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Abstract

This manuscript is devoted to a derivative-free parametric iterative step to obtain roots simultaneously for both nonlinear

systems and equations. We prove that when it is added to an arbitrary scheme, it doubles the convergence order of the original

procedure and defines a new algorithm that obtains several solutions simultaneously. Different numerical experiments are

carried out to check the behaviour of the iterative methods by changing the value of the parameter and the initial guesses. Also,

it is perform a numerical example where the dynamical planes are carried out to see and compare the basins of attraction.
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This manuscript is devoted to a derivative-free parametric
iterative step to obtain roots simultaneously for both non-
linear systems and equations. We prove that when it is
added to an arbitrary scheme, it doubles the convergence
order of the original procedure and defines a new algorithm
that obtains several solutions simultaneously. Different nu-
merical experiments are carried out to check the behaviour
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rameter and the initial guesses. Also, it is perform a numer-
ical example where the dynamical planes are carried out to
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Introduction and design of the iterative step

Iterative methods have become very important in recent years because it is not always possible to solve a nonlinear
equation or system in an exact way. These iterative processes make it possible to obtain a approximations that define
a convergent sequence (under certain conditions) to the solution of the problem.

In general, iterative methods only converge to one solution each time, which is why iterative methods that obtain
several solutions simultaneously have also become increasingly popular recently.
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One of them is the Abert-Ehrlich method, see [8], with the following expression:

x
(k+1)
i

= x
(k )
i

−
f (x (k )

i
)

f ′ (x (k )
i

) − f (x (k )
i

) ∑n
j=1,j,i

1

x
(k )
i

− x
(k )
j

, k = 0, 1, . . . ,

which is a well known method for solving polynomial equations simultaneously.
In [8], it is only studied the case in which the functions to be solved are polynomials, with simple roots, and not

any kind of arbitrary equation. Moreover, in most of the literature it is assumed that the equations to be solved are
polynomials, see for instance [12, 17].

For this reason, we highlight the relevance of the study we carried out in [6], where we study how to add the
Ehrlich step to any other iterative scheme, thus obtaining a new method that obtains solutions simultaneously. In this
paper, the order of convergence is analysed for arbitrary equations, not only polynomials.

In [5], the particular case inwhich the functions are polynomials is analysed, aswell as a case inwhich the solutions
of arbitrary nonlinear equations have different multiplicities.

As can be seen in the expression of the iterative method, the iterates are evaluated in f ′ (x ) , so the problem to
solve must be derivable in order to be able to apply this method. For that reason, we propose to replace the derivative
by a divided difference operator and thus obtain the following iterative method that we propose for n simultaneous
roots of an scalar equation f (x ) = 0, that we denote by DF Sφ :
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, for i , j = 1, . . . , n, (1)

where φ is the fixed point function that describes any iterative method for equations.
In addition, in [4], the iterative step studied in [6] is modified in order to obtain a compatible iterative process for

systems, a subject that, to our knowledge, has not been done for systems of arbitrary nonlinear equations.
This iterative method uses the Jacobian matrix evaluated in the iterations, so, as in the case of equations, the

function describing the system must be derivable. For this reason, an idea arises to extend the step (1) to systems in
order to obtain a derivative-free scheme. We will first discuss the notation used and then show the iterative step.

Suppose that the system F (x ) = 0, where F : Ãn → Ãn , has n solutions αi = (
αi1 , αi2 , . . . , αim

) , for i = 1, . . . , n .
Our aim now is to design an iterative step, that is able to estimate all the solutions in a simultaneous way. So, we

consider a set of n seeds denoted by x
(0)
i

=
(
x
(0)
i1
, x

(0)
i2
, . . . , x

(0)
im

) , for i = 1, . . . , n .
We define Si (x (k ) ) := (

Si ,1 (x (k ) ), Si ,2 (x (k ) ), . . . , Si ,m (x (k ) )
) , where

Si ,r (x (k ) ) =
∑
j,i

1

x
(k )
ir

− x
(k )
jr

.

We then extend the step (1) to systems and obtain the following iterative step:
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) . (2)
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It is clear that the size of operator [x (k )
i
, x

(k )
i

+βi F (x (k )
i

) ; F ] is d ×m which coincides with the size of the product
of column vector of size d × 1 F

(
x
(k )
i

) and the row vector of size 1 × m Si (x (k ) ) . Let us denote this scheme by JF S .
The rest of this manuscript is structured as follows. In Section 2, we design the iterative steps analyzing the order

of convergence of the resulting methods for nonlinear equations and systems. In Section 3, we carry out several
numerical experiments to see the behaviour of the newmethods and we finish the work in Section 4 with conclusions
derived from the study.

1 | CONVERGENCE ANALYSIS

Now we demonstrate that scheme DF Sφ has order 2p whenever φ is a scheme with order p , for any parameters βi ,
i = 1, . . . , n , with βi ∈ Ò\{0}.
Theorem 1 Let us consider a sufficiently differentiable function f : D ⊆ Ã −→ Ã defined in a neighbourhood D of αi , for
i = 1, . . . , n , satisfying f (αi ) = 0, for i = 1, . . . , n . Let us also assume that f ′ (αi ) , 0 for i = 1, . . . , n . If φ is an iterative
scheme with convergence order p , then, given an estimate x (0) ∈ Ãn close enough to α = (α1, α2, . . . , αn ) , the sequence of
iterates {x (k ) } generated by the method DF Sφ (1) converges to α with order 2p .

Proof We denote by e i ,k = x
(k )
i

− αi . Let us notice that φ denotes an iterative procedure with convergence order p ,
so ey ,i ,k ∼ e

p
i ,k
.

Applying Taylor’s expansion to f (y (k )
i

) around αi , we obtain
f (y (k )

i
) = f ′ (αi )

(
ey ,i ,k + C2,i e

2
y ,i ,k +O (e3y ,i ,k )

)
,
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f ′′ (αi )
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.
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, y
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i
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From the above equalities, the following identity is obtained
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Then,

x
(k+1)
i

− αi = y
(k )
i

− αi −
f (y k

i
)

f [y (k )
i
, y

(k )
i

+ βi f (y (k )
i

) ] − f (y (k )
i

) ∑n
j=1,j,i

1

y
(k )
i

− y
(k )
j

= ey ,i ,k −
ey ,i ,k + C2,i e

2
y ,i ,k

+O (e3
y ,i ,k

)

1 + ©«C2,i (2 + βi f ′ (αi ) ) −
∑n

j=1

1

y
(k )
i

− y
(k )
j

ª®¬ ey ,i ,k +O (e2
y ,i ,k

)

=

©«C2,i (2 + βi f
′ (αi ) ) −

∑n
j=1

1

y
(k )
i

− y
(k )
j

− C2,i
ª®¬ e2y ,i ,k +O (e3

y ,i ,k
)

1 + ©«C2,i (2 + βi f ′ (αi ) ) −
∑n

j=1

1

y
(k )
i

− y
(k )
j

ª®¬ ey ,i ,k +O (e2
y ,i ,k

)

=

©«C2,i (1 + βi f
′ (αi ) ) −

∑n
j=1

1

y
(k )
i

− y
(k )
j

ª®¬ e2y ,i ,k +O (e3
y ,i ,k

)

1 + ©«C2,i (2 + βi f ′ (αi ) ) −
∑n

j=1

1

y
(k )
i

− y
(k )
j

ª®¬ ey ,i ,k +O (e2
y ,i ,k

)

.

Thus, by the previous relation and given that φ has order p we obtain that
e i ,k+1 ∼ e2y ,i ,k ∼ (ep

i ,k
)2 ∼ e

2p
i ,k
.

Thus, it is proven that the method DF Sφ has order of convergence 2p .
In the following, we prove that JF S has order of convergence 2 for any value of parameters βi , βi ∈ Ò\{0}, for

i = 1, . . . , n .
Theorem 2 Let us consider a sufficiently differentiable function F : Òm −→ Òd defined in a convex neighbourhood of
αi ,denoted by Di ⊂ Òm , satifying F (αi ) = 0, i = 1, ..., n . Also, let us assume that, for i = 1, ..., n , F ′ (αi ) is nonsingular.
Then, using a seed x

(0)
i

∈ Òm close enough to αi , for i = 1, ..., n , the sequences {x (k )
i

}k ≥0 generated by the iterations of
method JF S converge to αi with order 2.

Proof Let us denote F = (F1, F2, . . . , Fd ) , where Fp : Òm → Ò are the coordinate functions of F , p = 1, 2, . . . , d .
Consider now the Taylor development of Fp (

x
(k )
i

) around αi , for p = 1, 2, . . . , d :

Fp

(
x
(k )
i

)
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m∑
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+O3
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)
,

where e i ,k j1
= x

(k )
ij1

− αij1
for i ∈ {1, . . . , n } and j1 ∈ {1, 2, . . . ,m }. The residual O3

(
e i ,k

) contains the elements of the
Taylor expansion where the sums of the exponents of eq

i ,k j1
, j1 ∈ {1, 2, . . . ,m }, satisfy q ≥ 3.

Since

Fp (x (k )
i

)Si ,r (x (k ) ) = ©«
m∑
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∂Fp (αi )
∂xj1

e i ,k j1
ª®¬ Si ,r (x (k ) ) +O2 (e i ,k ), (3)
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then, we can rewrite the relation as Fp (x (k )
i

)Si ,r (x (k ) ) = Ap,r e i ,k +O (e i ,k ) , for p = 1, . . . , d and r = 1, . . . ,m.
Therefore, we can rewrite F (x (k )

i
)Si (x (k ) ) as Ae i ,k +O2 (e i ,k ) .

On the other hand,
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i
, x
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i

+ βi F (x (k )
i

) ; F ] = F ′ (x (k )
i

) + 1

2
F ′′ (x (k )

i
)h +O2 (h ),

where h = βi F (x (k )
i

) by using Genocchi-Hermite [10].
Now, we consider Taylor’s development of F ′′ (x (k )

i
) , F ′ (x (k )

i
) and F (x (k )

i
) around αi ,

F (x (k )
i

) = F ′ (αi ) (e i ,k + C2,i e
2
i ,k +O3 (e i ,k ) ),

F ′ (x (k )
i
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Therefore,
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Then, by using (3) and (4), we obtain(
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(
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)
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)
= F ′ (αi )

(
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+O2

(
e i ,k

)
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(5)
From (5), it follows(

[x (k )
i
, x

(k )
i

+ βi F (x (k )
i

) ; F ] − F (x (k )
i

)Si (x (k ) )
)−1

=
(
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(
2I + βi F

′ (αi )
)
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(6)
Then, by using (6),
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)
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2
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=
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.

Therefore, it is proven that JF S holds order of convergence 2.
It can be demonstrated in a simple way, as in [6], that if we combine any iterative method for systems with the
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iterative step (2), we will obtain a new method that obtains several solutions simultaneously with duplicated order
regarding the original scheme for systems.

2 | NUMERICAL RESULTS

For the computational calculations, we use the softwareMatlab R2020bwith variable precision arithmetic of 5000 dig-
its. The stopping criteriumused is the normof the function F evaluated at the last iteration x (k+1) =

(
x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
n

)
is lower than the tolerance a , which we modify according to the problem. When we search n solutions,

1

n

n∑
i=1

F (
x
(k+1)
i

) < a .

Let us remark that
F (

x (k+1)
) := 1

n

n∑
i=1

F (
x
(k+1)
i

) .
We set the maximum of iterations at 100 as a stopping criterion.
We are going to compare the performance of methods in the different examples by using different aspects, as

the approximate solution found, the mean norm of the residual 1
n

∑n
i=1

F (
x
(k+1)
i

) < a , the norm of the difference
between the last two approximations, the amount of iterations needed to reach the required tolerance, the com-
putational time and the Approximate Computational Order of Convergence (ACOC), defined in [7] by Cordero and
Torregrosa,

p ≈ ACOC =
ln (

∥x (k+1) − x (k ) ∥/∥x (k ) − x (k −1) ∥
)

ln (
∥x (k ) − x (k −1) ∥/∥x (k −1) − x (k −2) ∥

) .
2.1 | Nonlinear equation

First, we start by solving a nonlinear equation, which is not a polynomial, to check that our iterative method obtains
good results for non-polynomial equations. In this case, the tolerance chosen is 10−200. The equation to solve is
f (x ) = ex

2 − x = 0, where the solutions are s1 ≈ 0.61435 + 0.68106i and s2 ≈ 0.61435 − 0.68106i . As seed, we have
chosen x (0) = (−i , i ) .In Table 1, the results obtained by Ehrlich method for arbitrary functions and by the DF S method are shown bychanging the value of β , that in this case is equal for all the components of the initial guess. It is illustrated in the tablethat all iterative methods require 11 iterations to satisfy the stopping criterion as well as all methods obtain the same
ACOC which coincides with the expected theoretical convergence order.
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TABLE 1 Numerical results for f (x ) = ex
2 − x = 0

Method x (k+1) − x (k ) 
2

f (x (k+1) )

2 Iteration ACOC

Ehrlich 6.1897×10−186 3.8288×10−371 11 2.0
DFS with β = 0.1 6.0534×10−199 3.8458×10−397 11 2.0
DFS with β = −0.1 6.2936×10−157 3.8755×10−313 11 2.0
DFS with β = 0.5 8.8698×10−135 1.1467×10−268 11 2.0

2.2 | Freudenstein-Roth function

Next, we will solve the Freudenstein-Roth function, see [9], denoted as F R (x ) = 0, which is determined as follows:
(−13 + x1 + (5x2 − x22 − 2)x2 )2 + (−29 + x1 + (x22 + x2 − 14)x2 )2 = 0.

This problem has 3 solutions, which are:
• (5, 4) ,
• (13 + 14i , −1 + i ) ,
• (13 − 14i , −1 − i ) .
In this case, the stopping criterion is 10−100, and as initial guess, we choose
• x

(0)
1 = (6, 6) ,

• x
(0)
2 = (13 + 13i , i ) ,

• x
(0)
2 = (13 − 13i , −i ) .The results obtain for the Freudenstein-Roth function are shown in Table 2. The methods employed are P S , from[6], and JF S by changing the values of the parameter β , which in this case is equal for all the components of theinitial guess. Here it is shown that depending on how we change the values of the parameter, the results obtainedalso vary. Some of the elements of the JF S family obtain similar results to those obtained by the P S method, but onother occasions they need a greater number of iterations or do not converge under these circumstances.

TABLE 2 Numerical results for F R (x ) = 0

Method x (k+1) − x (k )  F R (x (k+1) )
 Iteration ACOC

P S 2.3739×10−73 2.058×10−147 10 2.0001
JFS with β = 0.1 8.1354×10−88 4.5384×10−175 14 2.0639
JFS with β = −0.1 n.c. n.c. n.c. n.c.
JFS with β = 0.5 n.c. n.c. n.c. n.c.
JFS with β = 0.01 3.4005×10−91 3.144×10−183 11 2.0
JFS with β = −0.01 1.9307×10−52 1.3047×10−105 10 2.0001
JFS with β = 0.001 4.7502×10−76 8.2636×10−153 10 2.0001
JFS with β = −0.001 5.1394×10−87 2.3928×10−173 11 2.0121
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2.3 | No differentiable system

In the following, a non-differentiable problem is solved in order to see the results obtained by the elements of the
JF S family, which in this case the value of the parameter is equal for all the components of the initial guess. The
problem to be solved in this case is the system D (x ) = 0, illustrated as

D (x ) =

x1x2 − |x1 | = 0,

x1x2 − |x2 | = 0.
(7)

The solutions of this system are (−1, −1) and (1, 1) . The stopping criterion determined in this case is 10−100. As initial
vector we employ x

(0)
1 = (−2, −2) and x

(0)
2 = (2, 2) .

Table 3 shows the results obtained for certain elements of the JF S family by changing the values of the parameter.
In the data collected in this table, it is shown that the ACOC is similar to that expected in all cases, and as before,
depending on the value used as parameter, the elements of the family needs a greater or fewer number of iterations.

TABLE 3 Numerical results for D (x ) = 0

Method x (k+1) − x (k )  D (x (k+1) )
 Iteration ACOC

JFS with β = 0.1 2.2427×10−75 1.7783×10−151 7 2.0
JFS with β = −0.1 2.2427×10−75 1.7783×10−151 7 2.0
JFS with β = 0.01 2.4455×10−78 2.1145×10−158 6 1.9986
JFS with β = −0.01 2.4455×10−78 2.1145×10−158 6 1.9986
JFS with β = 0.005 3.8449×10−90 2.6133×10−182 6 1.9996
JFS with β = −0.005 3.8449×10−90 2.6133×10−182 6 1.9996
JFS with β = 0.5 3.4588×10−58 2.1149×10−116 8 2.0
JFS with β = −0.5 3.4588×10−58 2.1149×10−116 8 2.0

2.4 | Solving a system with different initial guesses

Below, a problem from [1] is solved. The system to be solved is B (x ) = 0, defined as follows

B (x ) =

2 arctan(x1 + 1) + x2 − 3 = 0,

arctan(x1 + 1)x2 − 1 = 0.
(8)

The solutions of this systems are approximately (−0.4537, 2) and (0.55741, 1) . The stopping criterion determinedin this case is 10−100. In Table 4, we use 2x (0)
1 = (−1, 1.5) and x

(0)
2 = (0, 0.5) as the initial vector. As in the previouscases, depending on the values of the parameter for the elements of JF S , different results are obtained. In this case,for several of the parameter values the results obtained for the JF S elements are obtained in a smaller number ofiterations than for the P S method.
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TABLE 4 Numerical results for B (x ) = 0

Method x (k+1) − x (k )  B (x (k+1) )
 Iteration ACOC

P S 8.4954×10−87 5.1034×10−173 15 2.0
JFS with β = 0.1 n.c. n.c. n.c. n.c.
JFS with β = −0.1 2.6927×10−60 5.0×10−120 10 1.9992
JFS with β = 0.5 n.c. n.c. n.c. n.c.
JFS with β = −0.5 7.2215×10−82 5.085×10−163 10 2.0001
JFS with β = 0.01 1.1022×10−93 8.6361×10−187 13 2.0
JFS with β = −0.01 4.0003×10−81 1.1251×10−161 13 2.0
JFS with β = 0.001 4.8349×10−93 1.6539×10−185 16 2.0
JFS with β = −0.001 1.4701×10−59 1.5274×10−118 14 2.0

In Table 5, as initial vector we employ x
(0)
1 = (−1, 1.5) and x

(0)
2 = (0, 0.6) , to illustrate what happens when one

of the initial vectors is slightly different. We can see that by suddenly changing one of the values of x (0) , the number
of iterations needed is much smaller than in the previous case.

TABLE 5 Numerical results for B (x ) = 0

Method x (k+1) − x (k )  B (x (k+1) )
 Iteration ACOC

P S 1.4761×10−61 1.3439×10−122 11 2.0
JFS with β = 0.1 1.1503×10−54 9.7224×10−109 12 1.9997
JFS with β = −0.1 7.9837×10−70 4.3954×10−139 10 2.0
JFS with β = 0.5 n.c. n.c. n.c. n.c.
JFS with β = −0.5 1.8466×10−83 3.3212×10−166 10 2.0001
JFS with β = 0.01 1.6569×10−53 1.6744×10−106 11 2.0
JFS with β = −0.01 1.8241×10−59 2.0766×10−138 11 2.0
JFS with β = 0.001 9.2722×10−61 5.2963×10−121 11 2.0
JFS with β = −0.001 2.3577×10−62 3.4322×10−124 11 2.0
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2.5 | Searching equilibrium solutions in N-body problem

In this case, we solve the same problem as the one studied in the article [2]. We denote the problem to be solved as
A (x , y ) = 0 :

A (x , y ) =



(√
3x − y

) (
1 − 1(

x2 + y 2
)3/2 )

+ µ1

(√
3(x − 1) + y

) (
1 − 1(

(x − 1)2 + y 2
)3/2 )

= 0,

2y

(
1 − 1(

x2 + y 2
)3/2 )

+ µ2

(√
3(x − 1) + y

) ©«
1 − 1((

x − 1
2

)2
+

(
y −

√
3
2

)2)3/2
ª®®®®¬
= 0.

(9)

This problem has between 8 and 10 roots depending on the values of µ1 and µ2. In this case we will solve for what
happens when µ1 = 0.65 and µ2 = 0.65. For this particular case, we have a total of 8 solutions, in the range [−1, 2] ×
[−1, 2].

Since the problem has another level of complexity, the chosen stopping criterion is 10−5 and the number of digits
of precision is 500.

As initial estimates the following set of vectors are selected
• x

(0)
1 = (−0.6, −0.3) ,

• x
(0)
2 = (−0.3, 0.8) ,

• x
(0)
3 = (0.3, 0.4) ,

• x
(0)
4 = (0.54, 0) ,

• x
(0)
5 = (0.55, −0.7) ,

• x
(0)
6

= (0.58, 1.4) ,
• x

(0)
7 = (1.2, 0.7) ,

• x
(0)
8 = (1.5, −0.2) .Table 6 shows the numerical results got by the methods illustrated in the first column of the table. In this case itis shown that for the parameter value −0.1, not all the solutions are found, only 6 of the solutions are found, while forthe other values and P S we obtain all the solutions simultaneously. The approximate convergence orders are slightlyhigher than 2 in some of the cases. As before, most of the methods obtain similar results, and by changing the valueof the parameter, we can perform one more or less iteration depending on the one chosen.

TABLE 6 Numerical results for A (x ) = 0

Method x (k+1) − x (k )  A (x (k+1) )
 Iteration ACOC

PS 8.8472-×10−5 9.4542×10−8 5 2.33
JFS with β = 0.1 4.3383×10−4 6.9396×10−6 6 2.1205
JFS with β = −0.1 Only found 6 solutions
JFS with β = 0.01 3.0777×10−5 8.3186×10−9 5 2.1905
JFS with β = −0.01 2.2256×10−4 7.6916×10−7 5 2.4565
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2.6 | Himmelblau system

The convergence of an iterativemethod is dependent on the initial guess chosen, sowhatwewill do next is to generate
random vectors as initial guesses to observe the number of roots obtained.

In this case, the Himmelblau system is solved, see [9], the structure of which is:

H (x ) =

4x1x2 + 4x31 + 2x22 − (42x1 + 14) = 0,

4x1x2 + 4x32 − 26x2 + 2x21 − 22 = 0.
(10)

The approximate solutions of this system are
• r1 ≈ (3, 2)
• r2 ≈ (3.58, −1.85)
• r3 ≈ (−3.78, −3.3)
• r4 ≈ (3.39, 0.0739)
• r5 ≈ (−2.81, 3.13)
• r6 ≈ (−0.271, −0.923)
• r7 ≈ (0.0867, 2.88)
• r8 ≈ (−3.07, −0.0814)
• r9 ≈ (−0.128, −1.95)
Given 9 solutions, we generate 9 vectors of 2 components uniformly randomly between [−5.5] × [−5.5].

In this case, the chosen tolerance is 10−10 and the maximum allowed iterations are also reduced to 50.
In order to obtain an average of how many times we converge to each root or how many roots we converge to,

we will repeat the random vector generation process ten times, and we will denote each root generation process by
P i , where i denotes the number of trial.

In Table 7, we illustrate the iterative method and the number of times it has converged to each of root, while in
Table 8 we show the number of roots obtained in each random vector generation test and an average of the number
of roots obtained.

TABLE 7 Number of times the solutions are found by each method
Method r1 r2 r3 r4 r5 r6 r7 r8 r9

PS 5 3 2 5 4 3 3 4 7
JFS with β = 0.01 8 7 5 3 6 8 4 6 3
JFS with β = 0.1 6 9 8 0 8 2 2 3 9
JFS with β = −0.1 9 8 6 3 6 1 3 4 1
JFS with β = −0.01 8 1 4 6 5 3 3 2 2
JFS with β = −0.5 4 6 1 0 5 0 1 1 0
JFS with β = 0.5 3 3 2 1 2 0 0 2 0
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TABLE 8 Number of solutions found in each proof
Method P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Total Media

PS 4 5 5 3 3 4 3 3 3 3 36 3.6
JFS with β = 0.01 4 6 4 6 4 6 4 6 4 6 50 5
JFS with β = 0.1 5 6 4 4 5 5 5 4 5 4 47 4.7
JFS with β = −0.1 4 4 3 4 4 6 4 4 4 4 41 4.1
JFS with β = −0.01 3 4 4 3 3 5 3 3 3 3 34 3.4
JFS with β = −0.5 1 3 3 2 3 2 1 2 0 1 18 1.8
JFS with β = 0.5 3 3 1 0 0 2 3 1 0 0 13 1.3

As is illustrated in both tables, 7 and 8, for the parameter values β = 0.01 and β = 0.1 a larger number of roots
have been found than for the P S method, while for the methods where the parameter satisfies |β | = 0.5 the number
of mean roots to converge is less than 2. This confirms again that depending on the parameter the convergence zones
are larger or smaller, and that for certain parameter values the derivative-free methods converge on a larger set of
initial estimates.

The above data correspond to a total of 10 tests where random vectors are generated as initial estimates. In the
following, we illustrate what happens for a total of 100 trials where the same process is followed, that is, in each of
trial 9 vectors with random components are generated. The data illustrated are the number of solutions reached by
each method in each trial.

In Figure 1, we have two images, the first one is a histogram with the number of times that the iterative method
P S finds the respective number of solutions, while the second image is a graph where the abscissa axis represents
the test or proof we are representing and the ordinate axis represents the number of solutions found for this test with
this iterative method.
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F IGURE 1 Method PS

In Figures 2, 3, 4, 5, 6 and 7, is represented the same as in Figure 1 but for the iterative methods JF S where we
change the value of the parameter to be β = 0.1, β = 0.01, β = 0.5, β = −0.1, β = −0.01 and β = −0.5, respectively.

F IGURE 2 Method JFS with β = 0.1
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F IGURE 3 Method JFS with β = 0.01

F IGURE 4 MethodJFS with β = 0.5
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F IGURE 5 Method JFS with β = −0.1

F IGURE 6 Method JFS with β = −0.01
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F IGURE 7 Method JFS with β = −0.5

In Figures 1, 2, 3, 4, 5, 6 and 7, are illustrated similar results to those obtained when 10 tests were performed,
showing the need to change the parameter to obtain better results.

Finally, in Figure 8, we represent a histogram with the number of times such a number of roots found is reached
for the different methods represented in the image legend. This figure shows that smaller values of the parameter
obtain better solutions than the method with Jacobian matrices and the methods with larger values of the parameter.
We highlight as methods that obtain good results those that use the parameters 0.01 and 0.1.
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F IGURE 8 Histogram number of solutions found

2.7 | Dynamical behaviour example

Next, in order to compare the dynamics of the iterative DF S method with the Ehrlich method, we compare the
dynamical planes obtained for the problem z 2 − 1 = 0 by both methods.

To create these dynamical planes, the first step is to perform a mesh of 500 × 500 points, where each point of the
mesh corresponds to an initial vector, in which we represent on the abscissa axis the first component of the vector,
while on the ordinate axis we represent the second component of the vector of initial guesses.

We represent in yellow the initial guess vector if it converges to (1, −1) , in purple when it converges to (−1, 1) ,
in blue when there is no convergence in less than 100 iterations and in black when one of the components is higher
than 103.

We define the vector of initial estimates to converge whenever the distance of each of the components is less
than the prefixed tolerance, which in this case is 10−3.
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F IGURE 9 DFS with β = 0.1

F IGURE 10 Ehrlich

As can be seen in Figures 9, 10, the difference between both dynamical planes is that the plane obtained by the
DFS method has a greater number of points that do not converge in 100 iterations, but if we increase the number of
iterations that can be performed we would obtain the same planes.

If we increase the area in which the meshing takes place, we can find more differences as we will see below.
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F IGURE 11 DFS with β = 0.1

F IGURE 12 DFS with β = −1
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F IGURE 13 Ehrlich

In Figures 11, 12, 13, we can see that the non-Ehrlich methods have fewer convergence points. In addition, it
can be seen that with higher parameter values, there is a larger non convergence zone, so that, as was deduced in the
other numerical experiments, smaller parameter values tend to give better results.

3 | OUTCOMES AND CONCLUSIONS

In this manuscript, an algorithm for obtaining simultaneous solutions which is Jacobian-free has been defined. This
scheme has order 2 and can obtain several solutions simultaneously for nonlinear equations and systems. Also, this
step can be added to any procedure for solving systems of nonlinear equations such that the resulting method obtains
several roots simultaneously and has duplicates the order of convergence of the original scheme.

This iterative step defined is a modification of the iterative method proposed in [4] which is not Jacobian-free.
In this article, several experiments were carried out to compare both methods in order to see the properties and
behaviour of those iterative procedures proposed.
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