
P
os

te
d

on
27

Se
p

20
23

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

69
58

21
17

.7
32

84
94

5/
v1

|T
hi

s
a

pr
ep

ri
nt

an
d

ha
s

no
t

be
en

pe
er

re
vi

ew
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y. Molecular ecology and microbiomes in the wild: methodological
advances, common pitfalls and future directions

Nick Fountain-Jones1, Tatiana Giraud2, Lucie Zinger3, Holly Bik4, Simon Creer5, and Elin
Videvall6

1University of Tasmania
2Université Paris-Sud
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Abstract

The study of microbiomes across organisms and environments has become a prominent focus in molecular ecology. This per-
spective article explores methodological advancements, common challenges and future directions in the field. Key research
areas include understanding the drivers of microbiome community assembly, linking microbiome composition to host genetics,
exploring microbial functions, transience, and spatial partitioning, and disentangling non-bacterial components of the micro-
biome. Methodological advancements, such as quantifying absolute abundances, sequencing complete genomes, and utilizing
novel statistical approaches, are also useful tools for understanding complex microbial diversity patterns. Our aims are to
encourage robust practices in microbiome studies and inspire researchers to explore the next frontier of this rapidly changing
field.

Introduction

The study of microbial communities across host species and environments (hereafter the ‘microbiome’) is a
major focus of research in the field of molecular ecology. As such, Molecular Ecology andMolecular Ecology
Resources regularly publish papers and special issues in the field. Molecular Ecology is at the forefront of
examining the importance of microbiomes across ecosystems, from increasing our understanding of host-
pathogen (e.g., Bergner et al., 2020; Wille et al., 2018) and host-symbiont interactions (e.g., Rubin et al.,
2019) to investigating the impact of climate and other environmental factors on microbial populations (e.g.,
Santos-Júnior et al., 2022; Wu et al., 2022). Complementing these efforts,Molecular Ecology Resource s
publishes significant methodological advances that continue to shape the field (e.g., Harrison et al., 2020;
Schnell et al., 2015; Stothart et al., 2021). Based on our collective experience as subject editors at Molecular
Ecology andMolecular Ecology Resources , here we discuss some of the best practices and advances for
analysing microbiomes, from study design to data analysis, and highlight anticipated future directions in
the field. With this article we hope to inspire and encourage researchers to obtain more robust insights
from microbiome data, which will enable the field to advance and tackle the new horizons enabled by recent
advances in technology.

Study design
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As in any study, the sampling or experimental design of microbiome studies should include sufficient indepen-
dent replicates, avoiding confounding effects as much as possible, with the samples representing appropriate
ecological scales given the processes investigated. Microbiome sampling design must also be well-planned and
appropriate to the specific hypothesis that is being tested. When testing hypotheses pertaining to the impact
of outlier external drivers (e.g., fire, pollution events, natural disasters), studies would ideally feature samples
that were collected both before and after the event, that are not confounded by habitat type, geography
or physicochemistry. Before embarking on microbiome studies in the wild, particularly those of which are
opportunistic (i.e., with samples originally collected for other purposes), researchers should carefully con-
sider if autocorrelation of factors beyond their control could impede the interpretation of results. In other
words, researchers must be realistic about what can be accomplished with limited sample sets, since rigorous
hypothesis testing requires equally rigorous sampling protocols and study design.

In addition, the sampling of microbial communities should take into account their high heterogeneity at
small spatial scales due to micro/mesoscale heterogeneity of their environment (Vos et al., 2013; Zhang et
al., 2014) or neutral assembly dynamics (Woodcock et al., 2007)). For example, composite samples (i.e.
pooled individual samples) can be combined prior to homogenisation and sub-sampling, in order to reduce
the local, micro-scale heterogeneity if it is irrelevant to the questions being studied (George et al., 2019).
Here, knowledge of how, and at what scale, the target community responds to external drivers will inform
adequate sampling design. For example, a composite 0.2mg sediment sample is likely to be representative
of the bacterial, archaeal, and microbial eukaryotic biospheres, but will not sample microscopic invertebrate
taxa effectively, due to issues of scale (Nascimento et al., 2018). Smaller samples will contain some microscopic
taxa and trace environmental DNA but they are inadequate at representing the underlying meio- and macro-
faunal communities. As the target organisms grow in size, the sample volume and spatial extent of the studied
area should be correspondingly expanded.

Sample preparation and bioinformatics

In addition to the above considerations, the study design needs to account for the sensitivity and error-prone
nature of many molecular-based approaches. Both shotgun metagenomics and DNA metabarcoding (i.e.,
amplicon sequencing of marker genes). include numerous opportunities for introducing false negatives and
positives during the data generation process, starting from sample collection to the laboratory, sequencing,
bioinformatics, and data analyses. Details of these issues are already largely covered in another Molecu-
lar Ecology editorial (Zinger et al., 2019), but to summarize briefly, some possible pitfalls include sample
contamination stemming from the field or lab environment (de Goffau et al., 2018; Salter et al., 2014), extrac-
tion/PCR amplification biases, and errors generated during PCR and sequencing. Technical considerations,
such as sample volume and choice of lab reagents, are, in many cases, the result of a compromise between
the research question, logistical feasibility, time and available funds (Taberlet et al., 2018). However, any
compromise of the protocol should still allow one to appropriately address the research question. In additi-
on, we want to re-emphasize the importance of adequately describing the whole data production workflow
in the methods section of manuscripts (e.g., primer sequences, polymerase, molecular labelling strategy).
Environmental or lab contamination is a particularly large problem for samples with low microbial biomass
(Eisenhofer et al., 2019), and the collection of such low biomass samples cannot be avoided in many study
designs (e.g. host-associated microbiomes of small organisms, or depauperate environmental habitats). The
sequencing of negative controls (and potentially also positive controls and technical replicates) alongside
experimental samples is important for quantifying errors and artefacts (e.g., Davis et al., 2018), and can im-
prove data curation procedures through tuned, experiment-specific criteria, including for samples with low
microbial biomass. While there is more than one way to implement such efforts, a thorough description of
the controls, a rationale for including them, and the ways they are integrated into data analysis, are essential
practices of good microbiome science (Hakimzadeh et al., 2023).

One overlooked problem in microbiome studies is cross-contamination between samples during library pre-
paration procedures (Kim et al., 2017; Zinger et al., 2019), which can result in an artificial reduction in
beta diversity (i.e., compositional differences between samples) and an increase in alpha diversity. Such
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cross-contamination can occur during the PCR plate preparation process through pipetting errors or aerosol
production. Random positioning of samples in the PCR plates provides a relatively simple approach to reduce
this problem (Minich et al., 2019; Taberlet et al., 2018). More often, - and insidiously - cross-contamination
can occur during the PCR cycles, a bias referred to as tag-switches (Carlsen et al., 2012; Esling et al., 2015),
tag-jumps (Schnell et al., 2015), or, more recently in the microbiome literature, cross-talks (Edgar, 2018;
Minich et al., 2019). During this laboratory step, amplicon molecules from different samples can recombine
within conserved primer sequences, resulting in the production of new molecules containing the genuine DNA
sequence, but the wrong sample/barcode label. As a consequence, the most abundant taxa will be detected
in many samples, including the negative controls (Esling et al., 2015; Minich et al., 2019; Taberlet et al.,
2018), preventing simple removal of all taxa occurring in controls as a fix for field and lab contamination.
Alleviating the problem of tag-switches can be achieved with modified library preparation protocols (e.g.,
Carøe & Bohmann, 2020), appropriate sample labelling strategies and a posteriori using the information
contained in both samples and negative controls (Bohmann et al., 2022; Hakimzadeh et al., 2023).

One limitation in microbiome studies, using either DNA metabarcoding or metagenomics, is the composi-
tional nature of the sequence data (i.e., described as proportions or probabilities, not absolute number of
molecules). Like other count-based sequencing approaches, this limitation arises because the concentration
of PCR products is standardised prior to sequencing and the number of molecules read is limited by the
sequencing platform (Gloor et al., 2017). As a result, we are unable to obtain data on absolute abundances
and biomass for the different microbial members of the community. However, exciting new developments are
emerging to overcome these limitations, relying on known reference values of DNA molecule abundances,
allowing simple conversion of relative abundance into absolute values. Two broad classes of methods based
on this approach have emerged: (i) quantification of target markers using q/ddPCR prior to metabarcoding
(Barlow et al., 2020; Callahan et al., 2019; Ji et al., 2019) and (ii) introduction of exogenous DNA molecules
spike-ins (i.e. DNA molecules of known sequence and quantity to calibrate measurements). Related to the
latter, a host-associated microbiome PCR approach (HamPCR, Lundberg et al., 2021) represents a promi-
sing method to assess the ratio of the microbial population size relative to the amount of host tissue (i.e.
microbial load).

Despite obtaining a better estimate of the absolute number of molecules in a sample, it is still challenging to
convert this number into the actual number of microbial cells. The calculation is often difficult because most
gold-standard barcoding genes used for bacteria, fungi, and protists have multiple copies in the genome, with
precise numbers varying across taxa and in unpredictable ways (Louca et al., 2018). Another problem is that
some of the retrieved molecules can be derived from extracellular DNA or DNA adsorbed on cell debris or
particles, i.e. correspond to non-living organisms (Torti et al., 2015).The proportion of extracellular DNA in
the environment is often not known but can be estimated with different approaches (reviewed by Nagler et
al., 2022). Further, because extracellular DNA is often degraded, approaches including long-read sequencing
targeting larger genomic regions will likely overcome this issue. Approaches that are able to quantify or
eliminate extracellular DNA can prove useful when having correct snapshots of the microbial community is
crucial (e.g., when studying short-term processes with repeated observations capturing microbiome variation
within host individuals) but are likely less relevant when studying processes operating at larger temporal
scales (e.g., microbiome response to climate change).

Lastly, incorporating site-occupancy modelling in microbiome studies presents an exciting avenue to quantify
measurement uncertainty and to account for imperfect detection (e.g., Ficetola et al., 2015; McClenaghan
et al., 2020; Willoughby et al., 2016). Site-occupancy models use data collected over multiple visits to sites
(or across multiple technical/biological replicates) to quantify how likely it is to detect a taxon when it is
present. For microbiome studies, including both biological and technical PCR replicates can enable rigorous
statistical predictions regarding the true or false positive detection of microbial species within the community.
Further, these predictions can be utilised to improve study design (Fukaya et al., 2022; McClenaghan et al.,
2020). How many replicates of each type is required is an open question, although biological replicates may
improve detection probabilities (Willoughby et al., 2016).
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Beyond estimating diversity: Exciting advances in statistics

Modelling advances in community ecology offer exciting opportunities to understand the complex patterns
in microbial diversity and complement robust sampling designs (e.g., Grantham et al., 2020; Trego et al.,
2022). In addition, novel methods for analyzing amplicon sequencing data are continuously emerging, pri-
marily focused on the human gut microbiome but adaptable to other microbial ecology fields with suitable
study designs and datasets (e.g., Trego et al., 2022). Broadly, these tools can be categorized into quantifying
community assembly processes, mapping occurrence networks, capturing spatial/temporal dynamics, inte-
grating multi-omics, identifying differentially abundant taxa, finding species-environment associations, and
predicting functional patterns (Trego et al., 2022). However, despite the frequent use of high-throughput se-
quencing, there has been a slow uptake of these new analytical techniques, and many studies do not go much
beyond basic comparisons of alpha and beta diversity estimates across samples. While important inferences
can be made by examining overall patterns of composition and diversity (e.g., Grosser et al., 2019; Motta et
al., 2018), they offer only a starting point toward having a more mechanistic understanding of the ecological
drivers of microbiome variation (Shade, 2017).

Common analytical approaches to quantify differences in beta diversity across microbiome samples, such as
the permutational multivariate analysis of variance (PERMANOVA), are algorithmic (i.e., not based on a
statistical model) and do not explicitly account for uncertainty in ecological data (Björk et al., 2018; Warton
et al., 2012, 2015). Importantly, making inferences about microbiome variation is often difficult using algo-
rithmic distance-based approaches (Björk et al., 2018; Warton et al., 2012). Model-based approaches such as
joint species distribution models (JSDMs) or stacked models (Powell-Romero et al., 2023) are multi-response
extensions of generalized linear mixed models (GLMMs) that can overcome some of the limitations of the
algorithmic methods to elucidate patterns of microbiome variation (e.g., Björk et al., 2018; Grantham et al.,
2020). Often using a Bayesian framework, JSDMs simultaneously analyze multiple species and environmental
variables, allowing for the assessment of community-level responses to environmental change and host effects
(Björk et al., 2018; Ovaskainen et al., 2017; Pollock et al., 2014). JSDMs can i) incorporate information
on species traits and phylogenetic relatedness, improving estimation accuracy and power when there is a
phylogenetic signal (Ovaskainen et al., 2017), and ii) analyse patterns of taxon covariance to infer micro-
bial co-occurrence networks (Björk et al., 2018; Fountain-Jones et al., 2020, 2023). Microbial co-occurrence
networks are valuable tools in microbiome science, as they offer insights (but see Current gaps and future
directions below) into the associations among microbial taxa, enhancing our understanding of microbial
community dynamics and functioning. JSDM-based co-occurrence networks have an added advantage of
interpretation as the major environmental and host effects shaping microbial presences are controlled for
(i.e., an inferred association between microbes is then not likely a mere product of a shared environmental
response). However, GLMM-based JSDM co-occurrence networks cannot untangle the relative roles of taxa
associations, and environmental or host effects (Clark et al., 2018; Fountain-Jones et al., 2020) and tend to
not scale well with large datasets (Pichler & Hartig, 2021). Approaches such as conditional random fields
(CRF, Clark et al., 2018), multi-response interpretable machine learning (mrIML, Fountain-Jones et al.,
2021), MIMIX (Microbiome MIXed Model, Grantham et al., 2020) and scalable JSDMs (sjSDM, Pichler &
Hartig, 2021) can overcome these limitations. Importantly, approaches such as MrIML and MiMiX allow for
predictions and treatment effects to be extracted for individual taxa, which can be useful if researchers have
a set of focal taxa. We note that these methods are not appropriate in all situations. For particularly large
datasets (thousands of samples), new distance-based methods such as D-MANOVA (Chen & Zhang, 2021) or
multivariate distance matrix regression (MDMR, Zapala & Schork, 2012) may be better options. Boshuizen
& te Beest (2023) have provided a complete guide of the pitfalls in analysing amplicon data. While the tools
mentioned here represent only a tiny fraction of the potential methods available, we encourage readers to go
beyond diversity metrics and differentially abundant taxa to gain more mechanistic insights into microbiome
data from wild species.

Incorporating some of the methodological advances in bioinformatics and statistics, coupled with robust
study design, and rigorous laboratory techniques, will improve current research efforts in the field (see Fig. 1
for a summary). Moreover, taking into consideration both the limitations and opportunities of these various
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approaches allow us to open up new exciting avenues in the field of microbiome ecology research.

Fig. 1: Overview of some of the considerations and techniques that can be employed across a general
microbiome workflow. JSDMs: Joint species distribution models. q/dd PCR quantitative/ double digest
PCR.

Current gaps and future directions in microbiome ecology research

Given the above considerations, how do we move the field forward? Here we outline some applicable research
directions that will generate significant impact, by helping to close some of the most pressing knowledge gaps
in the near future.

1. Obtaining a better understanding of the ecological, evolutionary and mechanistic drivers
of microbiome community assembly. A key research gap in microbiome ecology is the need for a com-
prehensive understanding of the drivers of community assembly. While significant progress has been made
regarding microbiomes associated with humans and model organisms (e.g., Drosophila or Arabidopsis), fur-
ther study on non-model animal and plant systems is required. Included within this goal is the investigation
of phylosymbiosis – the topological congruence between host phylogenetic distance and the compositional
similarity patterns of their associated microbiota (Brown et al., 2023); a pattern that can arise from both
ecological and evolutionary processes. Mechanistic studies elucidating the specific processes that govern
microbial transmission, colonization, competition and succession will help explain the presence or absence of
phylosymbiosis signals across host species or populations, and are more broadly essential for a deeper under-
standing of microbiome assembly (Coyte et al., 2021). 2. Linking microbiome composition and host
genetics. To gain insights into the ability of hosts to select specific microbes that may benefit their health
or reproduction, future research should aim to link host-associated microbiome composition and diversity
with genes and genomic regions of hosts. This hologenomic approach will enable the identification of host
genetic factors, such as immune genes, that are key players in shaping the host microbiome and ultimately
the resulting host phenotypes. By integrating both host genome and microbiome data, researchers can make
progress at uncovering host-microbiome interactions (Sutherland et al., 2022; West et al., 2023). Incorpora-
tion of long-read sequencing and hybrid assembly approaches which utilize both short and long reads now
offer exciting opportunities for advancing this research area. 3. Linking microbiomes to host traits and
phenotypes. Understanding the connection between host-associated microbiomes and host phenotypes is a
related and important research avenue. Investigating the influence of the microbiome on host development,
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behavior, metabolism, and life-history traits can therefore provide valuable insights (e.g., Bestion et al., 2017;
Wood et al., 2022). For example, some nematode species are known to demonstrate extreme phenotypic plas-
ticity in response to environmental cues (e.g. chemical or bacterial stimuli (Hauquier et al., 2017; Sommer
et al., 2017), and one open question is whether microbioal taxa play an integral role in initiating such host
developmental switch genes (which are themselves under epigenetic control in the case of Pristionchus spp.
fig nematodes). By integrating microbiota data with detailed trait measurements of diverse hosts, researchers
will be able to identify host phenotypes associated with certain microbiome compositions and start to unravel
the underlying mechanisms of how certain microbes can influence the phenotypes of hosts, and vice versa.
4. Exploring microbial functions within host-associated microbiomes. While microbial community
composition and diversity have been extensively studied in microbiome ecology, there is a significant need
to explore the functional attributes of whole communities, localized populations, and individual microor-
ganisms (genes and pangenomes) within a microbiome. Investigating microbial functions, such as metabolic
pathways and molecular interactions between members of the microbiome and with the host, can provide
important insights into the contributions of specific microbial taxa/consortia and their functional roles in
host and ecosystem health (Béchade et al., 2023; e.g., Hicks et al., 2018; Karmacharya et al., 2019). Fur-
thermore, isolation and culturing of microbial strains can provide complementary information not otherwise
accessible through community -omics alone (e.g., physiological profiling of microbial growth rates and chemi-
cal/antibiotic sensitivity), while also paving the way for future experimental work using such host-associated
microbial isolates. 5. Disentangle the role of the non-bacterial components of the microbiome.
Although bacteria have been the primary focus of microbiome ecology research due to their overwhelming
abundance, other components such as viruses, fungi, or protists play crucial roles in host-microbe interactions
and ecosystem functioning (Jervis et al., 2021; Raghwani et al., 2023). Future investigations that include
these non-bacterial components will allow us to more comprehensively understand the dynamics of the mi-
crobiome as a whole community, its interaction with hosts, and its role in the ecosystem. 6. Elucidate the
role of host-associated microbiomes in wildlife disease and conservation ecology. Understanding
the role of microbiomes in biological conservation, such as wildlife disease susceptibility and resistance, is
an emerging and timely field of research within microbiome ecology. Investigating the interactions between
host genetics, environmental factors and microbial communities can shed light on disease dynamics and the
mechanisms through which microbiomes modulate host immune responses in wildlife populations (e.g., Bozzi
et al., 2021; Gao et al., 2021; Jervis et al., 2021). Likewise, studies linking environmental microbiomes with
land use, habitat fragmentation, and climate change can provide important information on how to address
ecosystem challenges in a changing world. 7. Disentangling diet-microbiome associations. Diet is a
well-known driver of microbiome composition in hosts, but the mechanisms by which components of the
diet promote certain taxa and ultimately influences host health remain unclear. Therefore, the complexity of
diet-microbiome associations requires further investigation (Kartzinel et al., 2019). Future research should
aim to unravel the specific dietary components that shape microbial communities, how diet diversity is re-
lated to microbial diversity, and the mechanisms through which these interactions ultimately influence host
health. Longitudinal studies and controlled dietary interventions can provide valuable insights into the speci-
fics of diet-microbiome relationships (Couch et al., 2021). 8. Unravelling microbial interactions within
the microbiome.Elucidating the nature of microbial interactions is crucial to understand the dynamics of
microbial ecosystems. Patterns of co-occurrence are often used to evaluate microbial interactions (e.g., com-
petition), yet doing so is problematic (see Blanchet et al. (2020)). Interactions are highly scale-dependent,
which poses unique challenges for microbial communities with fine spatial structuring (Goberna & Verdú,
2022; Peng et al., 2023). Future experimental and observational studies at relevant scales, with large numbers
of samples across time and including robust measures of abundance, will be able to better quantify microbial
interactions (Blanchet et al., 2020). Statistical advances utilising generalized Lotka–Volterra models across
time-series (Stein et al., 2013), or employing conditional probabilities to more directly capture how taxa
relate to each other will also help infer interactions (Blanchet et al., 2020). 9. Determine microbial strain
diversity and evolution within hosts. Microbial communities are often highly heterogeneous and diffe-
rent strains of a single microbial species can exhibit significant genetic and functional variability (Anderson
& Bisanz, 2023; Goyal et al., 2022). Investigating microbial genetic diversity and the role of horizontal gene
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transfer are therefore crucial to better understand the adaptive processes and functional implications within
a microbiome (Barreto & Gordo, 2023). For example, a shift in Escherichia coli clones was documented
in the gut microbiome of ageing mice, and these were characterized by an increase in bacterial mutations
targeting stress-response genes (Barreto et al., 2020). Integrating high-resolution genomic techniques with
longitudinal and repeated sampling schemes can capture key patterns in temporal variation among microbial
communities and significantly improve our understanding of how microbes evolve within individual hosts or
specific environments.

Conclusions

We are currently at a major turning point on how we can derive valuable insights on the ecological pro-
cesses shaping non-model and environmental microbiomes in the wild. The adoption of robust laboratory
and bioinformatic techniques, together with sophisticated statistical approaches, enhance our ability to gain
deeper insights into the factors influencing microbiome variation and the intricate relationships among mi-
crobial taxa. However, all of these techniques rely on robust study designs and appropriate sampling scales
to address specific research questions. Ultimately, this perspective piece serves as a broad outline of some
of the considerations that ought to be considered in the field of microbiome ecology. Hopefully, with robust
practices, we can, in turn, start to untangle the complex processes acting on these incredibly important but
understudied communities.
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