus
on further refining these techniques and exploring additional
privacy-enhancing concepts to advance the field of crowd
counting and monitoring. Additionally, we are planning to
develop an advanced machine learning-driven derandomiza-
tion algorithm to enhance device counting accuracy within the
coverage of an AP scanner. Furthermore, within the European
project TrialsNet [22], we plan to deploy several AP scanners
in a public area to rigorously test the effectiveness of our
solution.
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