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Abstract

In this article, we attempt to provide a more general method based on Petryshyn’s fixed-point theorem to ensure the existence

of solutions to implicit functional equations. These implicit functional equations include fractional, non-fractional, (fractional)

stochastic integral equations, etc., and any combination of them in C ( I ). Some results regarding the existence of fixed points

in implicit functional integral equations will be reviewed in the literature. We show that this general result unifies and improves

many of the main results in the literature. To illustrate that our approach is more general than other methods, we present

some concrete examples. Also, we apply our method to create new functional equations in practice and check the existence of

solutions.
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1 Introduction and preliminaries
There are many results on the existence of one- or two-dimensional dimensional nonlinear integral equa-
tions through measures of noncompactness (for instance, see some of them in the references). The mo-
tivation of this article is to unify and expand them in a single and simple way. We will use a general
scheme that shows that many results can be embedded in it and can be useful and practical for re-
searchers interested in this subject. Throughout this paper, assume (B, || · ||) be a Banach space. Denote
Bρ = {x ∈ B : ||x|| ≤ ρ} for a closed ball of radius ρ > 0 centered at 0, ∂Bρ for the boundary of Bρ,
Bρ(E) = {x ∈ E : ||x||u ≤ ρ}, and

Bρ(E) = {Ψ : Bρ(E) → E,Ψ is a continuous functional}.

Suppose E = C(I) = C(I,R) be a Banach algebra of continuous functions f : I → R with ordinary
point-wise summation and multiplication and the uniform norm ||x||u = sup{|x(s)|, s ∈ I}, I := [a1, b1]×
· · · × [ar, br] ⊂ Rr with the Euclidean metric | · | (as a particular case I := [a, b] ⊂ R), and Ω set of
continuous and non-decreasing functions ϕ : R+ → R+ such that ϕ(0) = 0, ∀t > 0, 0 < ϕ(t) < t,
In this article, we intend to investigate the fixed point existence solution of functional equation Tz =
z, z ∈ Bρ(E) in general, T : Bρ(E) → E is defined as

Tz(s) = ζ (s,Ψ1(z)(s), . . . ,Ψn(z)(s),Φ1(z)(s), . . . ,Φm(z)(s)) , s ∈ I, z ∈ Bρ(E). (1)

where ζ,Ψi,Φj ∈ Bρ(E), i = 1, . . . , n, j = 1, . . . ,m are completely defined in Theorem 2.1.
The functional equation Tz = z is general in the sense that it includes many forms of well-known integral
equations considered in the articles, see Section 2.1.

1Corresponding author: motgolham@gmail.com,Ha.Mottaghi@iau.ac.ir
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The quantity

ω(z, σ) = sup{|z(s)− z(s̄)| : s, s̄ ∈ I, |s− s̄| ≤ σ}.

is called the modulus of continuity of z ∈ E. Also, for all bounded sets S ⊂ E the quantity

χ(S) = lim
σ→0

ωsup(S, σ), (2)

defines a measure of noncompactness (briefly, MN) on E [6], where

ωsup(S, σ) = sup{ω(z, σ), z ∈ S}.

An MN, in general, can be defined on a Banach space (B, || · ||). Properties about it may be found in the
books of fixed point theory, for instance, some good books on the subject include [2, 6, 7, 10, 30, 32]. It
is well known that if α is an MN in a Banach space B then

(i) α(B) = 0 iff B is a precompact set in B,

(ii) α(λB) = |λ|α(B), where λB = {λz : z ∈ B},

(iii) α(A+B) ≤ α(A) + α(B), A,B ⊆ B.

Definition 1.1 ([2, 30]). 1. Let T : B → B be a map, and α be an MN on B. Then T is called a
completely continuous compact map if T is continuous and T maps bounded sets to precompact
sets. Let ρ > 0. Denote

BC
ρ (E) = {T ∈ Bρ(E), α(T (S)) = 0, ∀S ⊂ Bρ(E)}.

2. T ∈ Bρ(E) is called a condensing map if

α(TS) < α(S), ∀ S ⊆ Bρ, α(S) > 0.

3. T ∈ Bρ(E) is called a k-set contraction (0 ≤ k) if

α(TS) ≤ kα(S), ∀ S ⊆ Bρ, α(S) > 0.

From properties (i)-(ii), every Φ ∈ BC
ρ (E) is a completely continuous compact map. Let us denote

Lρ(E) ⊆ Bρ(E) for the set of 1-set contraction. Every functional Ψ ∈ Bρ(E) such that

∃σ > 0, ∀z ∈ Bρ(E), ω(Ψ(z), σ) ≤ ω(z, σ),

as well as every non-expansive or Lipschitz functional with Lipschitz constant 1 are in Lρ(E) (see [29,
Example 2.2.14] and [16]), also, examples of Ψ ∈ Lρ(E) are in Subsection 2.1.
In this paper, the tool for investigating the existence solution of implicit functional equation (1) is a
variant of Darbo and Schauder fixed point theorem from Petryshyn [28].

Theorem 1.2 (see also [29, 30]). Let T : Bρ → B be a continuous and condensing map such that

if T (z) = kz, for some z ∈ ∂Bρ, then k ≤ 1,

or

T (∂Bρ) ⊆ Bρ.

Then T has at least one fixed point in Bρ.

2



2 Main results
Theorem 2.1. (I) Let T be defined by Eq. (1), where Ψi,Φj ∈ BC

ρ (E), j = 1, . . . ,m, i = 1, . . . , n, ρ >
0, then T is a continuous functional.

(II) Let ρ > 0 be a real number such that Φj ∈ BC
ρ (E), j = 1, . . . ,m,Ψi ∈ Lρ(E), i = 1, . . . , n and

ζ ∈ C(I ×
∏n
i=1[−Mi,Mi]×

∏m
i=1[−Ni, Ni],R), where

Mi = sup{|Ψi(z)(s)| : s ∈ I, z ∈ Bρ(E)}, Nj = sup{|Φj(z)(s)| : s ∈ I, z ∈ Bρ(E)},

and there exist non-negative constants kj , j = 1, · · · ,m and, ϕi ∈ Ω, i = 1, . . . , n such that ϕ =∑n
i=1 ϕi ∈ Ω and

|ζ(s, u1, . . . , un, v1, . . . , vm)− ζ(s, ū1, . . . , ūn, v̄1, . . . , v̄m)| ≤
n∑
i=1

ϕi(|ui− ūi|)+
m∑
i=1

ki|vi− v̄i|, (3)

for all s ∈ I, u1, ū1,∈ [−M1,M1], . . . , un, ūn ∈ [−Mn,Mn], v1, v̄1,∈ [−N1, N1], . . . , vm, v̄m ∈ [−Nm, Nm].
Then T is a condensing map.

(III) Furthermore, if ζ satisfies

sup{|ζ(s, u1, . . . , un, v1, . . . , vm)| : s ∈ I, ui ∈ [−Mi,Mi], vj ∈ [−Nj , Nj ]} ≤ ρ, (4)

then T has at least one fixed point in Bρ(E).

Proof. We prove the theorem only for n = m = 1, assertion for any n,m ∈ N holds by induction (or
a similar way). It is clear that the functional T is a combination of continuous functionals Ψi,Φj from
Bρ(E) into C(I), so it is well defined.

(I) Choose ε > 0 then by continuity of Ψ1,Φ1 and since ϕ is non-decreasing and continuous function
there exists δ > 0 such that for any ||y − x||u < δ we get ϕ(||Ψ1(x) − Ψ1(y)||u) < ε

2 and ||Φ1(x) −
Φ1(y)||u < ε

2k1
, thus from (3) we have

|(Tx)(s)− (Ty)(s)| = |ζ (s,Ψ1(x)(s),Φ1(x)(s))− ζ (s,Ψ1(y)(s),Φ1(y)(s))|
≤ ϕ(|Ψ1(x)(s)−Ψ1(y)(s)|) + k1 |Φ1(x)(s)− Φ1(y)(s)| ,

(5)

and

||Tx− Ty||u ≤ ϕ(||Ψ1(x)−Ψ1(y)||u) + k1||Φ1(x)− Φ1(y)||u ≤ ε.

This shows that T is a continuous functional.

(II) Let σ > 0, z ∈ S, where S is a bounded subset of Bρ(E), χ(S) > 0 and s1, s2 ∈ I with |s2− s1| ≤ σ.
Case 1: If there exists term Ψ1 ∈ Lρ(E) in Eq. (1) such that (3) holds then we have

|(Tz)(s2)− (Tz)(s1)| = |ζ (s2,Ψ1(z)(s2),Φ1(z)(s2))− ζ (s1,Ψ1(z)(s1),Φ1(z)(s1))|
≤ |ζ (s2,Ψ1(z)(s2),Φ1(z)(s2))− ζ (s2,Ψ1(z)(s2),Φ1(z)(s1))|
+ |ζ (s2,Ψ1(z)(s2),Φ1(z)(s1))− ζ (s2,Ψ1(z)(s1),Φ1(z)(s1))|
+ |ζ (s2,Ψ1(z)(s1),Φ1(z)(s1))− ζ (s1,Ψ1(z)(s1),Φ1(z)(s1))|
≤ ϕ(|Ψ1(z)(s2)−Ψ1(z)(s1)|) + k1|Φ1(z)(s2)− Φ1(z)(s1)|+ ω1(ζ, σ)

≤ ϕ(ω(Ψ1(z), σ)) + k1ω(Φ1(z), σ) + ω1(ζ, σ),

3



where

ω1(ζ, σ) = sup{|ζ(s, u1, v1)− ζ(s̄, u1, v1)| : |s− s̄| ≤ σ, s, s̄ ∈ I, u1 ∈ [−M1,M1], v1 ∈ [−N1, N1]}.

Thus, we get

ωsup(T (S), σ) ≤ ϕ(ωsup(Ψ1(S), σ)) + k1ωsup(Φ1(S), σ) + ω1(ζ, σ). (6)

From the above relations and assumptions Ψ1 ∈ Lρ(E), Φ1 ∈ BC
ρ (E) and continuity of ζ and ϕ,

taking limit as σ → 0, we get

χ(T (S)) ≤ ϕ(χ(S)) < χ(S). (7)

Thus, T is a condensing map.
Case 2: If there exist no terms Ψ1 ∈ Lρ(E) in Eq. (1) then by a similar method as above instead of
inequality (6) we have

ωsup(T (S), σ) ≤ k1ωsup(Φ1(S), σ) + ω1(ζ, σ).

Taking limit as σ → 0, we get χ(T (S)) = 0, thus, χ(T (S)) < ϕ(χ(S)) holds and T is a condensing
map.

(III) Let z ∈ ∂Bρ(E) and Tz = kz then we have ||Tz||u = k||z||u = kρ and by assumptions (III) we get

||Tz||u = sup
s∈I

|Tz(s)| = sup
s∈I

|ζ (s,Ψ1(z)(s),Φ2(z)(s)) | ≤ ρ,

hence, ||Tz||u ≤ ρ, thus, k||z||u = kρ = ||Tz||u ≤ ρ, i.e. k ≤ 1, thus, the result follows from Theorem
1.2.

Remark 2.2. 1. If condition (III) does not hold then Eq. (1) may not have a solution, for instance,
consider the following Fredholm integral equation which has no solution in E (see [26, Subsection
11.2])

T (z)(s) = z(s) = s+Φ(z)(s),

Φ(z)(s) =

∫ 1

0
k(s, t)z(t)dt, k(s, t) =

{
π2t(1− s), t ≤ s
π2s(1− t), s ≤ t,

where s ∈ [0, 1], z ∈ E. Here for all ρ > 0 we have Φ ∈ BC
ρ (E) (see Example 2.3-(1) below) and in

Eq. (1) we have ζ(s, v) = s+ v.

2. Assume that there exist non-negative constants kj , j = 1, · · · ,m, ϕi ∈ Ω, i = 1, . . . , n such that
ϕ =

∑n
i=1 ϕi ∈ Ω and for all s ∈ I then ζ ∈ C(I × Rn × Rm,R) defined as

ζ(s, u1, . . . , un, v1, . . . , vm) =
n∑
i=1

ϕi(ui) +
m∑
j=1

kjvj ,

can be an example in condition (II) of Theorem 2.1. Also, let li, i = 1, · · · , n be non-negative
constants such that

∑n
i=1 li < 1 then ϕi(t) = lit satisfies condition (II) of Theorem 2.1.
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3. With the same assumptions in Theorem 2.1, let Mζ = sup{|ζ(s, 0, . . . , 0)| : s ∈ I} and assume that
there exists ρ > 0 such that

n∑
i=1

ϕi(Mi) +

m∑
i=1

kiNi +Mζ ≤ ρ, (8)

then conditions (II) and (8) imply condition (III), since

sup{|ζ(s, u1, . . . , un, v1, . . . , vm)| : s ∈ I, ui ∈ [−Mi,Mi], vj ∈ [−Nj , Nj ]}
≤ sup{|ζ(s, u1, . . . , un, v1, . . . , vm)− ζ(s, 0, . . . , 0)| : s ∈ I, ui ∈ [−Mi,Mi], vj ∈ [−Nj , Nj ]}
+ sup{|ζ(s, 0, . . . , 0)| : s ∈ I}

≤
n∑
i=1

ϕi(Mi) +

m∑
i=1

kiNi +Mζ ≤ ρ.

4. From Theorem 1.2, it is clear condition (III) can be replaced by

∃ρ > 0; sup{|ζ(s, u1, . . . , un, v1, . . . , vm)| : s ∈ I, ui ∈ [−Mρ
i ,M

ρ
i ], vj ∈ [−Nρ

j , N
ρ
j ]} ≤ ρ,

where

M∂
i = sup{|Ψi(z)(s)| : s ∈ I, z ∈ ∂Bρ(E)}, N∂

j = sup{|Φj(z)(s)| : s ∈ I, z ∈ ∂Bρ(E)}.

5. Note that condition (III) implies that T (Bρ(E)) ⊆ Bρ(E) and if there is no term Φ ∈ BC
ρ (E) in (1)

and Ψi ∈ Lρ(E), i = 1, . . . , n are Lipschitz functional with Lipschitz constant 1 then the conclusion
of Theorem 2.1 follows from Boyd and Wond’s theorem [9] too, this situation is considered in [8,
Theorem 2] for product of two maps.

Example 2.3. Let I = [a, b], r0 > 0, θ ∈ C(I), D = sup{θ(s), s ∈ I}, η ∈ C([0, D]), η([0, D]) ⊆ I and
K ∈ C(I × [0, D]× [0, r0],R).

(1) Let Φ ∈ Br0(E) be defined as follows

Φ(z)(s) =

∫ θ(s)

0
K(s, ξ, z(η(ξ)))dξ, z ∈ Br0(E).

Assume that |s2 − s1| ≤ σ then we have

|Φ(z)(s2)− Φ(z)(s1)| =

∣∣∣∣∣
∫ θ(s2)

a
K(s2, ξ, z(η(ξ)))dξ −

∫ θ(s1)

a
K(s1, ξ, z(η(ξ)))dξ

∣∣∣∣∣
≤

∣∣∣∣∣
∫ θ(s2)

a
K(s2, ξ, z(η(ξ)))dξ −

∫ θ(s2)

a
K(s1, ξ, z(η(ξ)))dξ

∣∣∣∣∣
+

∣∣∣∣∣
∫ θ(s2)

a
K(s1, ξ, z(η(ξ)))dξ −

∫ θ(s1)

a
K(s1, ξ, z(η(ξ)))dξ

∣∣∣∣∣
≤ Dω1(K,σ) +Mω(θ, σ),

where M = sup{|K(s, ξ, z)| : s ∈ I, ξ ∈ [0, D], z ∈ [−r0, r0]}} and

ω1(K,σ) = sup{|K(s, ξ, z)−K(s̄, ξ, z)| : |s− s̄| ≤ σ, s, s̄ ∈ I, ξ ∈ [0, D], z ∈ [−r0, r0]}.

Thus, we have limσ→0 ω(Φ(z), σ) = 0, so Φ ∈ BC
r0(E) (see also Example 3 of [32, Section 2]).
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(2) With the same assumptions in part (1), let Φ ∈ Br0(E) be defined as follows

Φ(z)(s) =

∫ θ(s)

0

K(s, ξ, z(η(ξ)))

(θ(s)− ξ)1−τ
dξ.

Without loss of generality assume that |s2 − s1| ≤ σ and θ(s1) ≥ θ(s2), then we have

|Φ1(z)(s2)− Φ1(z)(s1)| =

∣∣∣∣∣
∫ θ(s2)

0

K(s2, ξ, z(η(ξ)))

(θ(s2)− ξ)1−τ
dξ −

∫ θ(s1)

0

K(s1, ξ, z(η(ξ)))

(θ(s1)− ξ)1−τ
dξ

∣∣∣∣∣
≤

∣∣∣∣∣
∫ θ(s2)

0

K(s2, ξ, z(η(ξ)))

(θ(s2)− ξ)1−τ
dξ −

∫ θ(s2)

0

K(s1, ξ, z(η(ξ)))

(θ(s2)− ξ)1−τ
dξ

∣∣∣∣∣
+

∣∣∣∣∣
∫ θ(s2)

0

K(s1, ξ, z(η(ξ)))

(θ(s2)− ξ)1−τ
dξ −

∫ θ(s2)

0

K(s1, ξ, z(η(ξ)))

(θ(s1)− ξ)1−τ
dξ

∣∣∣∣∣
+

∣∣∣∣∣
∫ θ(s2)

0

K(s1, ξ, z(η(ξ)))

(θ(s1)− ξ)1−τ
dξ −

∫ θ(s1)

0

K(s1, ξ, z(η(ξ)))

(θ(s1)− ξ)1−τ
dξ

∣∣∣∣∣ .
After some calculations we get

|Φ1(z)(s2)− Φ1(z)(s1)| ≤
D

τ
ω1(K,σ) +

M

τ
[θ(s1)

τ − θ(s2)
τ + (θ(s1)− θ(s2))

τ ] .

The above inequality shows that Φ ∈ BC
r0(E).

(3) With the same assumptions in part (1), let Φ ∈ Br0(E) be defined as follows

Φ(z)(s) =

∫ θ(s)

0
K(s, ξ, z(η(ξ)))dB(ξ)

where the integral “
∫

” stand for stochastic integral and B is a Brownian motion, see [24] for definition
and further results, also, in this paper we assume that Brownian motion is standard, i.e., B(0) = 0. Very
similar to case (1) one can prove that Φ ∈ BC

r0(E).

The following case shows that one can create new functional equations in practice and check the existence
of solutions.

Corollary 2.4. With the same assumptions in Examples 2.3-(1)-(3), assume that there exist r0 > 0, non-
negative constants kj , j = 1, 2, 3, and ϕ ∈ Ω such that ζ ∈ C(I×[−r0, r0]×[−DK,DK]×[− DK

Γ(τ+1) ,
DK

Γ(τ+1) ]×
[−KD,DK],R) satisfies

|ζ(s, u, v1, v2, v3)− ζ(s, ū, v̄1, v̄2, v̄3)| ≤ ϕ(|u− ū|) +
3∑
i=1

ki|vi − v̄i|, (9)

for all s ∈ I, u, ū,∈ [−r0, r0], v1, v̄1, v3, v̄3 ∈ [−DK,DK], , v2, v̄2 ∈ [− DK
Γ(τ+1) ,

DK
Γ(τ+1) ], where K1,K2,K3 ∈

C(I × [0, D]× [0, r0],R) and

K = sup{|K1(x, y, u)|, |K2(x, y, u)|, |K3(t, s, u)| : u ∈ [−r0, r0], x, y ∈ I}.
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Moreover, let

ϕ(r0) +DK

(
2 +

1

Γ(τ + 1)

)
+Mζ ≤ r0, (10)

where Mζ = sup{|ζ(s, 0, 0, 0, 0)| : s ∈ I} and

Tz(s) = ζ

(
s, z(s),

∫ θ(s)

0
K1(s, ξ, z(η(ξ)))dξ,

1

Γ(τ)

∫ θ(s)

0

K2(s, ξ, z(η(ξ)))

(θ(s)− ξ)1−τ
dξ,

∫ θ(s)

0
K3(s, ξ, z(η(ξ)))dB(ξ)

)
,

(11)

for all s ∈ I, z ∈ Br0(E). Then T has a fixed point in Br0(E).
Proof. It is clear that the functionals Ψ1,Φ1,Φ2,Φ3 are continuous from C(I) into itself,

Ψ1(z)(s) = z(s), s ∈ I,

Φ1(z)(s) =
∫ θ(s)
0 K1(s, ξ, z(η(ξ)))dξ, s ∈ I,

Φ2(z)(s) =
1

Γ(τ)

∫ θ(s)

0

K2(s, ξ, z(η(ξ)))

(θ(s)− ξ)1−τ
dξ, s ∈ I,

Φ3(z)(s) =
∫ θ(s)
0 K3(s, ξ, z(η(ξ)))dB(ξ), s ∈ I.

We have Ψ1 ∈ Lρ(E) and Examples 2.3-(1)-(3) show that Φj ∈ BC
ρ (E), j = 1, 2, 3. Thus, the functional

Tz(s) = ζ (s,Ψ1(z)(s),Φ1(z)(s),Φ2(z)(s),Φ3(z)(s)) , s ∈ I, z ∈ Br0(E),

is of the form (1) for n = 1,m = 3. It is easy to check that M1 = r0, N1 = N3 = KD,N2 = DK
Γ(τ+1) and

condition (II) holds. Let S := I × [−r0, r0]× [−DK,DK]×
[
− DK

Γ(τ+1) ,
DK

Γ(τ+1)

]
× [−DK,DK]. Then from

(10) and similar to Remark 2.2-(3) we have

sup{|ζ(s, u, v1, v2, v3)| : (s, u, v1, v2, v3) ∈ S}
≤ sup{|ζ(s, u, v1, v2, v3)− ζ(s, 0, 0, 0, 0)| : (s, u, v1, v2, v3) ∈ S}
+ sup{|ζ(s, 0, 0, 0, 0)| : s ∈ I}
≤ sup{ϕ(u) + k1|v1|+ k2|v2|+ k3|v3| : (s, u, v1, v2, v3) ∈ S}+Mζ

≤ ϕ(r0) +DK

(
2 +

1

Γ(τ + 1)

)
+Mζ ≤ r0.

Thus, condition (III) holds too.

2.1 Case study
In this section, we see that some main theorems in the literature can be obtained or improved from
Theorem 2.1 as a corollary.
Example 2.5. Let us consider functional equation considered in [27] (see also [7, Subsection 2.6.2])

z(s) = q

(
s, z (s) , ψ

(∫ T

a

g′(t)

(g(s)− g(t))1−τ
h(s, t, z(t))dt

))
(12)

where τ ∈ (0, 1), T > a ≥ 0, ψ : R → R, q : [a, T ]×R×R → R, g : [a, T ] → R and h : [a, T ]× [a, T ]×R → R
are continuous. The function g : [a, T ] → R is nondecreasing and with the continuous first derivative.
The existence of a solution to Eq. (12) was studied in [27] under the following assumptions:
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(A1) ∃ℓψ, Cψ ≥ 0; |ψ(t)− ψ(s)| ≤ Cψ|t− s|ℓψ , t, s ∈ R;

(A2) ∃Cq ≥ 0, |q(s, u, v)− q(s, u′, v′)| ≤ ϕ(|u− u′|) + Cq|v − v′|, (s, u, v), (s, u′, v′) ∈ [a, T ]× R× R, where
ϕ : [0,∞) → [0,∞) is a nondecreasing continuous function such that ∀t > 0, limn→∞ ϕn(t) = 0, where
ϕn(t) = ϕn−1(ϕ(t)) (Note that this condition yields ϕ(t) < t (see [1]));

(A3) There exists r0 > 0 such that

ϕ(r0) + CqCϕ

(
H

τ

)ℓϕ
(g(T )− g(a))τℓϕ +Mq + Cq|ϕ(0)| ≤ r0,

where H := sup{|h(t, s, z(s))| : t, s ∈ [a, T ], z ∈ C([a, T ];R)} < +∞, and Mq := max{|q(t, 0, 0)| : t ∈
[a, T ]}.
Proof. It is clear that the functionals Ψ,Φ are continuous from C(I) into itself.{

Ψ(z)(s) = z(s), s ∈ I

Φ(z)(s) = ψ
(∫ T

a
g′(t)

(g(s)−g(t))1−τ h(s, t, z(t))dt
)
, s ∈ I.

Thus, the functional

Tz(s) = q (s,Ψ(z)(s),Φ(z)(s)) , s ∈ I, z ∈ Br0(E),

is of the form (1). We have Ψ ∈ Lρ(E), Φ ∈ BC
r0(E) and

sup
s∈I,z∈Br0

|Ψ(z)(s)| = sup
s∈I,z∈Br0

|z(s)| ≤ r0,

sup
s∈I,z∈Br0

|Φ(z)(s)| = sup
s∈I,z∈Br0

∣∣∣∣ψ(∫ T

a

g′(t)

(g(s)− g(t))1−τ
h(s, t, z(t))dt

)∣∣∣∣
≤ sup

s∈I,z∈Br0

∣∣∣∣ψ(∫ T

a

g′(t)

(g(s)− g(t))1−τ
h(s, t, z(t))dt

)
− ψ(0)

∣∣∣∣+ |ψ(0)|

≤ Cψ

∣∣∣∣∫ T

a

g′(t)

(g(s)− g(t))1−τ
h(s, t, z(t))dt

∣∣∣∣ℓψ + |ψ(0)|

≤ Cψ

(
H

τ

)ℓϕ
(g(T )− g(a))τℓϕ + |ψ(0)|.

Then for M = r0, N = Cψ
(
H
τ

)ℓϕ (g(T )− g(a))τℓϕ + |ψ(0)|, from (A2)-(A3) and similar to Remark 2.2-(3)
we have

sup{|q(s, u, v)| : s ∈ I, u ∈ [−M,M ], v1 ∈ [−N,N ]}
≤ sup{|q(s, u, v)− q(s, 0, 0)| : s ∈ I, u ∈ [−M,M ], v ∈ [−N,N ]}
+ sup{|q(s, 0, 0)| : s ∈ I}
≤ sup{ϕ(u) + Cqv : s ∈ I, u ∈ [−M,M ], v ∈ [−N,N ]}+Mq

≤ ϕ(r0) + Cq

[
Cψ

(
H

τ

)ℓϕ
(g(T )− g(a))τℓϕ + |ψ(0)|

]
+Mq

= ϕ(r0) + CqCϕ

(
H

τ

)ℓϕ
(g(T )− g(a))τℓϕ +Mq + Cq|ϕ(0)| ≤ r0.

Thus, (I)-(III) hold and equation (12) has a solution in Br0(E).
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Note that in [27], this conclusion was obtained from another fixed point theorem, and integral equation
(12) includes Hadamard-type fractional integral equation [7, Subsection 2.6.2].

Example 2.6. Kazemi et al. [18] used the following conditions to check the fixed point existence solution
of fractional integral equation z = Tz, where

Tz(s) = ζ (s,Ψ1(z)(s),Ψ2(z)(s),Φ1(z)(s)) , s ∈ I, z ∈ Bρ(E), s ∈ I := [0, b], (13)

0 < τ ≤ 1 and
Ψ1(z)(s) = f(s, z(α(s))), s ∈ I,
Ψ2(z)(s) = u(s, z(β(s))), s ∈ I,

Φ1(z)(s) =
1

Γ(τ)

∫ θ(s)

0

p(s, ξ, z(γ(ξ)))

(θ(s)− ξ)1−τ
dξ, s ∈ I.

(K1) f, u ∈ C(I ×R,R), p ∈ C(I × [0, D]×R,R), ζ ∈ C(I ×R×R×R,R), and θ : I → R+, γ : [0, D] → I,
α, β : I → I, are continuous functions such that θ(s) ≤ D, ∀ s ∈ I.

(K2) ∃ki ≥ 0, i = 1, . . . , 5, with k1k4 + k2k5 < 1 such that

|ζ(s, u1, u2, u3)− ζ(s, ū1, ū2, ū3)| ≤ k1|u1 − ū1|+ k2|u2 − ū2|+ k3|u3 − ū3|;
|f(s, z)− f(s, z̄)| ≤ k4|z − z̄|;
|u(s, z)− u(s, z̄)| ≤ k5|z − z̄|.

(K3) ∃ ρ > 0 such that

sup{|ζ(s, u1, u2, u3)| : s ∈ I, u1, u2 ∈ [−ρ, ρ], u3 ∈ [− MDτ

Γ(τ + 1)
,
MDτ

Γ(τ + 1)
]} ≤ ρ, (14)

where M = sup{|p(s, ξ, z)| : ∀z ∈ [−ρ, ρ], ξ ∈ [0, D], s ∈ I}.

Proof. It is clear that the functionals Ψ1,Ψ2,Φ1 are continuous from C(I) into itself and T is of the
form (1) for n = 2,m = 1. From (K1)-(K2), ζ satisfies in condition (II), where ϕ1(t) = k1t, ϕ2(t) = k2t
and we have Ψ1,Ψ2 ∈ Lρ(E). From Example 2.3-(2) we have Φ1 ∈ BC

ρ (E). Thus, (II)-(III) hold
and equation (13) has a fixed point solution in Bρ(E). Also, from (II) it is needed to add condi-
tions u1 = sups∈I,t∈[−ρ.ρ] |f(s, t)| ≤ ρ and u2 = sups∈I,t∈[−ρ.ρ] |u(s, t)| ≤ ρ in (K3), since we have
sups∈I,z∈Bρ |Ψ1(z)(s)| = sups∈I,z∈Bρ |f(s, z(α(s)))| ≤ ρ and sups∈I,z∈Bρ |Ψ2(z)(s)| = sups∈I,z∈Bρ |u(s, z(β(s)))| ≤
ρ (see [18] and compare with (4)).

Example 2.7. Kazemi et al. [20] used the following conditions to check the existence solution of two-
dimensional integral equation

z(s, t) = q

(
s, t, z(s, t),

∫ s

0
h(s, t, ζ, z(ζ, t))dζ,

∫ s

0

∫ t

0
k(s, t, x, y, z(x, y))dydx

)
, (15)

where z ∈ C(I), (s, t) ∈ I = [0, a]× [0, b] and

(1) z ∈ C(I,R), q ∈ C(I × R× R× R,R), k ∈ C(I × R,R), h ∈ C(I × I × R,R);
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(2) There exists a nonnegative constant 0 < c < 1 such that
|q(s, t, u, v, w)− q(s, t, ū, v̄, w̄)| ≤ c(|u− ū|+ |v − v̄|+ |w − w̄|);

(3) There exists r0 ≥ 0 such that q satisfies the following bounded condition

sup{|q(s, t, u, v, w)| : (s, t) ∈ I,−r0 ≤ u ≤ r0,−aM1 ≤ v ≤ aM1,−abM2 ≤ w ≤ abM2} ≤ r0, (16)

where
M1 = sup{|h(s, t, ζ, u)|; ∀(s, t) ∈ I and ζ ∈ [0, b], u ∈ [−r0, r0]},
M2 = sup{|k(s, t, x, y, u)|; ∀(s, t), (x, y) ∈ I and u ∈ [−r0, r0]}.

Proof. It is clear that the functionals Ψ1,Φ1,Φ2 are continuous from C(I) into itself,
Ψ1(z)(s, t) = z(s, t), (s, t) ∈ I,
Φ1(z)(s, t) =

∫ s
0 h(s, t, ζ, z(ζ, t))dζ, (s, t) ∈ I,

Φ2(z)(s, t) =
∫ s
0

∫ t
0 k(s, t, x, y, z(x, y))dydx, (s, t) ∈ I.

Thus, the functional

Tz(s, t) = q (s, t,Ψ1(z)(s, t),Φ1(z)(s, t),Φ2(z)(s, t)) , (s, t) ∈ I, z ∈ Bρ(E),

is of the form (1). From (2), we have Ψ1 ∈ Lρ(E). Also similar to Example 2.3-(1) (note that these
examples hold for the multidimensional case) it is easy to check that Φ1,Φ2 ∈ BC

r0(E). Thus, (I)-(III)
hold and equation (15) has a solution in Br0(E).

Example 2.8. Deep et al. [11] used the following conditions to check fixed point existence solution of
implicit functional of stochastic integral equation z = Tz in product type, where

T (z)(s) = T1(z)(s)T2(z)(s), s ∈ I := [0, a], z ∈ C(I), (17)

T1(z)(s) = F

(
s, z(θ1(s)),

∫ s

0
p1(s, t, z(θ2(t)))dB(t),

∫ a

0
p2(s, t, z(θ3(t))dB(t)

)
T2(z)(s) = G

(
s, z(µ1(s)),

∫ s

0
q1(s, t, z(µ2(t)))dB(t),

∫ a

0
q2(s, t, z(µ3(t)))dB(t)

)
,

and the above integrals ”
∫

” stand for stochastic integral and B is a Brownian motion. Assume that

(C1) θ1, θ2, θ3, µ1, µ2, µ3 : I → I are continuous and F,G ∈ C(I × R × R × R,R) and ∃g > 0 so that
|F (t, 0, 0, 0)| ≤ g; |G(t, 0, 0, 0)| ≤ g;

(C2) hj : I → I, j = 1, 2, ..., 6 are continuous functions and
|F (t, u1, v1, w1)− F (t, u2, v2, w2)| ≤ h1(t)|u1 − u2|+ h2(t)|v1 − v2|+ h3(t)|w1 − w2|;
|G(t, u1, v1, w1)−G(t, u2, v2, w2)| ≤ h4(t)|u1 − u2|+ h5(t)|v1 − v2|+ h6(t)|w1 − w2|;
for all t ∈ I and u1, u2, v1, v2, w1, w2 ∈ R;

(C3) p1, p2, q1, q2 ∈ C1(I × [0, a]× R);

(C4) K = max{hj(t)|t ∈ I}, j = 1, 2, ..., 6;

(C5) ∃η, ν ≥ 0 such that |p1(x, y, r)|, |p2(x, y, r)|, |q1(x, y, r)|, |q2(x, y, r)| ≤ η + ν|r|, for all x, y ∈ [0, a] and
r ∈ R. Further, 4γδ < 1, γ = K + 2Kζ̂ν, where δ = g + 2Kζ̂η and ζ̂=sup{|B(t)| : t ∈ [0, a]}.
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Then equation (17) has a solution in E.

Proof. It is clear that the functionals Ψ1,Ψ
′
1,Φ1,Φ

′
1,Φ2,Φ

′
2 are continuous from C(I) into itself:

u1 := Ψ1(z)(s) = z(θ1(s))
v1 := Φ1(z)(s) =

∫ s
0 p1(s, t, z(θ2(t)))dB(t), s ∈ I, v2 := Φ2(z)(s) =

∫ a
0 p2(s, t, z(θ3(t)))dB(t), s ∈ I,

u2 := Ψ′
1(z)(s) = z(µ1(s)), s ∈ I,

v3 := Φ′
1(z)(s) =

∫ s
0 q1(s, t, z(µ2(t)))dB(t), s ∈ I, v4 := Φ′

2(z)(s) =
∫ a
0 q2(s, t, z(µ3(t)))dB(t), s ∈ I.

Let ζ1 = F, ζ2 = G, ρ > 0. Thus, the functional (17) is of the form

Tz(s) = ζ
(
s,Ψ1(z)(s),Ψ

′
1(z)(s),Φ1(z)(s),Φ2(z)(s),Φ

′
1(z)(s),Φ

′
2(z)(s)

)
, s ∈ I, z ∈ Bρ(E) (18)

where

ζ(s, u1, u2, v1, v2, , v3, v4) = ζ1(s, u1, v1, v2)ζ2(s, u2, v3, v4).

We have Ψ1,Ψ
′
1 ∈ Lρ(E),Φ1,Φ2,Φ

′
1,Φ

′
2 ∈ BC

ρ (E) and from (C5) we have

N1 = sup{|Φ1(z)(s)| : s ∈ I, z ∈ Bρ(E)}

= sup

{∣∣∣∣∫ t

0
p1(t, s, z(θ1(s)))dB(s)

∣∣∣∣ : s ∈ I, z ∈ Bρ(E)

}
≤ (η + ν||z||)ζ̂.

Similar calculation shows that N2, N3, N4 ≤ (η+ν||z||)ζ̂. Let ||z|| ≤ ρ and N := (η+νρ)ζ̂. Then we have

L1(ρ) = sup
z∈Bρ(E)

||T1(z)|| ≤ sup{|ζ1(s, u1, v1, v2)|, s ∈ I,−ρ ≤ u1 ≤ ρ,N ≤ v1, v2 ≤ N}

≤ sup{|ζ1(s, u1, v1, v2)| − ζ1(s, 0, 0, 0)|+ |ζ1(s, 0, 0, 0)|, s ∈ I,−ρ ≤ u1 ≤ ρ,N ≤ v1, v2 ≤ N}
≤ K(|u1|+ |v1|+ |v2|) + f ≤ K||z||+ 2K((η + ν||z||)ζ̂ + g

= (K + 2Kνζ̂)||z||+ 2Kηζ̂ + g = γ||z||+ δ ≤ γρ+ δ.

By a similar way we have

L2(ρ) = sup
z∈Bρ(E)

||T2(z)|| ≤ γ||z||+ δ ≤ γρ+ δ.

Thus, we get

|ζ(s, u1, u2, v1, v2, v3, v4)− ζ(s, ū1, ū2, v̄1, v̄2, ,̄v̄3, v̄4)|
= |ζ1(s, u1, v1, v2)ζ2(s, u2, v3, v4)− ζ1(s, ū1, v̄1, v̄2)ζ2(s, ū2, v̄3, v̄4)|
≤ |ζ1(s, u1, v1, v2)ζ2(s, u2, v3, v4)− ζ1(s, ū1, v̄1, v̄2)ζ2(s, u2, v3, v4)|
+ |ζ1(s, ū1, v̄1, v̄2)ζ2(s, u2, v3, v4)− ζ1(s, ū1, v̄1, v̄2)ζ2(s, ū2, v̄3, v̄4)|
≤ L2(ρ)|ζ1(s, u1, v1, v2)− ζ1(s, ū1, v̄1, v̄2)|+ L1(ρ)|ζ2(s, u2, v3, v4)− ζ2(s, ū2, v̄3, v̄4)|

in ≤ L2(ρ)K(|u1 − ū1|+ |v1 − v̄1|+ |v2 − v̄2|) + L1(ρ)K(|u2 − ū2|+ |v3 − v̄3|+ |v4 − v̄4|).

(19)

Inequality after [11, Relation (17)], i.e.,

K(γρ+ δ) +K(γρ+ δ) < 1,

where ρ = 1−2γδ−
√
1−4γδ

2γ2
, shows that we have KL2(ρ) + KL1(ρ) < 1, thus, the inequality (19) shows

that ζ ∈ C(I ×
∏2
i=1[−Mi,Mi] ×

∏4
i=1[−Ni, Ni],R) satisfies condition (II). Also it is easy to check that

L1(ρ)L2(ρ) = (γρ+ δ)2 ≤ ρ (see [11]), thus condition (III) holds too.

11



Deep et al. [11] obtained this result from another fixed point theorem.

Example 2.9. Kazemi and Yaghoobnia [23] used conditions (H1)-(H3) to check the fixed point existence
solution of

T (z)(s) = T1(z)(s)T2(z)(s), s ∈ I := [0, a], z ∈ C(I), (20)

where

T1(z)(s) = f(s, z(α(s)))

+ F

(
s, z(τ(s)),

∫ s

0
p1(s, t, z(θ1(t)))dB(t),

∫ a

0
p2(s, t, z(θ2(t)))dB(t)

)
,

T2(z)(s) = g(s, z(β(s)))

+G

(
s, z(υ(s)),

∫ s

0
q1(s, t, z(µ1(t)))dB(t),

∫ a

0
q2(s, t, z(µ2(t)))dB(t)

)
.

(21)

As previous example the above integrals stand for stochastic integral and B is a Brownian motion, see
[23] for more details about (H1)-(H3) and continues functions in (21).

Proof. Kazemi and Yaghoobnia [23] generalized previous example by Petryshyn’s fixed point theorem
(see [23, Corollary 3.2]). It is clear that the functionals Ψ1,Ψ

′
1,Ψ2,Ψ

′
2,Φ1,Φ

′
1,Φ2,Φ

′
2 are continuous from

C(I) into itself:
u1 := Ψ1(z)(s) = z(α(s)), u′1 := Ψ2(z)(s) = z(τ(s)), s ∈ I,

v1 := Φ1(z)(s) =
∫ t
0 p1(s, t, z(θ1(t)))dB(t), s ∈ I, v2 := Φ2(z)(s) =

∫ t
0 p1(s, t, z(θ1(t)))dB(t), s ∈ I,

u2 := Ψ′
1(z)(s) = z(β(s)), u′2 := Ψ′

2(z)(s) = z(υ(s)), s ∈ I,

v3 := Φ′
1(z)(s) =

∫ t
0 q1(s, t, z(µ1(t)))dB(t), v4 := Φ′

2(z)(s) =
∫ a
0 q2(s, t, z(µ2(t)))dB(s), s ∈ I.

Put ζ1(s, u1, u′1, v1, v2) = f(s, u1)+F (s, u
′
1, v1, v2), ζ2(s, u2, u

′
2, v3, v4) = g(s, u′2)+G(s, u2, u

′
2, v3, v4). Thus,

the functional (20) is of the form (1) where ζ = ζ1ζ2 and

ζ(s, u1, u
′
1, u2, u

′
2, v1, v2, v3, v4) = ζ1(s, u1, u

′
1, v1, v2)ζ2(s, u2, u

′
2, v3, v4).

There is a mistake in their proof. They showed that if T1 and T2 are densifying maps, then T = T1T2
is a densifying map too, more precisely, it has been shown that χ(T1(A)) ≤ (c + k)χ(A), χ(T2(A)) ≤
(c′ + k′)χ(A), for all bounded sets A ⊂ E, and then it is concluded that T is a densifying map, which
is not correct (see [7, Sec 2.5.7], [11, Theorem 2.2] and [4, 5, 8] and previous example). If one adds
assumption “there exist r0 > 0 such that (c+ k)(A2 +B2) + (c′ + k′)(A1 +B1) < 1” to conditions (H1)-
(H3) in [23], then similar to previous example it can be proved that ζ ∈ C(I ×

∏4
i=1[−ρ, ρ]×

∏2
i=1[−A1−

B1, A1 + B1] ×
∏2
i=1[−A2 − B2, A2 + B2],R) satisfies in condition (II) where ρ = r0 and condition (H3)

yields (III), thus, the main result in [23] follows from Theorem 2.1 under some corrections.

In [22], Kazemi et al. used conditions (H1)-(H3) to check the fixed point existence solution of functional
equation as z = T (z) = T1(z)T2(z), z ∈ C(I), where T1 and T2 are of the form (13). As in the previous
two examples, the result of existence can be concluded.
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3 Conclusion
The above examples show that many results in the existence of fixed points of implicit integral functional
equations have a similar structure in the proofs. Also, one can combine functional lists (as in Corollary
2.4) to form an integral equation under appropriate conditions that satisfy conditions (II)-(III) and obtain
a fixed-point existence result about (integral) functional equations in C(I). Since Theorem 2.1 works for
every bounded cube I ⊂ Rr, one can obtain a multidimensional version of the above examples, for instance,
Example 2.7 is a two-dimensional case of [21] with a few changes (see also [14]). Many other results, such
as Hadamard-type fractional integral equations, fractional stochastic integral equations (even in product
type) and so on, can be obtained in this way, for instance, some of them are [11–15, 17–21, 23, 25, 31]. The
interested researchers can think about Eq. (1) on different Banach function spaces, e.g., Orlicz spaces,
Lebesgue spaces, bounded variation spaces, Sobolev spaces, etc., by using the concept of superposition
operators (see [3]).
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