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Abstract

The cochlea forms a key element of the human auditory system in the temporal bone. Damage to the cochlea continues

to produce significant impairment for sensory reception of environmental stimuli. To improve this impairment, the optical

cochlear implant forms a new research approach. A prerequisite for this method is to understand how light propagation, as

well as scattering, reflection and absorption, takes place within the cochlea. We offer a method to study the light distribution

in the human cochlea through phantom materials and Monte-Carlo simulations. The calculation of an angular distribution

after scattering requires a phase function. Often approximate functions like Henyey-Greenstein, two-term Henyey-Greenstein

or Legendre polynomial decompositions are used as phase function. An alternative is to exactly calculate a Mie distribution for

each scattering event. This method provides a better fit to the data measured in this work.
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Abstract: The cochlea forms a key element of the human auditory system in the temporal bone. Damage to
the cochlea continues to produce significant impairment for sensory reception of environmental stimuli. To improve
this impairment, the optical cochlear implant forms a new research approach. A prerequisite for this method is to
understand how light propagation, as well as scattering, reflection and absorption, takes place within the cochlea.
We offer a method to study the light distribution in the human cochlea through phantom materials and Monte-Carlo
simulations. The calculation of an angular distribution after scattering requires a phase function. Often approximate
functions like Henyey-Greenstein, two-term Henyey-Greenstein or Legendre polynomial decompositions are used as
phase function. An alternative is to exactly calculate a Mie distribution for each scattering event. This method
provides a better fit to the data measured in this work.
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1 Introduction

Those affected by sensorineural hearing loss can have
some of their hearing restored with the help of an
electrical cochlear implant (eCI) [1–3]. This involves
transmitting acoustic environmental stimuli to the brain
by means of electrical stimulation of the spiral ganglion
neurons (SGNs). However electrical cochlear implants are
limited in their function by a wide current spread resulting
in a low resolution of the spectral coding of auditory
information [3,4]. A new method to avoid this limitation
is an optical cochlear implant (oCI) [2,5,6]. Here, instead
of electrodes, light emitters are placed along the tonotopic
axis of the cochlea to stimulate the SGNs, which were
made light sensitive through Optogenetics [7]. Light
promises to have a higher spatial resolution than electrical
excitation, thus increasing the spectral selectivity of
artificial sound encoding [8, 9]. If this concept proves
to be feasible in clinical applications, it could facilitate
speech recognition in background noise as well as the
understanding of music and melodies [2, 10]. For further
development of the oCIs and to demonstrate the higher
spatial resolution of light, we need to understand how
light is scattered in the human cochlea. Considering
the size and accessibility of the auditory system, the
use of tissue-simulating objects to mimic the properties
of human tissues can help to understand scattering and
absorption behaviour of the human cochlea tissue [11–17].
These so-called "phantoms" have to be tuned, to match
the desired tissue properties, and can then be used for a
number of applications like initially testing system designs
or comparing performance between systems [18]. For
our research we want a phantom that mimics the optical
properties within the human cochlea and is suitable for
experimental and simulative investigation [18–20]. In the
following, we will discuss a Monte-Carlo approach to sim-

ulate the spread of light of micro emitters through tissue
phantoms and contrast it with an experimental method
to understand the propagation of light through thin bone
layers. These phantoms consist of a filler matrix and a
proportion of homogeneous, spherical, polymer scatterers.
For our simulative approach we combine a wave optical
method, to calculate the Mie-scattering [21,22] behaviour
on a single polymer sphere, with the ray optical approach
of the Monte-Carlo simulation [23, 24]. In this way, we
calculate the angle distribution of one scatterer which we
utilize as the phase function for scattering events in the
Monte-Carlo simulation. The phase function describes
the spatial distribution of scattered light for a single
scattering event. In both approaches we used a red-
light source which resembles the actual emitters that
are used in oCIs. Sources of that wavelength range
have the advantage of better neural stimulation with
less tissue scattering and a lower risk of phototoxicity
[4]. Calculating the exact angle distribution for each
scattering event has proven to yield a higher agreement
with measurements of phantoms than a simulation of
those layers by using the Henyey-Greenstein formula as
approximated phase function.

2 Theory

2.1 Tissue phantoms

To create a phantom that behaves close to actual
tissue when exposed to radiation, it is important to
know the main optical characteristics of the tissue that
interacts with light [18]. For that we want to match
the scattering coefficient µs(λ), the absorption coefficient
µa(λ) and the anisotropy factor g(λ) (see Section 2.3) [18],
which represents the intensity-weighted mean value of
the cosine of the scattering angle θ and indicates the
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directionality of the scattering. Considering the fact that
the shape of the phase function is usually not known,
the angle scattering distribution is often characterized by
this single parameter, the anisotropy factor g [11, 17].
Since light within the cochlea will interact mainly with
the bone tissue of this structure, it is important to find a
phantom that approximates the corresponding scattering
characteristics. For this purpose, it has proven successful
to regard the bone of the cochlea as a layer of spherical,
homogeneous scatterers. The known optical parameters
of bone are listed in Table 1. Polymer spheres [25], which
are placed in an epoxy [26] matrix with a packing fraction
η, are used as phantom material to mimic the optical
properties of bone according to the parameters of Table 1.
The optical parameters of those polymer scatterers are
calculated as described in Section 2.2 and are listed in
Table 2. As an idealization, we neglect the absorption
in the phantoms (µa(λ) = 0) (see Table 2). In Figure 1
we simulated a bone layer in intercellular fluid and the
resulting scattering angle distribution with the optical
parameters for µa and µs of Pifferi et al. [15] and a second
simulation with a idealized µa = 0.0 cm−1. One can see,
that such small absorption coefficients have almost no
impact on the scattering behaviour, so the absorption is
neglectable her. The handling of the anisotropy factor

−100 0 100
θ [◦]

10−4

10−3

10−2

10−1

100

101

I
(θ
)[

ar
b.

u.
]

µa = 0.0 cm−1

µa = 0.37 cm−1

1Figure 1: Simulated scattering angle distribution of a 100µm
bone layer for a wave, unpolarised to the plane of measurement
with the known parameters of Pifferi et al. [15] (orange cuve)
and with an idealized µa = 0.0 cm−1 (blue curve).

g is explained in Section 2.3. By adjusting the packing
fraction it is possible to fit the scattering properties (µs)
for phantoms (Table 2) to the values of bone shown in
Table 1. This is essential to calculate the scattering
coefficient and the mean free path for the Monte Carlo
simulation (see Section 2.2).

2.2 Scattering coefficient

Starting from the scattering efficiency of one polymer
scatterer in epoxy, see the Appendix (Section 5.1), we
calculate the effective cross section σ. Combined with a
density of scatterers

ρ =
η

4
3πR

3
(1)

with a volume packing fraction η and particle radius R,
we calculate the scattering coefficient

µs = σρ (2)

and the mean free path between two scattering events

ls =
1

µs
=

1

ρσ
=

4πR3

3ση
. (3)

Together with the angle dependent intensity distribution
of unpolarised light for one scatterer (see Section 5.1),
which is used as the phase function for the Monte-Carlo
simulation

SU(θ) =
1

2
(S⊥ + S‖), (4)

we can define a tissue layer with µs, ls and with no need
for an anisotropy factor g, since the shape of the phase
function is defined through SU(θ). Alternatively, as a
phase function, the Henyey-Greenstein function is often
used as an approximation for the shape of an actual phase
function for the scattering of radiation by a particle.

2.3 Henyey-Greenstein function

In the case of using the Henyey-Greenstein function,
the anisotropy factor g can be calculated exactly from the
intensity distribution SU(θ) for a single scattering event

g =

π∫
0

SU(θ) sin θ cos θ dθ

π∫
0

SU(θ) sin θ dθ

. (5)

A g-value of g = 1 equals total forward scattering,
g = 0 means isotropic scattering and g = −1 total
backward scattering. We describe scattering of a single,
homogeneous sphere with the angle dependent intensity
distribution

p(θ) =
1

4π

1− g2
(1 + g2 − 2g cos θ)

3
2

. (6)

This gives us, together with the previously explained Mie
distribution, see Appendix (Section 5.1), two possible
phase functions to define a scattering event in the Monte-
Carlo simulation. The first one uses the Mie distribution
of light scattering on one sphere, i.e. equation (4). The
later uses the Henyey-Greenstein function (6) with the
addition of the anisotropy factor g calculated with (4)
and (5).

2.4 Monte-Carlo simulation

To describe a layer of tissue with multiple scattering
events, we can combine the previously introduced wave-
optical description for a single scattering event with a
Monte-Carlo simulation. These simulations for the light
propagation require a free path length of the photons,
scattering angles, as well as reflection or transmission at
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Reference λ in nm µa(λ) in cm−1 g µ′s(λ) in cm−1 µs(λ) in cm−1

Bashkatov et al. (2006) [12] 800 0.11 0.9 19.5 195
Pifferi et al. (2004) [15] 650 0.11 15.9
Tauber et al. (2000) [16] 635 0.37 0.8 55.7 278.5
Firbank et al. (1993) [13] 650 0.4 0.93 26.2 374.28

Table 1: Known values of optical parameters of bone at different wavelengths λ with µ′s(λ) = µs(1− g).

Material diameter in µm refractive index m µa in cm−1 g η µs in cm−1

Polymer [25] 1 1.587 0 0.95 0.00625 20.67
0.0625 200.76
0.01015 33.57

Epoxy [26] - 1.519 - - 1− η -

Table 2: Values of optical parameters of polymer spheres at a wavelength of λ = 635nm and a packing fraction η in epoxy.

the boundaries of the layer. The probability that, in the
Monte-Carlo simulation, a photon is scattered within a
distance smaller than s is expressed by the probability
distribution function P (S < s). S is a random variable
representing the distance that a photon travels between
two scattering events. s is a value in the definition range
of S, which is greater than zero [27].

P (S < s) = 1− e−µss (7)

P (s) is the probability distribution function. In contrast
f(s) is the probability density function, which expresses
the probability that a photon is scattered while travelling
between s and s+ds. The integral of each density function
f(s) is equal to the probability distribution function P (s)
[27],

P (s) =

∫ s

−∞
f(s′)ds′. (8)

A random number a ∈ [0, 1] with a = P (s) is assigned
to a random variable s, such as the path length of a
photon. Equation (8) is used to obtain a series of values
for a, which specify a series of values s. The histogram
of the s-values corresponds to the probability density
function f(s). For the described problem, a steady-state
simulation will be used. The aim is to find the intensity
distribution after scattering processes.
To define a tissue layer in the Monte-Carlo simulation

with the Mie distribution as phase function (equation 4),
we first simulate a scattering event of an incoming plane
wave on one polymer sphere in epoxy. In Figure 2 we
show the angle distribution p(θ) for scattering events on
different sized spheres, ranging from 50 nm to 3000 nm
in diameter. With increasing size of the scatterers,
the polarisation of the source becomes less important.
Furthermore we see strong backward scattering for small
spheres (50 nm, 100 nm) and increasing forward scatter-
ing with increased sphere size. Since we want to mimic
the scattering behaviour in bone tissue, we aim for a
diameter of the scatteres of 1000 nm. With this diam-
eter the scattering distribution shows the Mie scattering

regime and does not change when we look at different
polarisations (see Figure 2). Therefore a scattering event
in the Monte-Carlo simulation will result in an angle
distribution which corresponds to the distribution on a
single sphere with d = 1000 nm as shown in Figure 2.
This distribution is calculated with Equation (4) which
results out of the Equations (19) (see Section 5.1). The
second step is to define a layer containing scatterers with
radius r and calculating the packing fraction dependent
mean free path between two scattering events and the
scattering coefficient (see Section 2.2). Thus, the layer
is defined with those parameters for the scatterer with
the radius R. If we use Henyey-Greenstein as a phase
function, the Monte-Carlo simulation additionally uses
the computed anisotropy parameter g for a scattering
event. In Figure 3 we can see how the mean free path
depends on the size of the scatterers. Considering the
density, ls is propotional to 1

R in the range of Rayleigh
scattering. In this range the scattering efficiency will
decrease and ls will increase for small radii compared to
the wavelength (R� λ), because the cross section of the
Rayleigh scattering is

σ(ω) ≈ σTh
ω4

ω4
0

, (9)

with σTh as the Thomson effective cross section. As the
radius increase, the scattering efficiency and µs increases,
which in turn reduces the mean free path length due
to ls = 1

µs
. Since the human cochlea consists of very

thin bone layers, we aim to generate a strong forward
scattering via small particles (see Table 2) and thin layers
of polymer and epoxy mixtures. This will result in very
few scattering events per photon which will contribute
to the expected strong forward scattering of thin bone
layers. We therefore use spheres which have the same
order of magnitude in diameter as the used wavelength
of the light source. The light source for each simulation
run is defined as a beam consisting of 107 photons with a
wavelength of λ = 635 nm. The layer thickness is varied
between 100µm and 500µm. Like previously mentioned,
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1Figure 2: Scattering angle distribution on polymer spheres
with a diameter between 50 nm and 3000 nm for a wave (λ =
635 nm), perpendicular, parallel and unpolarised to the plane
of measurment.
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1Figure 3: Double logarithmic plotted mean free path of pho-
tons versus radius R of the polymer spheres in the simulated
layer for η = 0.00625 and λ = 635 nm.

the spheres are placed in the medium with a packing
fraction η. We will use η = 0.00625 and η = 0.01015 for
a low number of scattering events. With those packing

fractions we calculate the values for µs and g shown in
Table 2.
The location and angle of every photon is saved when

it reaches a border of the simulation box. This results
in an angle distribution p(θ) which corresponds to the
scattering intensity I(θ) with the scattering angle θ of
the photon beam through the layer. To be able to
make comparisons to measurements we normalized the
angle distribution to the maximum of the values of the
distribution.

2.5 Experimental approach

For sample preparation, the polymer spheres were
mixed with a packing fraction of η = 0.00625 or η =
0.01015 with the epoxy medium for five minutes and then
applied to the first glass plate with m = 1.515, x1 =
18mm (see Figure 4). The mixture was then hardened
in vacuum for six hours. After that, the second glass
plate was placed on the sample followed by completely
drying the sample in vacuum. This procedure prevented
the formation of air bubbles during both mixing and
placement of the glass plates. The layer thickness of those
samples is controlled via spacers which are manufactured
according to the DIN 988 [28] standard and is, like in
the simulation, varied between 100µm and 500µm. A
schematic structure of a sample is shown in Figure 5.

x2

x1

d

Figure 4: Dimensions of borosilicate glass and spacers for
phantom samples with x1 = 18mm, x2 = 25mm and d =
0.1mm, d = 0.2mm, d = 0.3mm or d = 0.5mm.

Glass

SPACER

Glass

Figure 5: Schematic structure of a sample.

The experimental setup shown in figure 6, containing
the described samples, the laser diode CPS635S [29] which
has a wavelength of 635 nm, an elliptical, collimated
output beam and the light sensors TSL2591 [30] and
VEML7700 [31]. The sensors were mounted on an arm
which rotates around the sample in a range of 230◦.
Measurements of the scattering intensity I(θ) with the
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scattering angle θ are done in 1◦ steps in air behind the
layer. Since the Monte-Carlo simulation does not include

xiv 1 Durchführung

hinter dieLochblendegesetzt werden, umdieDetektoren vor Überbelichtungzu schützen.
Dies ist besonders bei sehr dünnen und gering streuenden Proben der Fall.
Damit dieMessung immer mit der gleichen Startposition desDreharms beginnt wird

ein Permanent-Magnet an dieUnterseitedesDreharms angebracht und ein Hall-Sensor
(3144, [2]) auf der Lochplattepositioniert. Der Sensor ist in der Lagedas sich nähernde
Magnetfeld, welches durch den Magneten am Dreharm entsteht, zu erfassen. Dieses
Signal wird zur Festlegungder Startposition genutzt (s. Abb. 1.2).
Der Arm bewegt sich bei jeder Messung zuerst gegen den Uhrzeigersinn, um die

Startposition zu f nden, bevor er sich in 1◦ Schritten imUhrzeigersinn umdieProbe
bewegt unddieBeleuchtungsstärkeEv in Lux bei jedemSchritt aufzeichnet. Umsicher zu
stellen, dass das gesamte transmittierteLicht erfasst wird, werden 180◦ plus zusätzliche
50◦ ausgehend von der Startposition, demHall-Sensor, abgetastet.

A bb. 1.2:

Hall sensorRotary arm
starting position

~230°

-90°

0°

90°

Stepper motor -
axis
Sample position

Rotary arm
end position

Laser beam

~16°

SchematischeDarstellung der Dreharmbewegung.

1.1.1 Ausblick

Die exakte Positionierung, Montageund Ausrichtung der verschiedenen Bestandteile
des Versuchsaufbaus (Laser, Lochblende, Filter) stellt eine Herausforderung in der
Durchführungdes Experiments dar und sollte für weitereForschungszweckeoptimiert
werden. Dies könntedurch Befestigungder Bauteileauf einemoptischen Tisch realisiert
werden, welcheden Versuchsaufbau vor Verrutschen schützt und damit einepräzisere
Positionierungermöglicht. Vor jeder Messreihe ist es außerdemnotwendig, diedirekte
Ausrichtungdes Lasers auf diePhotodioden der Sensoren sicherzustellen.

Figure 6: Schematic structure of the experimental setup.

any glass layers but is compared to our measurements we
included a Snellius correction in the simulation,

α = arcsin

(
sinβ

mmatrix

)
, (10)

with α and β being the incoming and outgoing angle and
mmatrix the refractive index of the surrounding epoxy
medium. We can utilize the unpolarised transmission
coefficient Tu as a threshold as a photon will get reflected
with a predetermined probability. For that we generate a
random number z ∈ [0, 1]. If z is smaller that Tu the
coresponding photon will get transmitted. If not, the
photon will get reflected. With this method, we can follow
the reflection processes of each photon until it has actually
left the layer. This compares favourably to a correction
of the experimental data where we can only correct the
first time a photon tries to exit the layer.

3 Comparison

As shown in Figure 7, we first modeled a scattering
event on a single polymer scatterer. We use the cal-
culations from section 5.1 wich are implemented in a
Mie scattering module (PyMieScatt) [32]. The angle
distribution shows the typical Mie scattering behaviour
with a large amount of forward scattering, which is ideal
for a layer of spheric scatterers. Therefore, the angle
distribution is used as a phase function to define a scatter-
ing event in the Monte-Carlo simulation. Together with
the scattering coefficient µs = 33.57 cm−1, the packing-
fraction-dependent mean free path ls = 297.80µm, we
obtain the angle distribution for η = 0.01015 and d =
500µm shown in Figure 8 (orange curve). For these
parameters, an average of 3.51 scattering events occur and
18.5% of the photons remain unscattered. Compared to
the scattering intensity of a single sphere, this results in a
wider distribution, which is still mainly forward scattered.
For the comparison in Figure 8 we excluded unscattered
photons which make up a significant portion of the angle
distribution. The blue curve in Figure 8 is the same
distribution as shown in Figure 7 and the small blue

0°

45°

90°

135°

180°

225°

270°

315°

0.2

0.4

0.6

0.8

1.0

1Figure 7: Scattering intensity I(θ) for one polymer sphere in
epoxy resulting from a incoming wave wich is unpolarised to
the direction of propagation.

curve is the backscattered light from said distribution.
The same layer simulated with Henyey-Greenstein as
phase function (see Figure 9 and Equation (6)) and an
additional anisotropy factor of g = 0.95 (brown curve in
Figure 9) results in the green curve. This distribution
shows a more peaked pattern with less backscattering.
If we compare theory and experiment, we see the angle

0°

45°

90°

135°

180°

225°

270°

315°

−5

−4

−3

−2

−1
0

Simulation (Mie)
Simulation (HGS)
Polymer sphere

1Figure 8: Logarithmically plotted scattering intensity I(θ)
with Mie scattering as phase function (orange curve) and
with Henyey-Greenstein as phase function (green curve) of
a simulated d = 500µm polymer-epoxy layer and for one
polymer sphere in epoxy (blue curve).

distributions shown in Figure 11. Since the polarization
of the incident light has no influence on the angular
distribution in the prevailing size ratio of wavelength and
sphere diameter, the unpolarized portion of the light is
compared. In the measurements the unscattered light is
included showing in a sharp distribution for small angles.
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Figure 9: Henyey-Greenstein function for multiple g-values.

The Monte-Carlo simulation that uses the Mie distribu-
tion from one sphere as scattering function (blue curve)
shows a strong agreement with the experimental data
(green curve) for larger angles. The second Monte-Carlo
simulation wich uses the Henyey-Greenstein function as
scattering function (orange curve) produces lower values
than the measured data. All three approaches show a
strong forward directed scattering behaviour with a large
proportion of unscattered light (compare Figure 8). Since
we broadened the unscattered light of the simulations
with a Gaussian fit to a zero measurement of the laser
through an epoxy layer (see Figure 10), comparisons of
the curve form between simulations and measurements in
the range of 0 − 14◦ are not meaningful. Nevertheless,
the proportion of unscattered light can be detected and
compared in this area. The discrepancy between the sim-
ulation methods at small angles decreases with reducing
the layer thickness. In Figure 12 we consider a thinner
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1Figure 10: Logarithmically plotted measured scattering in-
tensity of a d = 100µm epoxy layer.

layer, which is d = 200µm thick with a packing fraction
of η = 0.01015, µs = 33.57 cm−1 and ls = 297, 80µm.
Here, the agreement between both simulation methods
is very high for small angles. For larger angles, the
Monte Carlo simulation with the Mie distribution also has
a higher agreement with the experimental data for this
thinner layer than with the Henyey-Greenstein function.
For layers with few scattering events simulations with an
exactly calculated distribution as phase function seem
to better represent experimental data for large angles
than simulations that use the Henyey-Greenstein as phase
function.

−180 −135 −90 −45 0 45 90 135 180
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Simulation (Mie)
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1Figure 11: Logarithmically plotted measued scattering in-
tensity (green curve) of a d = 500µm polymer-epoxy layer
compared to the Monte-Carlo simulation with Mie distribution
(blue curve) and the Monte-Carlo simulation with HGS for the
corresponding parameter set.
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1Figure 12: Logarithmically plotted measued scattering in-
tensity (green curve) of a d = 200µm polymer-epoxy layer
compared to the Monte-Carlo simulation with Mie distribution
(blue curve) and the Monte-Carlo simulation with HGS for the
corresponding parameter set.

4 Summary and conclusions

We investigated the scattering properties of human
tissue by using polymer-epoxy layers as phantoms. On the
one hand, this was done with a Monte-Carlo simulation
with which we showed that for a description of scattering
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in tissue, the Henyey-Greenstein function is not necessary,
but the scattering distribution of a scatterer as a phase
function provides an accurate description of the behaviour
of light in a tissue layer. Together with the mean free
path ls and its corresponding scattering coefficient µs,
which are calculated from one scattering event, we are
able to define tissue layers without using the Henyey-
Greenstein, or another approximated phase function.
This is supported by an experimental investigation in
which the agreement between the simulative method and
the corresponding measurements of the simulated layers
is shown. For layers with few scattering events, the Mie
distribution as phase functions shows higher agreement
with the experimental data than the Henyey-Greenstein
function for large angles. Therefore calculating the exact
phase function for every scattering event has proven to
provide a more realistic scattering behaviour in tissue
layers than the often used Henyey-Greenstein function
wich is one of any function that meets the condition of
normalization

2π

∫ π

0

p(θ) sin θ dθ = 1 (11)

and anisotropy

2π

∫ π

0

p(θ) cos θ sin θ dθ = g. (12)

To find an analytic phase function that is more consistent
with the exact Mie distribution, one could search for a
function that fits the Mie angle distribution and therefore
meets the said conditions. This has the advantage that
the phase function is not just an assumption but is based
on a calculated distribution. In further work we will
provide this kind of function together with an analytical
model, thereby calculating the angle distributions and
transmissions after any number of scattering events. To
improve the presented approach and make it come closer
to real tissue one should consider multiple sphere sizes in
the layers. For this purpose, we will produce appropriate
phantoms in subsequent work and perform corresponding
measurements and simulations. In addition, we will
investigate the scalability of phantom layers to create
structures that have the shape and optical properties of
a human cochlea. This will allow further investigation of
the scattering behaviour of an emitter array in the human
cochlea.

5 Appendix

5.1 Mie scattering theory

The interaction of an electromagnetic wave with spher-
ical, homogeneous scatterers is the subject of Lorenz-
Mie theory [33]. If one considers a spherical scatterer
in isolation, taking this theory into account, scattering
parameters for a single scattering event within a layer
can be calculated on this sphere. The incident light can
be described as a plane wave polarized in the x-direction

~Ein = ~Ei
~k·~r
0 ~ex = E0e

ikr cos θ~ex (13)

which gets scattered into a wave

~Es =

∞∑
n=1

En(ian ~N
(3)
e1n(k, ~r)− bn ~M

(3)
o1n(k, ~r)). (14)

The scattered wave is composed of real and imaginary
parts which in turn consist of vectorial, spherical har-
monics which result out of the known Maxwell equations.
~N and ~M , which depend on the wave vector k and
the radial component ~r, contain the spherical Hankel
functions of the first kind (superscript (3)). The indices
e and o mean even/odd (symmetrical/antisymmetrical).
The scattered waves overlap with the part of the plane
wave that remains unscattered. The coefficients

an =
ψn(z)ψ

′
n(mz)−mψn(mz)ψ

′
n(z)

ζn(z)ψ′n(mz)−mψn(mz)ζ ′n(z)
(15)

bn =
mψn(z)ψ

′
n(mz)− ψn(mz)ψ

′
n(z)

mζn(z)ψ′n(mz)− ψn(mz)ζ ′n(z)
(16)

are the amplitudes of the partial waves that make up the
scattered wave [33]. They consist of the Ricatti-Bessel
functions ζ(x) and ψ(x) which depend on the ratio of
particle circumference to wavelength

z =
πd

λ
(17)

as well as the complex refractive index

m = mr − imi (18)

and are derived from the Hankel-Bessel functions. From
the coefficients an, bn we calculate the polarization-
dependent scattering intensities

S1 =

nmax∑
n=1

2n+ 1

n(n+ 1)
(anπn + bnτn) (19)

S2 =

nmax∑
n=1

2n+ 1

n(n+ 1)
(anτn + bnπn) (20)

S⊥(θ) = |S1|2 (21)

S‖(θ) = |S2|2 (22)

SU(θ) =
1

2
(S⊥ + S‖) (23)

and the scattering efficiency

Qsca =
2

z2

∞∑
n=1

(2n+ 1){|an|2 + |bn|2}. (24)

U stands for "unpolarised". The factors π and τ are
calculated as follows

πn =
2n− 1

n− 1
cos(θ)πn−1 −

n

n− 1
πn−2 (25)

τn = n cos(θ)πn − (n+ 1)πn−1 (26)

with π1 = 1, π2 = 3 cos θ and τ1 = cos θ, τ2 =
3 cos(2 cos−1(cos θ)).
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