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Abstract  25 

 26 

Zoo populations of threatened species are a valuable resource for the restoration of 27 

wild populations. However, their small effective population size poses a risk to long-28 

term viability, especially in species with high genetic load. Recent bioinformatic 29 

developments can identify harmful genetic variants in genome data. Here, we advance 30 

this approach, analysing the genetic load in the threatened pink pigeon (Nesoenas 31 

mayeri). We lift-over the mutation-impact scores that had been calculated for the 32 

chicken (Gallus gallus) to estimate the genetic load in six pink pigeons. Additionally, 33 

we perform in-silico crossings to predict the genetic load and realised load of potential 34 

offspring. We thus identify the optimal mate pairs that are theoretically expected to 35 

reproduce offspring with the least inbreeding depression. We use computer 36 

simulations to show how genomics-informed conservation can reduce the genetic load 37 

and maintain genome-wide diversity, arguing this will become instrumental in 38 

maintaining the long-term viability of zoo populations. 39 

 40 

Keywords 41 

 42 

Genomics-informed conservation, Inbreeding depression, Genetic load, Nesoenas 43 

mayeri, CADD, Captive populations. 44 

 45 
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 48 
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Introduction 49 

 50 

More than 28% of the 150,388 species on the Red List of the International Union for 51 

Conservation of Nature (IUCN) are threatened with extinction (IUCN, 2022). A 52 

relatively small subset of these species are kept as “insurance populations” in zoos 53 

(Gilbert et al., 2017). However, given their often-small effective population size, the 54 

long-term viability of captive-bred populations is not guaranteed, and many show signs 55 

of inbreeding depression (Boakes et al., 2007). Deleterious mutations create harmful 56 

genetic variants in the genome, collectively known as genetic load (Bertorelle et al., 57 

2022). High genetic load can compromise population viability and recovery potential of 58 

species, especially if they experienced a recent population size decline (Jackson et al., 59 

2022; Sachdeva et al., 2022). In declining populations, the impact of genetic load on 60 

fitness is not immediately apparent. It can take many generations before the harmful 61 

effects of mutations become expressed in homozygous loci (Pinto et al., 2023). 62 

Consequently, the long-term viability of many zoo populations could be at risk, despite 63 

individuals and populations thriving now. 64 

 65 

In the past 50 years, conservation geneticists have focused on maintaining genetic 66 

variation (DeWoody et al., 2021; García-Dorado & Caballero, 2021; Kardos et al., 67 

2021) as genome-wide diversity generally correlates positively with fitness and 68 

adaptive potential (Willi, van Buskirk and Hoffmann, 2006; Charlesworth, 2009; 69 

Harrisson et al., 2014, but see Wood, Yates and Fraser, 2016). Recently, the Group 70 

on Earth Observations Biodiversity Observation Network (GEO BON) developed 71 

Essential Biodiversity Variables (EBVs) to assess spatiotemporal variation in 72 
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biodiversity, and proposed four genetic EBVs: genetic diversity, genetic differentiation, 73 

inbreeding, and effective population size (Ne) (Hoban et al., 2022). Notably, risks 74 

posed by genetic load are generally not considered a conservation priority (van 75 

Oosterhout, 2020). This may be an oversight. However, recent advances in genomics 76 

and bioinformatics could change that.  77 

 78 

Leveraging the extensive genomic research on human and model animals enables us 79 

to estimate the potential fitness impact of mutations in species of conservation concern 80 

(Bertorelle et al., 2022). The fitness impact of deleterious alleles can be estimated by 81 

the Combined Annotation-Dependent Depletion (CADD) framework (Rentzsch et al., 82 

2019). Initially developed in humans (Kircher et al., 2014), CADD has been 83 

successfully applied to other model organisms, including mouse (Groß et al., 2018), 84 

pig (Groß, Derks, et al., 2020), and chicken (Groß, Bortoluzzi, et al., 2020). CADD 85 

ranks genetic variants such as single nucleotide polymorphisms (SNPs) and insertions 86 

and deletions (indels) throughout the genome. This analysis integrates surrounding 87 

sequence context, gene model annotation, evolutionary constraints (e.g., GERP 88 

scores), epigenetic measurements, and functional predictions into CADD scores. 89 

CADD was employed to investigate conserved elements into the chicken Combined 90 

Annotation-Dependent Depletion (chCADD) (Groß, Bortoluzzi, et al., 2020), and has 91 

helped identify regions within the chicken genome associated with known genetic 92 

disorders reported in the Online Mendelian Inheritance in Animals (OMIA). Therefore, 93 

by identifying deleterious alleles, CADD can estimate the genetic load within an 94 

individual’s genome.  95 

 96 



 5 

Presently, we cannot translate the impact scores of mutations such as CADD into 97 

fitness effects. Nevertheless, we can calculate CADD scores for all deleterious 98 

mutations present in an individual’s genome and compare this proxy of the genetic 99 

load between individuals. Similarly, we can estimate the proportion of genetic load 100 

expressed as realised load, and the proportion whose fitness effects remains masked 101 

as an inbreeding load or masked load (Bertorelle et al., 2022). The realised load 102 

comprises the genetic load that reduces fitness when the harmful effect of the 103 

mutations come to light. Inbreeding increases the realised load because more 104 

deleterious mutations become fully expressed as homozygous. By minimising realised 105 

load, conservation managers can reduce inbreeding depression. This could be 106 

particularly useful in captive-bred populations where breeding pairs can be 107 

manipulated to improve the fitness of offspring.  108 

 109 

Considerable amount of genetic variation codes for polygenic or quantitative traits. 110 

Mutations that affect the value of a quantitative trait (e.g., body size) can be harmful of 111 

beneficial depending on whether it brings the trait value closer to the optimum. In 112 

contrast, unconditionally deleterious mutations are harmful irrespective of genetic 113 

background or environmental conditions. Mutations in ultraconserved elements 114 

(UCEs) are likely to be unconditionally deleterious (Silla et al., 2014), thereby 115 

contributing substantially to the genetic load. UCEs are areas of the genome 116 

phylogenetically conserved across diverged taxa (Bejerano et al., 2004). Their high 117 

level of sequence conservation is thought to be maintained by strong purifying 118 

selection (Lee & Venkatesh, 2013). Some polymorphisms in UCEs are associated with 119 

genetic diseases or phenotypic traits (Habic et al., 2019), with UCEs being linked to 120 
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enhancers in early development in both mammals (Visel et al., 2008) and flies 121 

(Warnefors et al., 2016). Given their high level of phylogenetic conservation, 122 

comparative genomic approaches can be used to obtain a proxy of the genetic load, 123 

building on the knowledge of model organisms and humans. Studying UCEs in 124 

reference genomes allows for between-species comparisons of the proxies of genetic 125 

load, realised load and masked load. Additionally, analysis of genetic load at UCEs 126 

shows promise for captive breeding and conservation management of zoo populations. 127 

  128 

Here, we conduct a proof-of-concept study to demonstrate the utility of genomics-129 

informed breeding in the conservation management of captive populations. We 130 

quantify the genetic load of six pink pigeon individuals using chCADD scores assigned 131 

to single nucleotide variants in the UCEs derived from the chicken genome. We show 132 

that genetic load components can be estimated using CADD scores calculated on a 133 

phylogenetic closely related species and cross-mapped to the annotation of the pink 134 

pigeon, our focal species. We also calculate realised load and genetic load of potential 135 

future offspring of all possible crosses. Finally, we employ computer simulations to 136 

demonstrate the potential of genomics-informed conservation, showing how it can help 137 

to reduce inbreeding depression and maximise the long-term viability of zoo 138 

populations.  139 

 140 

Materials and Methods 141 

 142 

Study species 143 
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Six pink pigeon (Nesoenas mayeri) individuals from the captive-bred population of 144 

Jersey Zoo (n = 4) and Bristol Zoo (n = 2) were genome sequenced. Birds shared 145 

common ancestry within the last 3-6 generations (Supplementary Figure S1) and have 146 

a high level of relatedness (F=0.064 to 0.346) (Supplementary Table 2), which is typical 147 

of many zoo populations (Boakes et al., 2007). See Supplementary Information for 148 

further details. 149 

 150 

Genome sequencing and bioinformatics 151 

DNA was extracted from blood, using Qiagen MagAttract, linked read library 152 

preparation was 10x Genomics Chromium technology, which were then sequenced on 153 

an Illumina HiSeq X with 2x150bp reads (Ryan, 2021). The sequencing read data was 154 

mapped to a previously generated pink pigeon reference genome (Albeshr, 2016). The 155 

variant calls were used to create a per-SNP pink pigeon CADD (ppCADD) score 156 

calculated for the UCEs of each individual’s genome (Figure 1). A Snakemake pipeline 157 

(Mölder et al., 2021) allowing for reproduction of this approach can be found on GitHub 158 

(https://github.com/saspeak/LoadLift).  159 

https://github.com/saspeak/LoadLift
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 160 

 161 

Figure 1 - The pipeline for the creation of per Single Nucleotide Polymorphism 162 

(SNP) pink pigeon Combined Annotation Dependent Depletion (ppCADD) scores 163 

from raw reads of individual pink pigeons. The Snakemake (Mölder et al., 2021) 164 

pipeline uses as input the sequencing reads of the subject individuals, the subject 165 

species reference genome, and the CADD scores and reference genome of a model 166 

species (i.e., chicken, chCADD scores  (Groß, Bortoluzzi, et al., 2020) and the Galgal6 167 

reference genome (Warren et al., 2017)). The pipeline is separated into six sections, 168 

corresponding to sections of the pipeline (https://github.com/saspeak/LoadLift). (1) 169 

(Yellow) Extraction of UCEs from the reference genome using Phyluce. (2) (Dark Blue) 170 

Mapping the sequencing reads for individuals to the reference genome indicating two 171 

parallel approaches for 10X chromium read data (used in this paper) and for Illumina 172 

read data. (3) (Light Blue) Variant calling for SNPs within the UCEs. (4) (Light grey) 173 

Creation of a chain file for the liftover of annotation from the chicken genome. (5) (Dark 174 

Grey) chCADD scores conversion to pink pigeon (subject species) annotation. (6) 175 

FastQ

Long ranger
Subject 

reference 
genome 

phyluce_probe_run_multiple
_lastzs_sqlite

Tetrapod 
UCE 

probes

Samtools sort 

1. Phyluce UCE extraction

Subject 
UCE Loci

Picard tools 

BWA mem Trimming Samtools sort Picard tools 

2.Read mapping (BWA) 

Samtools index

Samtools index

3. Variant calling 

Bcftools
mpileup

Bcftools call  

2.Read mapping (long ranger) 

5. Score conversion 6. Score intersect

Chicken 
Reference 
genome 

Orientation 
conversion

VCFtools
filter INDEL 

VCF2Bed
Bedtools
Intersect

Score summary

BAM of 
mapped 

reads

chain 
liftover file

Two bit 
conversion

fasplit

Two bit 
conversion

fasplit

axtChain

chainMergeSort

lastz

chainSort

chainNet

chainNet
Subset

phyluce_probe_slice_sequence_
from_genomes

Subject 
CADD scores

chCADD
scores

Per site 
Subject 

CADD scores

Annotation 
liftover

CADD 
annotation 

filter

4.Chain file creation

https://github.com/saspeak/LoadLift


 9 

(Green) Intersection of BED files and UCE sites to output per site ppCADD (subject 176 

species) scores (Red).  177 

 178 

Previously published tetrapod ultraconserved element (UCE) probes based on the 179 

chicken reference genome (Warren et al., 2017) and the Tibetan ground-jay 180 

(Pseudopodoces humilis) (Faircloth et al., 2012) were used to harvest UCEs from the 181 

pink pigeon reference genome, using the Phyluce workflow (Faircloth, 2016). A chain 182 

file was created for annotation lift-over and the CADD scores of the chicken genome 183 

(Groß, Bortoluzzi, et al., 2020) were cross mapped to the reference pigeon genome 184 

using CrossMap.py (Zhao et al., 2014). CADD scores were filtered to remove non-185 

scoring and fixed sites. Genotypes of each locus were assessed to calculate the 186 

genetic load components. Individual’s genetic load, realized load and masked load 187 

were calculated using the following formulas (Bertorelle et al., 2022): 188 

 189 

𝐺𝑒𝑛𝑒𝑡𝑖𝑐 𝑙𝑜𝑎𝑑 (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑘) = ∑ 𝑠𝑖

𝐿(ℎ𝑜𝑚)

𝑖=1

+ ∑ 0.5

𝐿(ℎ𝑒𝑡)

𝑗=1

𝑠𝑗 190 

[1] 191 

𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑 𝑙𝑜𝑎𝑑 (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑘) = ∑ 𝑠𝑖

𝐿(ℎ𝑜𝑚)

𝑖=1

+ ∑ ℎ𝑗𝑠𝑗

𝐿(ℎ𝑒𝑡)

𝑗=1

 192 

[2] 193 

𝑀𝑎𝑠𝑘𝑒𝑑 𝑙𝑜𝑎𝑑 (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑘) = ∑ (0.5 −

𝐿(ℎ𝑒𝑡)

𝑗=1

ℎ𝑗)𝑠𝑗 194 

[3] 195 
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Here, si (and sj) is the ppCADD score at locus i (and j), and they are summed across 196 

all homozygous (or heterozygous) loci at the UCEs of individual k. In the computer 197 

simulations (see below), s and h stand for the selection and dominance coefficients, 198 

and the fitness impact of the load can be expressed in lethal equivalents (Bertorelle et 199 

al., 2022). For simplicity, the dominance coefficient (hj) is assumed to be hj=0.1. Noted 200 

that part of the realised load comprises heterozygous mutations that are assumed to 201 

be partially dominant. Inbreeding coefficients (FRoH) of the six pink pigeons were 202 

calculated using runs of homozygosity (RoH) with bcftools roh (Narasimhan et al., 203 

2016). For further details, see Supplementary Information.  204 

 205 

Computer simulations of breeding regimes 206 

We conducted computer simulations in SLiM3 (Haller & Messer, 2019) to examine the 207 

impact of four breeding regimes on genetic and realised load, neutral genetic diversity, 208 

and fitness. In the “Minimise load” regime we examined whether mate pair selection 209 

can reduce the realised load of the offspring and alleviate inbreeding depression. 210 

However, purifying selection against the genetic load can reduce genetic diversity 211 

(Cvijović et al., 2018) and result in the fixation of mildly deleterious mutations (Chen et 212 

al., 2020). To address this concern, we explored the impact reducing relatedness (or 213 

kinship) of parents, and this was simulated in the “Minimise relatedness” regime. 214 

Additionally, we simulated a regime that aimed to minimise realised load of the 215 

offspring whilst maintaining genetic diversity, “Minimise load and relatedness” regime. 216 

Here, exactly one male and one female from each family were selected to mate with 217 

an optimal partner from another family, to minimise realised load of their offspring. 218 

Finally, we simulated random mating “Random mating” regime. In each regime we 219 
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randomly sampled 20 monogamous pairs of males and females and allowed each pair 220 

to produce a brood of 64 offspring per generation. We ran 100 replicates for each 221 

regime for 50 generations. Further detail about the breeding regimes and SliM model 222 

are given in Supplementary Information.  223 

 224 

Results 225 

 226 

Distribution of UCEs and CADD scores 227 

The 4976 UCEs along the 34 chromosomes of the chicken reference genome are not 228 

evenly distributed (Fig.2A), 15 chromosomes were significantly depleted for UCEs, 229 

whilst 9 chromosomes were significantly enriched for UCEs (Supplementary Table 1). 230 

Figure 2B shows the distribution of all chCADD scores along a single UCE (UCE-2729) 231 

and its 2000 bp flanking region on chromosome 1. The chCADD scores in the flanking 232 

region are lower than those within the UCE, except for a potential coding region (e.g., 233 

position 116230300 – 116230450 in Figure. 2B). Protein coding genes are typified by 234 

a combination of high chCADD scores (representing the first and second codon 235 

position substitutions), and low chCADD scores (third codon position substitutions).  236 

 237 
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Figure 2– Distribution of ultraconserved elements (UCEs) and their mutation 238 

impact scores (CADD scores). (A) Karyotype plot of the chicken genome with the 239 

distribution of UCEs (black bars) and density of UCEs (green peaks). (B) Karyotype 240 

plot of chicken chromosome 1 showing the distribution of UCE-dense regions. Green 241 

peaks above the 1% horizontal line are significantly enriched for UCEs (p<0.01). At the 242 

bottom of Panel B, zoomed in at a single UCE and its 2000bp flanking regions (i.e., 243 

UCE2729), the CADD scores of every possible substitution at each site. The UCE is 244 

shown in blue. The CADD scores in flanking regions are shown in red. Distribution of 245 

all CADD scores for (C) the entire chromosome 1 of the chicken genome, and (D) 620 246 

UCEs in chromosome 1 and their 2000bp flanking regions. (E) The CADD score 247 

distribution of the flanking regions and the UCEs within the six pink pigeon genomes. 248 

(F) SNP frequency at flanking regions and the UCEs. (See main text for test results). 249 

 250 
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Figure 2C shows the distribution of chCADD scores along chromosome 1 of the 251 

chicken genome. Most chCADD scores fall below 10, which per definition represent 252 

90% of all scores. The right-hand tail represents few high chCADD scores of highly 253 

deleterious mutations. In contrast, the UCEs and their flanking regions in chromosome 254 

1 have a bimodal distribution of chCADD scores, with a second peak of chCADD 255 

scores ranging between 17 and 18 (Figure 2D). These chCADD scores represent the 256 

worst, 2% of all possible substitutions in the genome. The median chCADD score of 257 

UCEs is significantly higher than that of the flanking regions (Mann-Whitney test W = 258 

4541885925, p-value < 0.0001). Whilst the frequency of derived mutations is 259 

significantly lower at UCEs compared to that at the flanking regions (Mann-Whitney 260 

test W = 13010970, p-value < 0.0001), consistent with the effect of purifying selection.  261 

 262 

Genetic load components and kinship load  263 

We analysed the genetic load in the hypothetical offspring of our six pink pigeons. This 264 

kinship load is calculated by theoretically crossing all possible combinations of 265 

individuals assuming mendelian segregation ratios. As kinship between two individuals 266 

increases, homozygosity of their offspring increases (Figure 3). Similarly, increased 267 

kinship between parents elevates offspring’s’ realised load and reduces masked load 268 

(Figure 3). Optimal mate pairing can significantly reduce the realised load of the 269 

offspring (R2=0.258, F1,13 = 8.32, p=0.00918).  270 

 271 
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 272 

Figure 3  – The composition of the genetic load in six pink pigeon individuals 273 

and their hypothetical offspring. (A) The total realised load (Blue) and masked load 274 

(Orange) in each of the six pink pigeon individuals within their UCEs. (B and C) The 275 

realised load at heterozygous loci (Red) and homozygous loci (Teal) of the offspring is 276 

shown for the total region (B) and UCEs only (C). (D and E) The genetic load (Grey), 277 

realised load (Blue) and masked load (Orange) of the hypothetical offspring of all 278 

possible crosses between the six pink pigeons for the total region (D) and the UCE 279 

only (E). 280 

 281 

Next, we performed an analysis to identify optimal crosses to minimise genetic load 282 

(Figure 4). Figure 4A shows average genetic load of potential offspring. In essence, 283 

these are the deleterious mutations that offspring are predicted to inherit from both 284 

A. B. 

E. D. 

C. 
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parents, with blue tiles representing offspring with low genetic load, and red tiles 285 

offspring with high genetic load. The genetic load is lowest in the offspring from a cross 286 

between individuals 2 and 3.   287 

  288 

 289 

Figure 4 – The genetic load at UCEs of six pink pigeons calculated using cross-290 

mapped chCADD scores. Correlogram showing the total load of potential offspring 291 

between six individuals of the captive pink pigeon population. The colour of the tile is 292 

relative to the load of the offspring when compared to other potential offspring, and it 293 

is ranked on a gradient from high load (red) to low load (blue).  (A) genetic load of the 294 

offspring between two potential parents, (B) realised load and (C) masked load. (D) 295 

The genetic load (grey), realised load (blue) and masked load (orange) of the 296 
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hypothetical offspring of all possible crosses (including “selfing”). (E) The distribution 297 

of total realised load in the offspring generation calculated by crossing all individuals 298 

at random. In this procedure, each individual was crossed twice without self-mating or 299 

repeating the same crosses, and this was repeated 10,000 times. The optimal crossing 300 

combination is shown in blue.    301 

 302 

To predict degree of inbreeding depression, the realised load of the offspring of 303 

different crosses was calculated. Blue tiles in the correlogram in Figure 4B show the 304 

realised load of the offspring of the optimal crosses. The realised load of these offspring 305 

is 7.4% less than that of offspring of random crosses (Figure 4E), and these offspring 306 

are predicted to show less inbreeding depression. Note that the offspring from the 2 x 307 

3 cross with the lowest genetic load possesses a relatively high realised load. 308 

Individuals 2 and 3 were closely related (Aunt and Niece), but they each possess a low 309 

genetic load. However, because they are related, their offspring expresses a high 310 

realised load, even though their genetic load is low.  311 

 312 

Computer simulations of the genetic load 313 

Finally, we performed computer simulations examining the impact of genomics-314 

informed captive breeding on the neutral nucleotide diversity, genetic load, realised 315 

load, and fitness of individuals. The "Random mating" and “Minimise relatedness” 316 

regimes showed a steady increase in genetic (Fig. 5A) and realised (Fig. 5B) load over 317 

generations. Both regimes also suffered from a large decline in fitness due to a 318 

mutation meltdown (Fig. 5C). In contrast, both the genetic load and realised load were 319 

reduced in “Minimise load” and “Minimise load and relatedness” regimes (Fig. 5A,B). 320 
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Therefore, genomics-informed captive breeding can effectively purge deleterious 321 

mutations and reduce their homozygosity, independently of consideration of 322 

relatedness. Consequently, mean fitness remained high in these regimes, increasing 323 

during the first ten generations (Fig. 5C). However, populations lost neutral genetic 324 

diversity at a relatively fast rate in the “Minimise load” regime (Fig. 5D). Such loss in 325 

diversity was not observed in the “Minimise load and relatedness” regime, and after 326 

10 generations, this regime maintained more diversity than the “Random mating” 327 

regime (Fig. 5D). 328 
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Figure 5- Impact of the four breeding regimes, simulated over 50 generations. 329 

Showing the impact on (A) the genetic load, (B) the realised load of offspring, (C) the 330 

A.

C. D.

B.
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fitness of adults, and (D) neutral nucleotide diversity (). Each coloured line 331 

corresponds to a specific mating regime: "Random mating" (grey), "Minimise 332 

relatedness" (blue), "Minimise load" (orange), and "Minimise load and relatedness" 333 

(green). The genetic load and realised load are expressed in lethal equivalents 334 

calculated using equations [1] and [2] in the Material & Methods (see Bertorelle et al., 335 

2022). The values presented in the figure represent the mean results obtained from 336 

100 replicas. 337 

 338 

Discussion  339 

 340 

We conducted a proof-of-concept study to evaluate the utility of genomics-informed 341 

conservation for the management of captive populations in zoos. Our aim was to 342 

examine whether we could use genomic data to reduce the level of inbreeding 343 

depression and genetic load, thereby increasing both the short- and long-term 344 

population viability. We developed a novel bioinformatics pipeline to estimate the 345 

genetic load using CADD sores calculated for a model species (the chicken). We 346 

piloted our bioinformatics pipeline on the genomes of six pink pigeons from the captive-347 

bred population from two UK zoos (Jersey Zoo and Bristol Zoo). We quantified realised 348 

load in hypothetical offspring by crossing these six individuals, showing that inbreeding 349 

depression may be reduced in the captive pink pigeon population. We furthermore 350 

found that UCEs possess the most severely deleterious mutations with highest CADD 351 

scores, and that mutations in UCEs occur at a lower SNP density and frequency 352 

compared to polymorphisms in the flanking regions. These observations are consistent 353 

with purifying selection. 354 
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 355 

Substantial genetic drift and inbreeding in zoo populations reduces long-term viability. 356 

Since the early 1970s, conservation biologists have used pedigrees and neutral 357 

genetic markers to assess and minimise inbreeding (Rabier et al., 2020). However, 358 

genetic load cannot be effectively measured or managed using this approach because 359 

neither markers nor pedigrees contain information about the segregation of deleterious 360 

mutations. Furthermore, pedigree data does not capture the possible relatedness 361 

between founder individuals. This can be especially problematic in populations that 362 

experienced a bottleneck before being sampled.  363 

 364 

We showed our bioinformatics pipeline can identify optimal crosses that produce 365 

offspring with on average 7.4% lower realised load than random crosses. These 366 

offspring are expected to show less inbreeding depression. This reduction in realised 367 

load was modest because after nearly 10 generations in captivity, all pink pigeon 368 

individuals are relatively related. Crosses between closely related individuals have 369 

been minimised in the captive management of this species by exchanging pigeons 370 

between different zoos. However, this means that all individuals are similarly related. 371 

More substantial gains can be made in reducing the realised load using genomics-372 

informed breeding in zoo populations with individuals that are less closely related. 373 

Genomics-informed breeding will be especially efficient in reducing inbreeding 374 

depression in captive populations founded by many individuals, fewer generations in 375 

captivity, non-bottlenecked species, and species with a large ancestral population size 376 

(Bertorelle et al., 2022). These are all scenarios of populations that are likely to 377 



 21 

possess a high genetic load of segregating deleterious mutations not yet purged 378 

(Dussex et al., 2023),with considerable differences between individuals. 379 

 380 

We do not know how CADD scores translate in fitness effects, and hence, we cannot 381 

calculate the exact benefits of genomics-informed breeding for survival rates. If a 382 

population carries a realised load of one lethal equivalent (LE), a reduction of 7.4% in 383 

realised load results in an increase of survival rate from 36.8% to 39.6%. This is a 7.7% 384 

relative increase. With a higher realise load of 2 LEs, the survival rate improves from 385 

13.5% to 15.7%, which amounts to a relative increase of nearly 16%. More generally, 386 

reducing the realised load is likely to reduce inbreeding depression and increase 387 

fitness (Bertorelle et al., 2022). 388 

 389 

Our simulations indicate that the genetic load and realised load can be reduced by the 390 

“Minimised load regime” and the “Minimised load and relatedness regime”. This 391 

resulted in a substantial increase in fitness compared to the “Random mating regime”, 392 

and the “Minimised relatedness regime”. Although the “Minimised load regime” 393 

resulted in a substantial loss in nucleotide diversity, this was avoided by reducing 394 

relatedness in the “Minimised load and relatedness regime”. Theoretically, this regime 395 

is the optimal approach to maximise the long-term viability of captive populations, both 396 

in terms of reduced genetic load and increased adaptive potential. 397 

 398 

To conclude, CADD scores for model species can be successfully lifted over to provide 399 

an initial assessment of the genetic load from whole genome sequence data of non-400 

model species. Optimal mate pairs can be identified to reduce the realised load and 401 
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inbreeding depression in the offspring generation. Computer simulations show that 402 

genomics-informed breeding can reduce the genetic load and realised load, and this 403 

can be accomplished without significantly reducing nucleotide diversity in the 404 

population. Genomics-informed management can increase the long-term viability of 405 

captive populations and help to select the optimal individuals for reintroduction and 406 

genetic rescue programs. 407 
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