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Abstract
In this paper, we take a fresh look at the determination of the transition matrix for a homogeneous, biisotropic
particle employing the Null-field approach. The condition for passivity of the material is discussed. In
particular, we focus on some previously unproved properties of the Beltrami spherical vector waves, such
as completeness, orthogonality, and linear independence, which are all instrumental in the analysis of the
scattering problem with the Null-field approach. Some numerical examples illustrate the approach.
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1 INTRODUCTION

Scattering of electromagnetic waves by a biisotropic particle has off and on been in focus in electromagnetic research. Chiral
materials — media that show handedness — belong to this category of materials, i.e., reciprocal, biisotropic material, and a
majority of the existing literature treats this case. Chiral materials possess optical activity, i.e., the plane of polarization rotates as
the wave propagates through the medium. Chiral materials occur both as natural and artificial materials. For a survey of the
literature, see [1, 2, 3, 4, 5, 21, 22, 23, 24, 25] and references therein.

The question whether linear, non-reciprocal, biisotropic materials exist or not has been debated intensively over recent decades,
see [13, 14, 26, 27, 28, 34, 35, 37], but the question has never been fully resolved, and the question of existence of non-reciprocal,
biisotropic media (Tellegen media) is unsettled still. The analysis in this paper is general and applies to both non-reciprocal as
well as reciprocal biisotropic materials.

The scattering problem by a chiral particle is traditionally solved by a layer potential approach and the use of boundary
integral operators to show the uniqueness and existence of the solution to the problem. Another, less frequently used method, is
the generalization of the Null-field approach to solve this scattering problem. This method was originally devised by Peter C
Waterman in the late 60’s and early 70’s in a series of well-cited papers [39, 40, 41, 42]. In this paper, we address some open
questions, and we take a fresh look at the scattering problem with the Null-field approach, and at the same time address the
completeness properties of the expansion functions used. Completeness of the spherical vector waves, used in isotropic problems,
has been treated and proved in the literature [6, 29], but the corresponding expansion functions in the biisotropic case seem not
to have been addressed before. The linear independence of the appropriate spherical vector waves in biisotropic problems seems
also to be an unaddressed topic. These topics are treated in detail in this paper.

The outline of the paper is as follows: In Section 2, we set up the problem and define the geometry and the mathematical
prerequisites. The Null-field approach is reviewed in Section 3, which also contains the explicit expressions of the construction
of the transition matrix. This section also contains the completeness of the Beltrami spherical vector waves and a proof of their
linear independence. In Section 4, we present some numerical computations illustrating the theory presented in this paper. The
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paper is concluded with a discussion in Section 5. The vector spherical harmonics and the spherical vector waves are defined
in Appendix A, the definitions of closure and completeness in Hilbert spaces are reviewed in Appendix B, and Appendix C
contains the details of the proof of equal expansion coefficients of the electric and the magnetic surface fields.

2 SCATTERING PROBLEM — DESCRIPTION

A typical geometry is depicted in Figure 1. The particle occupies the bounded, open domain D with connected exterior domain
De = R3 \ D, and the particle is excited by an incident field with sources in De. The origin O is assumed located in D. We denote
the bounding surface of D by Γ, which we assume consists of a finite number of disjoint, closed, bounded surfaces belonging to
the class C2. We denote by ν̂ the outward pointing unit normal of the surface.

The goal is to solve the time-harmonic Maxwell equations (we use the time convention e–iωt, where the angular frequency is
denoted ω) [19]† {

∇× E(r) = iωB(r)

∇× H(r) = –iωD(r)
r ∈ R3 (1)

The complex-valued electric and magnetic field intensities are denoted E(r) and H(r), respectively, and the corresponding electric
and magnetic flux densities are denoted D(r) and B(r), respectively.

The fields are subject to the usual boundary conditions — continuity of the tangential electric and magnetic fields on Γ{
ν̂ × E(r)

∣∣
+ = ν̂ × E(r)

∣∣
–

ν̂ × H(r)
∣∣
+ = ν̂ × H(r)

∣∣
–

r ∈ Γ (2)

where the subscript +(–) denotes the limit value from the outside(inside) of Γ.
We are looking for classical solutions to the biisotropic scattering problem in R3, i.e., both inside the particle D and outside

the particle De. More precisely, we look for solutions in the space [9]

F(D) = {f ∈ (C1(D))3 ∩ (C(D))3}

and similarly for the exterior region De. Other spaces we use in this paper are [17] (the Hölder space C0,α(Γ) is defined in e.g.,
[33, Sec. 3.2]) 

T(Γ) = {f ∈ (C(Γ))3 : f · ν̂ = 0 on Γ}

T0,α(Γ) = {f ∈ (C0,α(Γ))3 : f · ν̂ = 0 on Γ}

T0,α
d (Γ) = {f ∈ T0,α(Γ) : Divf ∈ C0,α(Γ)}

† Vector-valued quantities are denoted in italic boldface, and vectors of unit length have a “hat” or caret (̂ ) over a symbol.
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for 0 < α < 1, and where Div denotes the surface divergence [9]. We also use the space of square integrable, tangential functions

L2
t (Γ) = {f ∈ (L2(Γ))3 : f · ν̂ = 0 on Γ}

In the lossless, isotropic exterior region De, characterized by the (real-valued) relative permittivity ϵ and permeability µ, we
represent the electric field as a sum of two parts — incident and scattered fields

E(r) = Ei(r) + Es(r), r ∈ De

where the sources of the incident field Ei are located in De, while the sources of the scattered field Es are located in D. The
magnetic field H(r) has a similar decomposition in two parts. The scattered fields satisfy one of the Silver-Müller radiation
conditions, see [19, 32, 36]{

r̂ × Es(r) – η0ηHs(r) = o((kr)–1)

η0η (̂r × Hs(r)) + Es(r) = o((kr)–1)
uniformly in the direction r̂ as r → ∞

The wave impedance of vacuum is denoted η0 =
√
µ0/ϵ0, and the relative wave impedance of the exterior material is denoted

η =
√
µ/ϵ. The permittivity and permeability of vacuum are denoted ϵ0 and µ0, respectively. The wavenumber of the exterior

region is k = k0
√
ϵµ, where k0 = ω

√
ϵ0µ0 is the wavenumber in vacuum.

The dimensionless material parameters of the homogeneous, biisotropic scatterer D are ϵ1, µ1, κ, and χ. The constitutive
relations of a biisotropic media is [19, Chap. 1]‡{

D(r) = ϵ0 {ϵ1E(r) + (κ + iχ)η0H(r)}

B(r) =
√
ϵ0µ0 {(κ – iχ)E(r) + µ1η0H(r)}

(3)

The material parameters ϵ1, µ1, κ, and χ are in general complex-valued, and the parameters κ and χ, are usually referred to as
the reciprocity and the chirality parameters, respectively. As usual, the parameters ϵ1 and µ1 are referred to as the permittivity
the permeability of the medium, respectively. If the reciprocity parameter κ = 0 and χ ̸= 0, the medium is called chiral.

The Maxwell equations in the biisotropic media read{
∇× E(r) = ik0 {(κ – iχ)E(r) + µ1η0H(r)}

η0∇× H(r) = –ik0 {ϵ1E(r) + (κ + iχ)η0H(r)}
r ∈ D (4)

The Maxwell equation and the constitute relations are used to obtain an equation in the electric field. The result is

∇× (∇× E(r)) + α∇× E(r) – β2E(r) = 0 (5)

where α = –2k0χ and β2 = k2
0

(
ϵ1µ1 – κ2 – χ2

)
. Here, we observe the different role the chirality parameter χ has in contrast to

the reciprocity parameter κ, which simply modify the β coefficient.

‡ An alternative description of the material is the Fedorov constitutive relations{
D(r) = ϵF {E(r) + α∇ × E(r)}

B(r) = µF {H(r) + β∇ × H(r)}

This model is equivalent to our material parameters by 
ϵ1 =

ϵF/ϵ0

1 – ω2ϵFµFαβ

µ1 =
µF/µ0

1 – ω2ϵFµFαβ


κ = i

ωϵFµF (α – β) /2
√
ϵ0µ0

(
1 – ω2ϵFµFαβ

)
χ =

ωϵFµF (α + β) /2
√
ϵ0µ0

(
1 – ω2ϵFµFαβ

)
with inverse 

ϵF = ϵ0
ϵ1µ1 – κ2 – χ2

µ1

µF = µ0
ϵ1µ1 – κ2 – χ2

ϵ1


α = –

i(κ + iχ)
ω
√
ϵ0µ0(ϵ1µ1 – κ2 – χ2)

β =
i(κ – iχ)

ω
√
ϵ0µ0(ϵ1µ1 – κ2 – χ2)
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The biisotropic material of the scatterer in this paper is assumed to be passive, i.e., it produces no energy, but only consumes
energy. A biisotropic material is passive if the matrix [19](

Im ϵ1 Imκ + i Imχ

Imκ – i Imχ Imµ1

)
is non-negative definitive, i.e., both eigenvalues of the matrix are non-negative

λ1,2 =
Im ϵ1 + Imµ1 ±

√
(Im ϵ1 – Imµ1)2 + 4(Imκ)2 + 4(Imχ)2

2
≥ 0 (6)

The medium is lossless if both eigenvalues are zero, i.e., ϵ1, µ1, κ, and χ are all real-valued [19].
Of special importance in this paper is uniqueness of the interior Maxwell boundary value problem stated as

Definition 1. Find two vector fields E, H ∈ F(D) satisfying the Maxwell equations (4) in D and the boundary condition
ν̂ × E = f on Γ. Here, f ∈ T0,α

d (Γ), 0 < α < 1, is a given tangential surface field.

If the biisotropic medium is lossless, this problem has a unique solution except for a discrete set of angular frequencies,
ω ∈ σ(D), see e.g., [33, Sec. 4.2], with the only accumulation point at infinity. For a strictly passive material, i.e., both
eigenvalues λ1,2 ≥ λ0 > 0 at all points, r ∈ D, we have always uniqueness.

Lemma 1. The interior Maxwell boundary-value problem in Definition 1 is uniquely solvable provided the material is strictly
passive.

Proof. We prove uniqueness by proving that the only solution to the interior Maxwell boundary-value problem when f = 0 is
the trivial solution E = η0H = 0.

Use the Gauss’ theorem in the region D on the following surface integral:

0 = Re
¨

Γ

(
ν̂ × E

∣∣
–

)
· η0H

∣∣∗
– dS = Re

¨

Γ

(
E
∣∣
– × η0H

∣∣∗
–

)
· ν̂ dS = Re

˚

D

∇×
(
E × η0H∗) dv

The Maxwell equation (4) implies

0 = k0 Im
˚

D

(
{(κ – iχ)E + µ1η0H}∗ · η0H + {ϵ1E + (κ + iχ)η0H}∗ · E

)
dv

= –k0

˚

D

(
E

η0H

)†

·
(

Im ϵ1 Imκ + i Imχ

Imκ – i Imχ Imµ1

)(
E

η0H

)
dv ≤ –λ0k0

˚

D

∣∣E∣∣2 +
∣∣η0H

∣∣2 dv

where ∗ denotes the complex conjugate, and † denotes the Hermitian conjugate. This inequality implies that E = η0H = 0, r ∈ D,
and the lemma is proved.

Lemma 2. If the biisotropic medium of the scatterer is passive, i.e., the material parameters satisfy (6) at every point in D, then

Re
¨

Γ

(
E(r)

∣∣
– × H∗(r)

∣∣
–

)
· ν̂(r) dS ≤ 0

for all electric and magnetic fields satisfying the Maxwell equations.§

Proof. Proceed as in Lemma 1, and we obtain

Re
¨

Γ

(
E
∣∣
– × η0H∗∣∣

–

)
· ν̂ dS = –k0

˚

D

(
E

η0H

)†

·
(

Im ϵ1 Imκ + i Imχ

Imκ – i Imχ Imµ1

)(
E

η0H

)
dv ≤ 0

since the eigenvalues of the matrix in the integrand, λ1,2, both are non-negative, if the passivity condition (6) holds.

§ Alternatively, this can be taken as the definition of a passive material. The integral inequality states that energy flows inwards into the region D.
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3 NULL-FIELD APPROACH

The Null-Field approach was originally presented by Peter C Waterman in a series of papers [39, 40, 41, 42], see also [19,
Chap. 9] for an introductory text on the approach. The method is semi-analytic, and employs global expansion functions in
contrast to several numerical methods that use local expansion functions.

For E ∈ F(De), the integral representation of the solution to the Maxwell equation in the exterior homogeneous region De

is [9, 15, 19]

–
η0η

ik
∇×

{
∇×

¨

Γ

Ge(k, r – r′) · (ν̂(r′) × H(r′)) dS′
}

+ ∇×
¨

Γ

Ge(k, r – r′) ·
(
ν̂(r′) × E(r′)

)
dS′ =

{
Es(r), r ∈ De

–Ei(r), r ∈ D
(7)

where the Green dyadic in free space is [19]

Ge(k, r – r′) =
(

I3 +
1
k2 ∇∇

)
g(k,

∣∣r – r′
∣∣) =

(
I3 +

1
k2 ∇∇

)
eik

∣∣r–r′
∣∣

4π
∣∣r – r′

∣∣ , r ̸= r′ (8)

The boundary conditions in (2) show, that the surface fields in these integrals are identical to their limit values from the inside.
As a consequence, we do not need to indicate from which side the limit is taken.

The Green dyadic in free space has an expansion in spherical vector waves (see Appendix A for the definition of the radiating
spherical vector waves uτn(kr) and the regular spherical vector waves vτn(kr))

Ge(k, r – r′) = ik
∑
τn

vτn(kr<)uτn(kr>), r ̸= r′ (9)

where r< (r>) is the position vector with the smallest (largest) distance to the origin, and the index n is a multi-index n = {σ, m, l}
and τ = 1, 2, see Appendix A. The expansion (9) is uniformly convergent in compact domains, provided r ̸= r′ [16, 31].

3.1 Scattered and incident fields

We apply the integral representation (7) and (8) to the exterior region De, and let the position vector r be such that r = |r| > rmax.
A change of summation and integration gives us an expansion of the scattered field outside the smallest circumscribed sphere
of the scatterer. Thus, the scattered field has an convergent expansion in radiating spherical vector waves uτn(kr) outside the
smallest circumscribed sphere, i.e.,

Es(r) =
∑
τn

fτnuτn(kr), r > rmax (10)

where the expansion coefficients are

fτn = ik2
¨

Γ

iη0ηvτn(kr) · (ν̂(r) × H(r)) + vτn(kr) · (ν̂(r) × E(r)) dS (11)

The dual index τ is defined by 1̄ = 2 and 2̄ = 1.
We now apply the integral representation (7) to the interior region D. By applying (8), we obtain a convergent expansion of

the incident field inside the largest inscribed sphere of the scatterer in terms of regular spherical vector waves vτn(kr), i.e.,

Ei(r) =
∑
τn

aτnvτn(kr), r < rmin

where the expansion coefficients are

aτn = –ik2
¨

Γ

iη0ηuτn(kr) · (ν̂(r) × H(r)) + uτn(kr) · (ν̂(r) × E(r)) dS (12)
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The incident wave is known, i.e., the expansion coefficients aτn are known, and we seek the scattered field, i.e., the expansion
coefficients fτn. Formally, this can be accomplished by eliminating the surface fields ν̂(r) × E(r) and ν̂(r) × H(r) in (11) and
(12). In this paper, we eliminate the surface field with the Null-field approach formulated by Peter C Waterman.

The transition matrix Tτn,τ ′n′ is defined as the linear transformation between the expansion coefficients of the incident and
scattered fields, i.e.,

fτn =
∑
τ ′n′

Tτn,τ ′n′aτ ′n′

3.2 Bohren transformation and Beltrami fields

We now focus on the fields inside the obstacle D. To find the appropriate form of the Maxwell equations suited for a biisotropic
media, we introduce the Bohren transformation [8](

E
iη0H

)
=
(

1 1
–Y– Y+

)(
QL
QR

)
where the (relative) material admittances Y± of the biisotropic material are defined as

Y± =

(
ϵ1µ1 – κ2

)1/2 ∓ iκ
µ1

The inverse of Bohren transformation is (
QL
QR

)
=

1
Y+ + Y–

(
Y+ –1
Y– 1

)(
E

iη0H

)
(13)

The new fields QL,R are called Beltrami fields and satisfy [20, 33](
∇× QL(r)
∇× QR(r)

)
=
(

–k– 0
0 k+

)(
QL(r)
QR(r)

)
(14)

where k± are the wavenumbers of the right- and left-circularly polarized waves, respectively¶

k± = k0

{(
ϵ1µ1 – κ2)1/2 ± χ

}
and, consequently, the new fields QL(r) and QR(r) diagonalize the Maxwell equation.

The spherical vector waves vτn(kr) and uτn(kr) for τ = 1, 2 (see Appendix A for their definitions) satisfy{
∇× vτn(kr) = kvτn(kr)

∇× uτn(kr) = kuτn(kr)

These spherical vector waves are not suited as expansion functions for a biisotropic material, since the biisotropic material is
characterized by two wavenumbers k±. Instead, we form the regular and radiating Beltrami spherical vector waves as linear
combinations of vτn(k±r) and uτn(k±r), i.e.,{

vLn(r) = v1n(k–r) – v2n(k–r)

vRn(r) = v1n(k+r) + v2n(k+r)

{
uLn(r) = u1n(k–r) – u2n(k–r)

uRn(r) = u1n(k+r) + u2n(k+r)
(15)

The Beltrami spherical vector waves satisfy{
∇× vLn(r) = –k–vLn(r)

∇× vRn(r) = k+vRn(r)

{
∇× uLn(r) = –k–uLn(r)

∇× uRn(r) = k+uRn(r)
(16)

¶ The definitions of left- and right-handed waves differ between authors. In this paper, we follow [19].
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The Beltrami spherical vector waves {vLn(r), vRn(r)}n is a complete and linearly independent set of vector waves. These
statements are proved in Sections 3.3–3.4. Moreover, they satisfy the following orthogonality relation:

Lemma 3. If the Beltrami fields QL,R(r) and Q′
L,R(r) satisfy (14) in the region D, then the following orthogonality properties

hold: 

¨

Γ

QL(r) ·
(
ν̂(r) × Q′

L(r)
)

dS = 0

¨

Γ

QR(r) ·
(
ν̂(r) × Q′

R(r)
)

dS = 0

on the bounding surface Γ.

Proof. The lemma is a simple application Gauss’ theorem and (14), i.e.,

¨

Γ

QL ·
(
ν̂(r) × Q′

L

)
dS =

˚

D

∇ ·
(
Q′

L × QL

)
dv =

˚

D

QL ·
(
∇× Q′

L

)
dv –
˚

D

(
∇× QL

)
· Q′

L dv

= –k–

˚

D

QL · Q′
L dv + k–

˚

D

QL · Q′
L dv = 0

The orthogonality relation for the functions QR(r) and Q′
R(r) is proved in a similar manner.

As a special case, we have for QL,R(r) = vL,Rn(r) and Q′
L,R(r) = vL,Rn′ (r) the following corollary:

Corollary 1. The regular Beltrami spherical vector waves {vLn(r), vRn(r)}n satisfy the following orthogonality property:

¨

Γ

vLn(r) · (ν̂(r) × vLn′ (r)) dS = 0

¨

Γ

vRn(r) · (ν̂(r) × vRn′ (r)) dS = 0
(17)

for all closed surfaces Γ, and all indices n and n′. The location of the origin is arbitrary.

3.2.1 Green dyadic in biisotropic media

The appropriate Green dyadic in a biisotropic material satisfies

∇×
(
∇× Gbi(r – r′)

)
+ α∇× Gbi(r – r′) – β2Gbi(r – r′) = I3δ(r – r′)

where α = –2k0χ and β2 = k2
0

(
ϵ1µ1 – κ2 – χ2

)
, and I3 denotes the unit dyadic in R3. The solution is given by [20]

Gbi(r – r′) = G+
bi(r – r′) + G–

bi(r – r′) (18)

where the decomposed parts read

G±
bi (r – r′) =

(
k±I3 ±∇× I3

)
·Ge(k±, r – r′)

k+ + k–
(19)

where Ge(k±, r – r′) is given in (8).
The Green dyadic G±

bi has a decomposition in spherical and Beltrami spherical vector waves. By the use of (9) and (15), we get

G±
bi (r – r′) =

ik2
±

k+ + k–

∑
n

vR,Ln(r<)uR,Ln(r>), r ̸= r′ (20)

where the +(–) sign corresponds to R(L) indices. This expansion is uniformly convergent in compact domains, provided r ̸= r′.
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3.3 Completeness proof

The completeness of the regular and outgoing spherical vector waves, {ν̂(r) × vτn(r)}τn and {ν̂(r) × uτn(r)}τn, as well as
the scalar spherical waves on a closed boundary Γ is well documented [6, 18, 29, 30]. In general, the radiating functions are
complete for all wavenumbers, while for the regular waves, we have to exclude a set of wavenumbers related to the eigenvalues
of a specific interior Maxwell boundary value problem. For Beltrami spherical vector waves, we have the following result:

Theorem 1. The regular Beltrami spherical vector waves {ν̂(r) × vLn(r), ν̂(r) × vRn(r)}n form a complete system in the space
of square integrable tangential functions L2

t (Γ), except for a discrete set of eigenfrequencies σ(D) that corresponds to the
eigenfrequencies of the cavity problem with perfectly conducting boundary, see Definition 1.

Proof. We prove this theorem by showing that the system is closed, i.e., for f ∈ L2
t (Γ), we have [11, Th. 11.1.7] (the definitions

of complete and closed system are given in Appendix B)
¨

Γ

(
ν̂(r′) × vL,Rn(r′)

)
· f (r′) dS′ = 0, for L, R, and for all n ⇒ f = 0

To prove the theorem it suffices to work with surface fields that are dense in L2
t (Γ), e.g., continuous, tangential functions

Ct(Γ) = {f ∈ (C(Γ))3 : f · ν̂ = 0 on Γ}, and use the continuity of the scalar product.
Introduce the layer potentials M(k) and N(k) [17, 33]

(M(k)a)(r) := ∇×


¨

Γ

g(k,
∣∣r – r′

∣∣)a(r′) dS′

 = ∇×


¨

Γ

Ge(k, r – r′) · a(r′) dS′

 , r ∈ D ∪ De

and

(N(k)a)(r) := ∇×

∇×

¨
Γ

g(k,
∣∣r – r′

∣∣)a(r′) dS′


= ∇×

∇×

¨
Γ

Ge(k, r – r′) · a(r′) dS′

 = k2
¨

Γ

Ge(k, r – r′) · a(r′) dS′, r ∈ D ∪ De

where the Green dyadic in free space, Ge(k, r – r′), is given by (8).
We have

∇× (M(k)a)(r) = (N(k)a)(r), ∇× (N(k)a)(r) = k2(M(k)a)(r), r ∈ D ∪ De

We also need two boundary integral operators (principal values) [33]

(M̃(k)a)(r) := ν̂(r) ×
¨

Γ\{r}

∇g(k,
∣∣r – r′

∣∣) × a(r′) dS′, r ∈ Γ

and

(Ñ(k)a)(r) := ν̂(r) ×
{
∇
¨

Γ

g(k,
∣∣r – r′

∣∣)Diva(r′) dS′ + k2
¨

Γ

g(k,
∣∣r – r′

∣∣)a(r′) dS′
}

, r ∈ Γ

where Div denotes the surface divergence of Γ, and we have the limit values [33]ν̂(r) × (M(k)(a))(r) = (M̃(k)(a))(r) ± 1
2

a(r)

ν̂(r) × (N(k)(a))(r) = (Ñ(k)(a))(r)
r ∈ Γ

where the upper(lower) sign holds for the limit from the outside(inside) of the boundary Γ. The boundary layer operators map [9]

M̃(k), Ñ(k) : T(Γ) → T0,α(Γ)

where 0 < α < 1.
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We now prove that the system {ν̂(r) × vLn(r), ν̂(r) × vRn(r)}n is closed, i.e., for f ∈ Ct(Γ).

¨

Γ

(
ν̂(r′) × vL,Rn(r′)

)
· f (r′) dS′ = 0, for L, R, and for all n (21)

and we prove that the only solution to this statement is f = 0.
Let r be located outside the smallest circumscribed sphere, and multiply the integral in (21) containing vLn(r′) by k2

–vLn(r), the
integral containing vRn(r′) by k2

+uRn(r), add and sum over n. We get, see (18) and (20)

E(r) =
¨

Γ

Gbi(r – r′) · a(r′) dS′ = 0, r > rmax (22)

where a = ν̂ × f . The function E(r) satisfies (5) outside the smallest circumscribed sphere of Γ, and by analyticity everywhere in
De [12]. The limits from the outside are

E(r)
∣∣
+ = 0, ν̂(r) × E(r)

∣∣
+ = 0, ν̂(r) · E(r)

∣∣
+ = 0

We express the field E in (22) in terms of the layer potentials N(k) and M(k) in the exterior region De, i.e.,

Ee(r) = E(r) =
1

k+ + k–

{
1
k+

(N(k+)a)(r) +
1
k–

(N(k–)a)(r) + (M(k+)a)(r) – (M(k–)a)(r)
}

= 0, r ∈ De

The limit value at the boundary (limit from the outside) is

ν̂(r) × Ee(r)
∣∣
+ =

1
k+ + k–

{
1
k+

(Ñ(k+)a)(r) +
1
k–

(Ñ(k–)a)(r) + (M̃(k+)a)(r) – (M̃(k–)a)(r)
}

= 0, r ∈ Γ (23)

The function E(r) in (22) is also well defined inside the obstacle D, but its value is not known. Define the field in D

Ei(r) =
1

k+ + k–

{
1
k+

(N(k+)a)(r) +
1
k–

(N(k–)a)(r) + (M(k+)a)(r) – (M(k–)a)(r)
}

, r ∈ D

with limit value at the boundary (limit from the inside)

ν̂(r) × Ei(r)
∣∣
– =

1
k+ + k–

{
1
k+

(Ñ(k+)a)(r) +
1
k–

(Ñ(k–)a)(r) + (M̃(k+)a)(r) – (M̃(k–)a)(r)
}

, r ∈ Γ

By the use of (23), we obtain ν̂(r)× Ei
∣∣
– (r) = 0. If we exclude the frequencies of the internal cavity problem with PEC boundary,

σ(D), see Definition 1, we have a unique solution of the internal problem, i.e., Ei(r) = 0, r ∈ D.
Form the curl of the fields Ee,i(r), which are zero in r ∈ D ∪ De.

∇× Ee,i(r) =
1

k+ + k–

{
k+(M(k+)a)(r) + k–(M(k–)a)(r) + (N(k+)a)(r) – (N(k–)a)(r)

}
= 0, r ∈ D ∪ De

The tangential limit values of the vector field ∇× Ee,i(r) on the surface leads to the following boundary integral equations:

ν̂(r) ×
(
∇× Ee,i(r)

)∣∣
± =

1
k+ + k–

{
k+(M̃(k+)a)(r) + k–(M̃(k–)a)(r)

+ (Ñ(k+)a)(r) – (Ñ(k–)a)(r) ± k+ + k–

2
a(r)

}
= 0, r ∈ Γ

from the outside(inside), respectively. The difference of these two boundary integral equations is zero, and gives the value of
a = ν̂ × f = 0, and the proof of closure is completed, which also implies completeness [11].
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3.4 Linear independence

In this section, we prove the linear independence of the set {ν̂(r) × vLn(r), ν̂(r) × vRn(r)}n.

Lemma 4. The set of tangential components of the regular Beltrami spherical vector waves {ν̂(r) × vLn(r), ν̂(r) × vRn(r)}n is a
linear independent set of functions on Γ except for a discrete set of eigenfunctions that corresponds to the eigenfrequencies of
the cavity problem with perfectly conducting boundary, see Definition 1.

Proof. To prove this theorem, consider

∑
σ=e,o

lmax∑
l=0

l∑
m=0

{cLσmlν̂(r) × vLσml(r) + cRσmlν̂(r) × vRσml(r)} = 0, r ∈ Γ

We have to prove that cLσml = cRσml = 0 for all indices {σ, m, l} and all lmax ≥ 0. Form the vector field

E(r) =
∑
σ=e,o

lmax∑
l=0

l∑
m=0

{
cLσml (v1σml(k–r) – v2σml(k–r)) + cRσml (v1σml(k+r) + v2σml(k+r))

}
, r ∈ D

This function is well defined, and it satisfies the electric field equation (5) in region D (no convergence problems since the sum
is finite). By construction, its tangential components, ν̂ × E, vanish on Γ. Due to uniqueness of the interior problem, we have
E = 0 everywhere in D. In particular, the vector field E vanishes on a spherical surface SR of radius R ≤ rmin centered at the
origin O. Orthogonality of the vector spherical harmonics Aτn (̂r), see Appendix A, on the sphere SR implies

0 =
¨

SR

|E(r)|2 dS =
∑
σ=e,o

lmax∑
l=0

l∑
m=0

∣∣cRσml jl(k+R) + cLσml jl(k–R)
∣∣2

+
∑
σ=e,o

lmax∑
l=0

l∑
m=0

∣∣∣∣cRσml
(k+R jl(k+R))′

k+R
– cLσml

(k–R jl(k–R))′

k–R

∣∣∣∣2 +
∑
σ=e,o

lmax∑
l=0

l∑
m=0

l(l + 1)
∣∣∣∣cRσml

jl(k+R)
k+R

– cLσml
jl(k–R)

k–R

∣∣∣∣2
Each term in the sum is positive and must therefore be identically zero. We get the system of equations

cRσml jl(k+R) + cLσml jl(k–R) = 0

cRσml
(k+R jl(k+R))′

k+R
– cLσml

(k–R jl(k–R))′

k–R
= 0

cRσml
jl(k+R)

k+R
– cLσml

jl(k–R)
k–R

= 0

or in a reduced form {
cRσml jl(k+R) + cLσml jl(k–R) = 0

cRσml j′l(k+R) – cLσml j′l(k–R) = 0

which has a unique solution cLσml = cRσml = 0 for all indices n = {σ, m, l} and all lmax ≥ 0, provided

jl(k+R)j′l(k–R) + j′l(k+R)jl(k–R) ̸= 0 for all l

which is true for a sufficiently small value of R, and the lemma is proved.

3.5 Elimination of the surface fields

The elimination of the surface fields in (11) and (12) can be made by an expansion of the surface fields of the scatterer in a
complete set of vector-valued expansion functions on the surface Γ. Here, we employ the set {ν̂(r) × vLn(r), ν̂(r) × vRn(r)}n,
where the wavenumbers of the material in the obstacle are k±. This is a complete system in L2

t (Γ), see Theorem 1, and we use
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the following expansion of the surface fields on the inside of the scatterer:
ν̂(r) × E

∣∣
– (r) =

∑
n′

(αLn′ ν̂(r) × vLn′ (r) + αRn′ ν̂(r) × vRn′ (r))

iη0ν̂(r) × H
∣∣
– (r) =

∑
n′

(–αLn′Y–ν̂(r) × vLn′ (r) + αRn′Y+ν̂(r) × vRn′ (r))
r ∈ Γ (24)

Note that these expansions hold in L2
t (Γ) on the surface Γ, and that, in general, there is no guarantee that the expansions converge

or represent the field in some other way in the domain inside the scatterer. Also, notice that both the expansions of the tangential
electric and magnetic fields have the same expansion coefficients. This is in general not true, but for this particular choice of
expansion functions, {ν̂(r) × vLn(r), ν̂(r) × vRn(r)}n, it is possible, see Appendix C.

We proceed by introducing the R and Q matrices of the obstacle. The explicit form of the matrices are:
Rτn,Ln′ = ik2

¨

Γ

(ηY–vτn(kr) – vτn(kr)) · (ν̂(r) × vLn′ (r)) dS

Rτn,Rn′ = –ik2
¨

Γ

(ηY+vτn(kr) + vτn(kr)) · (ν̂(r) × vRn′ (r)) dS
(25)

and 
Qτn,Ln′ = ik2

¨

Γ

(ηY–uτn(kr) – uτn(kr)) · (ν̂(r) × vLn′ (r)) dS

Qτn,Rn′ = –ik2
¨

Γ

(ηY+uτn(kr) + uτn(kr)) · (ν̂(r) × vRn′ (r)) dS
(26)

These matrices contain the geometry and the material parameters of the scatterer. Once the geometry and the material parameters
of the particle are defined, these matrices can be computed by numerical integration. They contain no unknown fields. For a
spherical particle, the integrals have an exact expression [19].

Insert the surface field expansions (24) in (11) and (12) and use (25) and (26). We readily obtain the following relations:
aτn =

∑
n′

{
Qτn,Ln′αLn′ + Qτn,Rn′αRn′

}
fτn = –

∑
n′

{
Rτn,Ln′αLn′ + Rτn,Rn′αRn′

}
Formal elimination of the expansion coefficients αLn′ and αRn′ gives the transition matrix Tτnτ ′n′ . As matrices in the indices
{n, n′} and column vectors in the index n and n′, we write{

a1 = Q1LαL + Q1RαR

a2 = Q2LαL + Q2RαR

{
f1 = –R1LαL – R1RαR

f2 = –R2LαL – R2RαR
(27)

From these expressions it is straightforward to express the expansion coefficients αL and αR in terms of the known expansion
coefficients aτ and combinations of the QτL and QτR matrices and their inverses. However, here, we prefer to solve for another
linear combination of the coefficients αL and αR, which connects more directly to the analysis of the Null-field approach for an
isotropic particle.

Introduce the following combinations of the QτL and QτR matrices

Qτ1 =
1
2

(QτR + QτL) , Qτ2 =
1
2

(QτR – QτL)

or

QτL = Qτ1 – Qτ2, QτR = Qτ1 + Qτ2
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where the matrices Qτn,τ ′n′ have the form
Qτn,1n′ = –

ik2

2

¨

Γ

(ηY+uτn(kr) + uτn(kr)) · (ν̂(r) × vRn′ (r)) dS +
ik2

2

¨

Γ

(ηY–uτn(kr) – uτn(kr)) · (ν̂(r) × vLn′(r)) dS

Qτn,2n′ = –
ik2

2

¨

Γ

(ηY+uτn(kr) + uτn(kr)) · (ν̂(r) × vRn′ (r)) dS –
ik2

2

¨

Γ

(ηY–uτn(kr) – uτn(kr)) · (ν̂(r) × vLn′ (r)) dS
(28)

Similar expressions exist for the regular matrices RτL and RτR — replace uτn(kr) by vτn(kr). The second index, 1 and 2, in these
expressions does not play the same role as a τ index, but the index becomes identical to the τ index if we specialize the material
parameters to be isotropic.

With these new Q matrices, equation (27) reads{
a1 = (Q11 – Q12)αL + (Q11 + Q12)αR = Q11 (αR + αL) + Q12 (αR – αL)

a2 = (Q21 – Q22)αL + (Q21 + Q22)αR = Q21 (αR + αL) + Q22 (αR – αL)

with inverse (
αR + αL

αR – αL

)
=
(

Q11 Q12

Q21 Q22

)–1 (
a1

a2

)
Insert in the expression for fτn, and we get

fτ = –RτLαL – RτRαR = – (Rτ1 – Rτ2)αL – (Rτ1 + Rτ2)αR = –Rτ1 (αR + αL) – Rτ2 (αR – αL)

which implies an explicit expression of the transition matrix

Tττ ′ = –
(

R11 R12

R21 R22

)(
Q11 Q12

Q21 Q22

)–1
∣∣∣∣∣
ττ ′

This is the final expression of the transition matrix expressed in terms of the known matrices R and Q.

4 NUMERICAL ILLUSTRATIONS

We present a few examples of the results in this paper by illustrating the scattering cross section of a biisotropic oblate spheroid
and cylinder. Several calculations, using other methods, have been published in the literature, e.g., [7, 10, 21].

For axially symmetric particles the surface integrals in the Q and R matrices simplify to a line integral, and, due to axial
symmetry, all matrices are diagonal in the m index.

The incident field Ei(r) in this section is a plane wave, i.e.,

Ei(r) = E0eikk̂i·r

where the direction of the incident wave is denoted k̂i, and specified by the spherical angles α and β, i.e., k̂i = sinα cosβx̂ +
sinα sinβŷ + cosαẑ. The complex vector E0 characterizes the polarization state of the incident wave. The expansion coefficients
aτn have a closed form expression [19].

aτn = 4πil+1–τAτn(k̂i) · E0, τ = 1, 2

The scattering cross section, σs(k̂i), is defined as [19]

σs (̂r, k̂i) =
1

k2|E0|2
∑
τn

∣∣fτn
∣∣2

where fτn are the expansion coefficients of the scattered field, see (10).
In the left figure in Figure 2, the normalized scattering cross section, σs/2πb2, for a lossless, biisotropic oblate spheroid,

b/a = 2 (a along the symmetry axis z), as a function of frequency, ka, for two different reciprocity values is depicted. The material
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F I G U R E 2 Left: The normalized scattering cross section σs/2πb2 of a biisotropic oblate spheroid as a function of frequency,
ka, for different incident circular polarization. The solid curves show κ/

√
ϵµ = 0.5 and the dashed curves κ/

√
ϵµ = 0. Right: The

normalized scattering cross section σs/2πb2 of a chiral cylinder as a function of the incident angle α for different polarizations
of the incident plane wave. The material parameters are given in the text.

parameters of the oblate spheroid are ϵ1/ϵ = 4, µ1/µ = 1, and χ/
√
ϵµ = 0.2 and the reciprocity parameters are κ/

√
ϵµ = 0, 0.5.

The incident plane wave is circularly polarized and the incident angle is α = 90◦ w.r.t. the symmetry axis z. The main effect of
the variation of the reciprocity parameter κ is a frequency shift of the curves.

Scattering by a cylindrical particle is presented in the right figure in Figure 2. In this figure, we illustrate the normalized
scattering cross section, σs/2πb2, as a function of the incident angle α for different states of polarization of the incident plane
wave. The chiral material of the scatterer is ϵ1/ϵ = 4, µ1/µ = 1, χ/

√
ϵµ = 0.1, and κ = 0, and the geometry is b/a = 1/2 and ka = 5.

At small incident angles α, the two circular polarizations, RCP and LCP, differ more than the two linear polarizations, TE and
TM, which are identical at α = 0◦.

5 DISCUSSION AND CONCLUSIONS

In this paper, the transition matrix of a biisotropic particle is constructed by the Null-field approach. The particle is assumed
to consist of a passive biisotropic material, i.e., we allow both chirality and non-reciprocity of the material. The condition for
passivity of the material is discussed. The Bohren transformation is employed, and the Beltrami combinations of the spherical
vector waves are analyzed. In particular, we showed the completeness and linear independence of the tangential components
of the regular Beltrami spherical vector waves for a general smooth boundary Γ, if we exclude frequencies in the set σ(D) of
internal resonances. We also show that the expansion coefficients of the electric and the magnetic surface fields are the same for
the special choice of expansion functions used in this paper. A few numerical examples are presented and discussed.
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APPENDIX

A SPHERICAL VECTOR WAVES

We follow the definitions of the vector spherical harmonics and the spherical vector waves in Reference [19]. The vector spherical
harmonics used in this paper are

A1σml (̂r) =
1√

l(l + 1)
∇× (rYσml (̂r)) =

1√
l(l + 1)

∇Yσml (̂r) × r

A2σml (̂r) =
1√

l(l + 1)
r∇Yσml (̂r)

A3σml (̂r) = r̂Yσml (̂r)

The spherical harmonics are

Yσml(θ,ϕ) = ClmPm
l (cos θ)

{
cos mϕ

sin mϕ

}
where the indices σ, m, l take the following values:

σ =

{
e

o

}
, m = 0, 1, 2, . . . , l, l = 0, 1, . . .

The normalization factor Clm used in this paper is

Clm =
√

εm

2π

√
2l + 1

2
(l – m)!
(l + m)!

where the Neumann factor is defined as

εm = 2 – δm0, i.e.,

{
ε0 = 1

εm = 2, m > 0

The vector spherical harmonics are orthonormal on the unit sphere Ω, i.e.,
¨

Ω

Aτn (̂r) · Aτ ′n′ (̂r) dΩ = δττ ′δnn′

where the multi-index n = {σ, m, l} is over σ = e, o, m = 0, 1, 2, . . . , l, and l = 1, 2, 3 . . ..
The outgoing (or radiating) spherical vector waves uτn(kr) are

u1n(kr) = h(1)
l (kr)A1n (̂r)

u2n(kr) =
(krh(1)

l (kr))′

kr
A2n (̂r) +

√
l(l + 1)

h(1)
l (kr)

kr
A3n (̂r)

and regular spherical vector waves vτn(kr) arev1n(kr) = jl(kr)A1n (̂r)

v2n(kr) =
(krjl(kr))′

kr
A2n (̂r) +

√
l(l + 1)

jl(kr)
kr

A3n (̂r)

where h(1)
l (z) and jl(z) are the spherical Hankel and Bessel functions of order l, respectively. The spherical vector waves vτn(kr)

for τ = 1, 2 satisfy {
∇× vτn(kr) = kvτn(kr)

∇× uτn(kr) = kuτn(kr)

The dual index τ is defined by 1̄ = 2 and 2̄ = 1.
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B COMPLETENESS AND CLOSEDNESS

Let H be a Hilbert space with scalar product (u, v). A system {ϕj}, j ∈ I, where I is some countable index set, is closed in H if
and only if for f ∈ H

(f ,ϕj) = 0, for all j ∈ I ⇒ f = 0

A system {ϕj} is complete in H if and only if for every f ∈ H and every ϵ > 0 there are constants cj(ϵ, f ) and an integer N(ϵ, f )
such that

fϵ =
N(ϵ,f )∑

j=1

cj(ϵ, f )ϕj ⇒ ∥f – fϵ∥ < ϵ

The two important concepts — closedness and completeness — are equivalent in a normed linear space [11, Theorem 11.1.7,
pp. 263] or [38, pp. 90–95].

C EQUALITY OF THE EXPANSION COEFFICIENTS

From Theorem 1 in Section 3.3, we know that the system {ν̂(r) × vLn(r), ν̂(r) × vRn(r)}n is a complete system in the space of
square integrable tangential functions L2

t (Γ). The electric and the magnetic fields have expansions in terms of this system:
ν̂(r) × E(r) =

∑
n′

(αLn′ ν̂(r) × vLn′ (r) + αRn′ ν̂(r) × vRn′ (r))

iη0ν̂(r) × H(r) =
∑

n′
(–βLn′Y–ν̂(r) × vLn′ (r) + βRn′Y+ν̂(r) × vRn′ (r))

r ∈ Γ

The convergence is in the L2
t (Γ)-norm sense. In this appendix, we give a proof of αLn = βLn and αRn = βRn.

Start by transforming the expansions with the Bohren transformation (13) to the fields QL(r) and QR(r).

ν̂(r) × QL(r) =
1

Y+ + Y–

∑
n′

{
Y+ (αLn′ ν̂(r) × vLn′ (r) + αRn′ ν̂(r) × vRn′ (r))

+ βLn′Y–ν̂(r) × vLn′ (r) – βRn′Y+ν̂(r) × vRn′ (r)
}

ν̂(r) × QR(r) =
1

Y+ + Y–

∑
n′

{
Y– (αLn′ ν̂(r) × vLn′ (r) + αRn′ ν̂(r) × vRn′ (r))

– βLn′Y–ν̂(r) × vLn′ (r) + βRn′Y+ν̂(r) × vRn′ (r)
}

(C1)

With a homogeneous biisotropic scatterer, we can apply the integral representation to the interior of the obstacle with the
appropriate wavenumber. Let QL,R(r) ∈ F(D) satisfy the Maxwell equations in D. The appropriate integral representation to be
used here is [19, Sec. 3]

± 1
k∓

∇×
{
∇×

¨

Γ

Ge(k∓, |r – r′|) ·
(
ν̂(r′) × QL,R(r′)

)
dS′

}

– ∇×
¨

Γ

Ge(k∓, |r – r′|) ·
(
ν̂(r′) × QL,R(r′)

)
dS′ =

{
QL,R(r), r inside Γ

0, r outside Γ

where the upper(lower) sign holds for the L(R) wave, and the Green dyadic for the electric field in free space is given in (8).
With the use of (19), we rewrite as

±(k+ + k–)
¨

Γ

G∓
bi (r – r′) ·

(
ν̂(r′) × QL,R(r′)

)
dS′ =

{
QL,R(r), r inside Γ

0, r outside Γ
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Now, let the position vector r be located outside the smallest circumscribed sphere of Γ, i.e., r > rmax. The proper expansion
of the Green dyadic in spherical vector waves is now used, see (20). We obtain

ik2
∓

∑
n

{
uL,Rn(r)

¨

Γ

vL,Rn(r′) ·
(
ν̂(r′) × QL,R(r′)

)
dS′

}
= 0

Orthogonality of the vector spherical harmonics over a spherical surface r > rmax implies that the coefficients must be
identically zero for all values of n. From the expression above, we conclude

¨

Γ

vL,Rn(r) ·
(
ν̂(r) × QL,R(r)

)
dS = 0, for all n

Insert the expansions of the fields (C1). For the QL(r) field, we obtain the following relation by the use of orthogonality in (17)
in Corollary 1 (for each level of approximation, the sum in n′ is finite):

0 =
¨

Γ

vLn(r) ·
∑

n′

{
Y+ (αLn′ ν̂(r) × vLn′ (r) + αRn′ ν̂(r) × vRn′(r)) + βLn′Y–ν̂(r) × vLn′ (r) – βRn′Y+ν̂(r) × vRn′(r)

}
dS

= Y+

¨

Γ

vLn(r) ·
∑

n′
(αRn′ – βRn′ ) (ν̂(r) × vRn′ (r)) dS

and similarly for the QR(r) field

0 =
¨

Γ

vRn(r) ·
∑

n′

{
Y– (αLn′ ν̂(r) × vLn′ (r) + αRn′ ν̂(r) × vRn′ (r)) – βLn′Y–ν̂(r) × vLn′ (r) + βRn′Y+ν̂(r) × vRn′ (r)

}
dS

= Y–

¨

Γ

vRn(r) ·
∑

n′
(αLn′ – βLn′ ) (ν̂(r) × vLn′ (r)) dS

where the equality sign is interpreted in the L2
t (Γ)-norm sense. Rewrite as

¨

Γ

(ν̂(r) × vLn(r)) ·

{∑
n′

(αRn′ – βRn′ ) vRn′ (r)

}
dS = 0, for all n

and ¨

Γ

(ν̂(r) × vRn(r)) ·

{∑
n′

(αLn′ – βLn′ ) vLn′ (r)

}
dS = 0, for all n

Completeness of the system {ν̂(r) × vLn(r), ν̂(r) × vRn(r)}n in Theorem 1 gives (due to Corollary 1, adding the missing
component in the two relations above does not affect the identity)∑

n

(
αL,Rn – βL,Rn

)
ν̂(r) × vL,Rn(r) = 0, r ∈ Γ

since only the tangential components of vL,Rn(r) are affected.
The final step in the proof is to employ the linear independence the regular Beltrami spherical vector waves {ν̂(r) ×

vLn(r), ν̂(r) × vRn(r)}n, see Lemma 4. This property implies that αLn = βLn and αRn = βRn.
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