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1 Introduction

In the present paper, we shall consider the existence, uniqueness and other related properties

of solution of the following quantum stochastic differential equation (QSDE for short) driven

by the fermion field introduced by Barnett, Streater and Wilde [14] in noncommutative space

Lp(C ):

dXt = F (Xt, t)dWt + dWtG(Xt, t) +H(Xt, t)dt, t ≥ 0, (1.1)

which is closely related to the quantum noise, quantum fields etc. Quantum stochastic inte-

gration and quantum stochastic differentiation are actively used in quantum optics, quantum

measurement theory and quantum filtering theory [10, 11]. Therefore, it is significant in theory

and application to investigate QSDEs. The fermion field and the boson field are the two most

important quantum fields. These QSDEs driven by fermion fields and boson fields respectively,

can be uniformly understood as same framework of the Hudson and Parthasarathy’s quantum

stochastic calculus [19,24] in noncommutative spaces. There are many efforts to study solutions

∗This work is supported by National Natural Science Foundation of China.
†E-mail addresses: 201511240@mail.sdu.edu.cn(G. Jing), phwang@sdu.edu.cn(P. Wang),

202020244@mail.sdu.edu.cn(S. Wang).
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of QSDEs by many mathematicians [1, 4, 8, 9, 20, 23, 27, 30–32] and reference therein. In [22],

Hudson and Parthasarathy studied the unitary solution of a special class of QSDE

dU = U

∑
j

{LjdA− LjdA∗}+

iH− 1

2

∑
j

LjL
∗
j

 dt

 , U(0) = I. (1.2)

The weak solutions of the following QSDE

dMt = F (Mt, t)dAt + dA∗tG(Mt, t) +H(Mt, t)dt, t0 ≤ t ≤ T, (1.3)

with initial value condition Mt0 = Z was studied in [8, 25,26], where Mt is a weak solution if

Mtu =

(
Mt0 +

∫ t

t0

F (Ms, s)dAs +

∫ t

t0

dA∗sG(Ms, s) +

∫ t

t0

H(Ms, s)ds

)
u, t0 ≤ t ≤ T,

for any u ∈ D(Mt), where Mt is an unbounded operator with the domain D(Mt). In [29],

QSDE (1.3) is called the Heisenberg evolution of the Schödinger equation in the fermion field.

By using the isometry property of the Itô-Clifford stochastic integral in noncommutative space

L2(C ), Barnett, Streater and Wilde [14] considered the solution of QSDE (1.6) in finite time

horizon. Bishop, Okeke and Eka [12] discussed the existence and uniqueness of mild solution of

the quantum evolution equation. The aforementioned results are restricted to finite time horizon

cases. In this paper, we investigate the Lp-solution of QSDEs in infinite time horizon for p > 2.

The noncommutative Lp-spaces and associated Harmonic analysis have been deeply studied

in [17, 21, 34–37] and references therein. Let H be a separable complex Hilbert space. The

anti-symmetric Fock space over H is defined by

Λ(H ) =
∞⊕
n=0

Λn(H ),

where Λ0(H ) = C and Λn(H ) is the Hilbert space anti-symmetric n-fold tensor product of

H with itself. For any z ∈ H , the creation operator C(z) : Λn(H ) → Λn+1(H ) defined

by u 7→
√
n+ 1 z∧u, is a bounded operator on Λ(H ) with ‖C(z)‖ = ‖z‖. The annihilation

operator A(z) is the adjoint of C(z), i.e. A(z) = C(z)∗. The fermion field Ψ(z) is defined on

Λ(H ) by

Ψ(z) := C(z) +A(Jz),

where J : H → H is a conjugation operator (i.e., J is antilinear, antiunitary and J2 = 1).

Denote by C the von Neumann algebra generated by the bounded operators {Ψ(z) : z ∈ H }.
For the Fock vacauum 1 ∈ Λ(H ), define

m(·) := 〈1, ·1〉 (1.4)

on C . Obviously, m is a normal faithful state on C , and (Λ(H ),C ,m) is a quantum (noncom-

mutative) probability space by [38]. For any 1 ≤ p < ∞, define the noncommutative Lp-norm

on C by

‖f‖p := m(|f |p)
1
p = 〈1, |f |p1〉

1
p ,
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where |f | = (f∗f)
1
2 , then Lp(C ,m) is the completion of (C , ‖ ·‖p), which is the noncommutative

Lp-space, abbreviated as Lp(C ).

Now, let H = L2(R+), and J be the complex conjugation on L2(R+, ds). For given 0 ≤ t <
∞, define Ct to be the von Neumann subalgebra of C generated by{

Ψ(u) : u ∈ L2(R+), ess supp u ⊆ [0, t]
}
,

then {Ct}t≥0 is an increasing family of von Neumann subalgebras of C which is the noncommu-

tative analogue of filtration in stochastic analysis. Let

Wt := W (χ[0,t]) = Ψ(χ[0,t]) = C(χ[0,t]) +A(Jχ[0,t]), t ∈ R+, (1.5)

then {Wt : t ∈ R+} is the fermion analogue of Brownian motion adapted to the family {Ct : t ∈
R+}, which is called fermion Brownian motion.

In the rest of this paper, we mainly consider the following QSDE in infinite time horizon, dXt = F (Xt, t)dWt + dWtG(Xt, t) +H(Xt, t)dt, in [t0,∞),

Xt0 = Z,
(1.6)

where F (·, ·), G(·, ·), H(·, ·) : Lp(C ) × R+ → Lp(C ) are operator-valued functions and Z ∈
Lp(Ct0) for fixed p > 2. Since Wt is a bounded operator and F (x(t), t), G(x(t), t) ∈ Lp(C ) for

any t ∈ [t0,∞), they are not commuting.

Definition 1.1. A stochastic process X(·) : [t0,∞)→ Lp(C ) is called a solution of QSDE (1.6)

if it satisfies

Xt = Z +

∫ t

t0

F (Xs, s)dWs +

∫ t

t0

dWsG(Xs, s) +

∫ t

t0

H(Xs, s)ds, a.s. t ≥ t0.

Throughout the paper, we shall make the following assumptions.

Assumption 1.1. F (·, ·), G(·, ·), H(·, ·): Lp(C )× R+ → Lp(C ) are operator-valued functions

such that

(A1) F (·, ·), G(·, ·), H(·, ·) : Lp(C )× R+ → Lp(C ) are adapted.

(A2) For any x ∈ Lp(C ), F (x, ·), G(x, ·), H(x, ·) : R+ → Lp(C ) are continuous a.s..

(A3) Lipschitz condition: For any x1, x2 ∈ Lp(C ) and a.e. t ∈ [0,∞), there exists a constant

K such that

‖F (x1, t)− F (x2, t)‖p + ‖G(x1, t)−G(x2, t)‖p + ‖H(x1, t)−H(x2, t)‖p ≤ K‖x1 − x2‖p.

(A3’) Osgood condition: For any x1, x2 ∈ Lp(C ) and a.e. t ∈ [0,∞),

‖F (x1, t)− F (x2, t)‖2p + ‖G(x1, t)−G(x2, t)‖2p + ‖H(x1, t)−H(x2, t)‖2p ≤ ρ(‖x1 − x2‖2p),

where ρ : R+ → R+ is a continuous non-decreasing function with ρ(0) = 0, ρ(r) > 0 for

r > 0, such that
∫
0+

dr
ρ(r) = +∞.
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(A4) For any t ∈ [0,∞),

F (0, t) = G(0, t) = H(0, t) = 0, a.e..

Theorem 1.1. Under the above assumptions, for p > 2, there is a unique continuous adapted

Lp-solution {Xt}t≥t0 of the following quantum stochastic integral equation,

Xt = Z +

∫ t

t0

F (Xs, s)dWs +

∫ t

t0

dWsG(Xs, s) +

∫ t

t0

H(Xs, s)ds, t ≥ t0. (1.7)

Remark 1.1. The Burkholder-Gundy inequalities for noncommutative martingales of Pisier and

Xu have been used by Dirksen [18] to study the Lp-solution of QSDE with respect to any normal

Lp-martingale for p > 2 without the drift term
∫ t
t0
H(Xs, s)ds. Under this condition, the solution

of the QSDE is a martingale, so the Burkholder-Gundy inequalities can be used to study the

existence and uniqueness of Lp-solution. However, if the drift term exists, then the solution of

the QSDE (1.6) is not a martingale. Therefore, the Burkholder-Gundy inequalities are not used

to study the solution of QSDE (1.6) directly. In order to prove Theorem 1.1, we establish the

following inequality ∥∥∥∥∫ t

0
f(s)dWs

∥∥∥∥
p

≤ C(p)

(∫ t

0
‖f(s)‖2pds

) 1
2

, 0 ≤ t ≤ T, (1.8)

based on the Burkholder-Gundy inequalities and Minkowski-type inequality.

This paper is organized as follows. In Section 2, we recall some preliminaries on fermion

fields. Sections 3 and 4 are devoted to proving the existence and uniqueness of Lp-solutions

of QSDEs in finite time horizon and in infinite time horizon by classical Picard iteration and

Banach’s fixed-point theorem, respectively. In Section 5, we shall gain the self-adjointness and

the Markov property of the solution of QSDEs.

2 Preliminaries and the Burkholder-Gundy inequalities

In this section, we introduce the main techniques to solve problems later. We first recall

some notations and concepts [13–15,33,39,40] necessary to the whole paper.

Definition 2.1. A map X : R+ → Lp(C ) is said to be adapted if Xt ∈ Lp(Ct) for each t ∈ R+.

A map F : Lp(C )× R+ → Lp(C ) is said to be adapted if F (u, t) ∈ Lp(Ct), for any t ∈ R+ and

u ∈ Lp(Ct).

It is easy to verify that if X : R+ → Lp(C ) and F : Lp(C )×R+ → Lp(C ) are both adapted,

so is the map t 7→ F (Xt, t).

Definition 2.2. An adapted Lp-processes f on [t0, t] is said to be simple if it can be expressed

as

f =

n−1∑
k=0

f(tk)χ[tk,tk+1) (2.1)

on [t0, t] for t0 ≤ t1 ≤ · · · ≤ tn = t and f(tk) ∈ Lp(Ctk) for all 0 ≤ k ≤ n− 1.

4



By [13], the Itô-Clifford stochastic integral of any simple adapted Lp-process with respect to

fermion Brownian motion Wt is defined as follow.

Definition 2.3. If f =
∑
k

f(tk)χ[tk,tk+1) is a simple adapted Lp-processes on [t0, t], the Itô-

Clifford stochastic integral of f over [t0, t] with respect to Wt is∫ t

t0

f(s)dWs =
n−1∑
k=0

f(tk)(Wtk+1
−Wtk). (2.2)

For any p ≥ 2, let SpA(R+) be the linear space of all simple adapted Lp-processes, i.e.

SpA(R+) :=
{
f : R+ → Lp(C ), f is simple and adapted

}
.

Then, SpA([0, t]) is subspace of SpA(R+) whose processes vanish in (t,∞). It is clear that∫ t
t0
f(s)dWs is a Clifford Lp-martingale for any f ∈ SpA([0, t]), i.e.

E
(∫ t

t0

f(τ)dWτ

∣∣∣Cs) =

∫ s

t0

f(τ)dWτ , t0 ≤ s ≤ t.

For any f ∈ SpA([0, t]), let

‖f‖Hp([0,t]) := max


∥∥∥∥∥
(∫ t

0
|f(s)|2ds

) 1
2

∥∥∥∥∥
p

,

∥∥∥∥∥
(∫ t

0
|f(s)∗|2ds

) 1
2

∥∥∥∥∥
p

 ,

and the noncommutative Hardy space Hp([0, t]) be the completion of SpA([0, t]) with the norm

‖ · ‖Hp([0,t]). For simplicity, let Hploc(R
+) be the space of all stochastic processes f : R+ → Lp(C )

and χ[0,t]f ∈ Hp([0, t]). Moreover, we have the Burkholder-Gundy inequality (2.3) for the

Clifford Lp-martingale first established in [33].

Lemma 2.1. [33, Theorem 4.1] Let 2 ≤ p <∞. Then, for any f ∈ Hploc(R
+) and its Itô-Clifford

stochastic integral

Xt =

∫ t

0
f(s)dWs, t ≥ 0,

it holds that

α−1p ‖f‖Hp([0,t]) ≤ ‖Xt‖p ≤ βp‖f‖Hp([0,t]), t ≥ 0, (2.3)

where αp and βp are positive constants depend on p.

The stochastic integral (2.2) is also called right stochastic integral. Analogously, we can

define left stochastic integrals
∫ t
0 dWsf(s), and have the Burkholder-Gundy inequalities with

respect to left stochastic integrals.

Lemma 2.2. [18, Theorem 7.2] Let 1 < p < ∞. For any f ∈ Hploc(R
+), the left stochastic

integral
∫ t
0 dWsf(s) and right stochastic integral

∫ t
0 f(s)dWs are continuous Lp-martingales and

the following holds ∥∥∥∥∫ t

0
dWsf(s)

∥∥∥∥
p

'p ‖f‖Hp([0,t]) 'p
∥∥∥∥∫ t

0
f(s)dWs

∥∥∥∥
p

.
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By Lemma 2.1 and Lemma 2.2, the Itô-Clifford stochastic integral can be defined for any

element of Hp([0, t]), and the Burkholder-Gundy inequality (2.3) holds ture. Next, we define

several classes Banach spaces of adapted processes in noncommutative space Lp(C ). For any

interval [0, T ] ⊂ R+,

CA([0, T ];Lp(C )) :=
{
x(·) : [0, T ]→ Lp(C ) | x(·) is adapted process

and lim
s→t
‖x(s)− x(t)‖p = 0, 0 ≤ s, t ≤ T ]

}
.

It is easy to check that CA([0, T ];Lp(C )) is a Banach space equipped with the norm

‖x‖CA([0,T ];Lp(C )) = max
t∈[0,T ]

‖x(t)‖p.

For any 1 < p, q <∞, let LqA(0, t;Lp(C )) be the completion of SpA(R+) with the norm

‖f‖Lq
A(0,t;L

p(C )) =

(∫ t

0
‖f(s)‖qpds

) 1
q

, t ≥ 0.

Similarly, LpA(C ;Lq(0, t)) is the completion of SpA([0, t]) with the norm

‖f‖Lp
A(C ;Lq(0,t)) =

∥∥∥∥∥
(∫ t

0
|f(s)|qds

) 1
q

∥∥∥∥∥
p

, t ≥ 0.

As an application of Minkowski-type inequality, we give important inequalities on the above

Banach spaces.

Theorem 2.3. Let 1 < q ≤ p <∞. Then, for any f ∈ LqA(0, T ;Lp(C )),∥∥∥∥∥
(∫ t

0
|f(s)|qds

) 1
q

∥∥∥∥∥
p

≤
(∫ t

0
‖f(s)‖qpds

) 1
q

, 0 ≤ t ≤ T. (2.4)

Furthermore, LqA(0, T ;Lp(C )) ⊆ LpA(C ;Lq(0, T )).

Proof. Let

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = t

be an equal time partition of [0, t] where the mesh of the subdivision is l = t/n = tk+1 − tk,
k = 0, 1, · · · , n− 1. For simple adapted process

∑
k≥0

atkχ[tk,tk+1) of Lp(C ) where atk ∈ Lp(Ctk),

and any positive integer n, one has∥∥∥∥∥∥
(
n−1∑
k=0

|atk |
q(tk+1 − tk)

) 1
q

∥∥∥∥∥∥
p

= l
1
q

∥∥∥∥∥∥
(
n−1∑
k=0

|atk |
q

) 1
q

∥∥∥∥∥∥
p

= l
1
q

∥∥∥∥∥
n−1∑
k=0

|atk |
q

∥∥∥∥∥
1
q

p
q

. (2.5)

Since p
q ≥ 1, by Minkowski inequality [41, Theorem 5.2.2],∥∥∥∥∥

n−1∑
k=0

|atk |
q

∥∥∥∥∥
p
q

≤
n−1∑
k=0

‖|atk |
q‖ p

q
, n ∈ N+. (2.6)
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From (2.5) and (2.6), we have∥∥∥∥∥∥
(
n−1∑
k=0

|atk |
q(tk+1 − tk)

) 1
q

∥∥∥∥∥∥
p

≤

(
n−1∑
k=0

‖atk‖
q
p(tk+1 − tk)

) 1
q

.

Since SpA(R+) is dense in LpA(C ;Lq(0, T )),∥∥∥∥∥
(∫ t

0
|f(s)|qds

) 1
q

∥∥∥∥∥
p

≤
(∫ t

0
‖f(s)‖qpds

) 1
q

, 0 ≤ t ≤ T.

for any f ∈ LqA(0, T ;Lp(C )), and LqA(0, T ;Lp(C )) ⊆ LpA(C ;Lq(0, T )).

Actually, the inequality (2.4) holds for any 0 < q ≤ p < ∞. By Lemma 2.1 and Theorem

2.3, we build the key inequality for subsequent proof.

Corollary 2.4. Let p > 2. Then, for any f ∈ L2
A(0, T ;Lp(C )), there is positive constant C(p)

such that ∥∥∥∥∫ t

0
f(s)dWs

∥∥∥∥
p

≤ C(p)

(∫ t

0
‖f(s)‖2pds

) 1
2

, 0 ≤ t ≤ T. (2.7)

Moreover, L2
A(0, T ;Lp(C )) ⊆ Hp([0, T ]) and

‖f‖Hp([0,t]) ≤
(∫ t

0
‖f(s)‖2pds

) 1
2

, 0 ≤ t ≤ T. (2.8)

Proof. According to Theorem 2.3, for any f ∈ L2
A(0, T ;Lp(C )), one has∥∥∥∥∥

(∫ t

0
|f(s)|2ds

) 1
2

∥∥∥∥∥
p

≤
(∫ t

0
‖f(s)‖2pds

) 1
2

. (2.9)

Since ‖f(s)‖p = ‖f(s)∗‖p for any 0 ≤ s ≤ T ,

‖f‖Hp([0,t]) = max


∥∥∥∥∥
(∫ t

0
|f(s)|2ds

) 1
2

∥∥∥∥∥
p

,

∥∥∥∥∥
(∫ t

0
|f(s)∗|2ds

) 1
2

∥∥∥∥∥
p

 ≤
(∫ t

0
‖f(s)‖2pds

) 1
2

.

Combining with (2.3), we have (2.7) immediately.

Then, we state the parity of each element of Lp(C ). Let the parity operator P be automor-

phism map on von Neumann algebra C generated by bounded linear operators on Λ(H ) as is

in [13,15,33].

Definition 2.4. For any h ∈ Lp(C ), h is said to be odd if Ph = −h, h is said to be even if

Ph = h. And, h has definite parity if h is even or odd.

7



In fact, for any 1 < p <∞,

Lp(C ) = Lp(Co)⊕ Lp(Ce), (2.10)

where Lp(Ce), Lp(Co) denote the even part and the odd part, respectively. Accurately speaking,

for any h ∈ Lp(C ),

h =
h+ Ph

2
+
h− Ph

2
= he + ho,

where he and ho are even and odd, respectively. Since P is isometric on Lp(C ),

max {‖ho‖p, ‖he‖p} ≤ ‖h‖p ≤ ‖ho‖p + ‖he‖p. (2.11)

Let E denote the algebra of even polynomials in the fields {Ψ(u) : u ∈ H }, and let Ce

be W ∗-subalgebra of C generated by E . If h ∈ Lp(C ) is even there is a sequence {hn} in E

such that hn → h in Lp(C ), and therefore h∗n → h∗ in Lp(C ). It follows that h∗ is also even.

Similarly, if g is odd in Lp(C ), there is a sequence {gn} of odd polynomials in the fields with

gn → g and g∗n → g∗ in Lp(C ), that is, g∗ is odd as well. In addition, if h = h∗ in Lp(C ) and

h = he + ho, then he = h∗e and ho = h∗o in Lp(C ).

Lemma 2.5. [13, Lemma 3.15] Let {Wt}t≥t0 be a martingale adapted to the family {Ct; t ∈ R+}.
If h ∈ Lp(Ct0) has definite parity, then

h(Wt2 −Wt1) = ±(Wt2 −Wt1)h, t0 ≤ t1 ≤ t2

depending on whether h is even or odd.

Lemma 2.6. [28, Theorem 1.8.2 Bihari inequality] Let ρ : [0,+∞)→ [0,+∞) be a continuous

and non-decreasing function vanishing at 0 satisfying
∫
0+

dr
ρ(r) =∞. Suppose u(t) is a continuous

nonnegative function on [t0, T ] such that

u(t) ≤ u0 +

∫ t

t0

φ(r)ρ(u(r))dr, t0 ≤ t ≤ T, (2.12)

where u0 is a nonnegative constant and φ : [t0, T ]→ R+, then

u(t) ≤ U−1
(
U(u0) +

∫ t

t0

φ(r)dr

)
, t0 ≤ t ≤ T,

where U(t) =
∫ t
t0

1
ρ(r)dr, U

−1 is the convex function of U . In particular, u0 = 0, then u(t) = 0

for all t0 ≤ t ≤ T .

Lemma 2.7. [42, Lemma 2.5.14 Young’s convolution inequality] Let p ≥ 1. If f ∈ Lp(Rn), g ∈
L1(Rn), then

‖f ∗ g‖Lp(Rn) ≤ ‖f‖Lp(Rn)‖g‖L1(Rn).
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3 Lp-solutions of QSDEs in finite time horizon

In this section, we proved the existence and uniqueness of the Lp-solution with Osgood

condition and the stability of the Lp-solution with Lipschitz condition of QSDEs in finite time

horizon are proved for p > 2, respectively. The proof of Theorem 3.1 is similar to the classical

methods [14,18]. For the convenience of the reader, we give the proof in detail.

3.1 The existence and uniqueness of Lp-solutions of QSDEs

In this subsection, assumptions (A1), (A2) and (A3’) of Assumption 1.1 hold. The exis-

tence and uniqueness of Lp-solutions of QSDE (1.3) and QSDE (1.6) are proved.

Theorem 3.1. Under the assumptions of this subsection, QSDE (1.6) admits one and only one

solution X(·) ∈ CA([0, T ];Lp(C )).

Proof. We shall deal with the existence and uniqueness separately.

Existence: The proof of the existence is divided into three steps.

Step 1. The iteration sequence {X(n)
t }n≥0 is well-defined for any t0 ≤ t ≤ T . Let T > t0,

t0 ≤ t ≤ T be fixed. For any non-negative integer n, define X
(n)
t in Lp(C ) inductively by

X
(n+1)
t = Z +

∫ t

t0

F (X(n)
s , s)dWs +

∫ t

t0

dWsG(X(n)
s , s) +

∫ t

t0

H(X(n)
s , s)ds. (3.1)

Firstly, we claim that each X
(n)
t , n ≥ 1, defines an adapted Lp-continuous process on [t0, T ]

by induction. By assumption (A2) of Assumption 1.1, F (Z, s), G(Z, s) and H(Z, s) are Lp-

continuous with respect to s and belong to Lp(Cs) for t0 ≤ s ≤ T , then X
(1)
t is well-defined for

t0 ≤ t ≤ T . Furthermore, we can obtain the boundedness of X
(1)
t by the continuity on compact

sets and easily verify that t 7→ X
(1)
t is continuous: [t0, T ]→ Lp(C ).

Now, if X
(n)
t is assumed to be adapted and continuous, then F (X

(n)
t , t), G(X

(n)
t , t) and

H(X
(n)
t , t) are adapted, Lp-continuous and bounded on [t0, T ], thus X

(n+1)
t is adapted. For any

t0 ≤ t1, t2 ≤ T , by assumptions (A1) and (A2) of Assumption 1.1, Lemma 2.1, Lemma 2.2

and Hölder inequality,

‖X(n+1)
t1

−X(n+1)
t2

‖p

≤
∥∥∥∥∫ t2

t1

F (X(n)
s , s)dWs

∥∥∥∥
p

+

∥∥∥∥∫ t2

t1

dWsG(X(n)
s , s)

∥∥∥∥
p

+

∥∥∥∥∫ t2

t1

H(X(n)
s , s)ds

∥∥∥∥
p

≤ C(p)

(∫ t2

t1

‖F (X(n)
s , s)‖2pds

) 1
2

+ C(p)

(∫ t2

t1

‖G(X(n)
s , s)‖2pds

) 1
2

+ C(T )

(∫ t2

t1

‖H(X(n)
s , s)‖2pds

) 1
2

.

This implies that t 7→ X
(n+1)
t is Lp-continuous on [t0, T ]. Hence, we have proved our claim by

induction.
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Step 2. The sequence of iteration is convergent under the given conditions. For any t0 ≤
t ≤ T , by Minkowski-type inequality,

‖X(n+1)
t −X(n)

t ‖p

≤
∥∥∥∥∫ t

t0

{F (X(n)
s , s)− F (X(n−1)

s , s)}dWs

∥∥∥∥
p

+

∥∥∥∥∫ t

t0

dWs{G(X(n)
s , s)−G(X(n−1)

s , s)}
∥∥∥∥
p

+

∥∥∥∥∫ t

t0

{H(X(n)
s , s)−H(X(n−1)

s , s)}ds
∥∥∥∥
p

.

By similar analysis as above, the elementary inequality (a + b + c)2 ≤ 3(a2 + b2 + c2), Hölder

inequality and assumption (A3’) of Assumption 1.1, there exists a constant C such that

‖X(n+1)
t −X(n)

t ‖2p

≤ 3C(p)2
∫ t

t0

‖F (X(n)
s , s)− F (X(n−1)

s , s)‖2pds+ 3C(p)2
∫ t

t0

‖G(X(n)
s , s)−G(X(n−1)

s , s)‖2pds

+ 3C(T )2
∫ t

t0

‖H(X(n)
s , s)−H(X(n−1)

s , s)‖2pds

≤ C(p, T )

∫ t

t0

(
‖F (X(n)

s , s)− F (X(n−1)
s , s)‖2p + ‖G(X(n)

s , s)−G(X(n−1)
s , s)‖2p

+ ‖H(X(n)
s , s)−H(X(n−1)

s , s)‖2p
)
ds

≤ C(p, T )

∫ t

t0

ρ
(
‖X(n)

s −X(n−1)
s ‖2p

)
ds,

where C(p, T ) = 3 max{C(p)2, C(T )2}. Therefore, for any n, k ≥ 1, t0 ≤ t ≤ T ,

‖X(n+k)
t −X(n)

t ‖2p ≤ C(p, T )

∫ t

t0

ρ
(
‖X(n+k−1)

s −X(n−1)
s ‖2p

)
ds.

Since each X
(n)
t is Lp-continuous process on [t0, T ] for any n ∈ N+, ‖X(n)

t ‖p is uniformly bounded

on [t0, T ]. Set

un,k(t) = sup
t∈[t0,T ]

‖X(n+k)
t −X(n)

t ‖2p,

which is also uniformly bounded, then

un,k(t) ≤ C(p, T )

∫ t

t0

ρ(un−1,k(s))ds.

Let vn(t) = sup
k
un,k(t), t0 ≤ t ≤ T . Then,

0 ≤ vn(t) ≤ C(p, T )

∫ t

t0

ρ(vn−1(s))ds.

Denote

α(t) = lim
n→+∞

sup vn(t), t0 ≤ t ≤ T.
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Applying Lebesgue dominated convergence theorem, we get

0 ≤ α(t) ≤ C(p, T )

∫ t

t0

ρ(α(s))ds, t0 ≤ t ≤ T.

Hence, by Lemma 2.6, one deduces

α(t) = 0, t0 ≤ t ≤ T,

which implies that {X(n)
t }n≥0 is a Cauchy sequence in Lp(C ).

Step 3. X(·) ∈ CA([t0, T ];Lp(C )) is the solution of QSDE (1.6). Since {X(n)
t }n≥0 is a

Cauchy sequence in Lp(C ), there exists Xt ∈ Lp(C ) such that for any t0 ≤ t ≤ T

lim
n→∞

‖X(n)
t −Xt‖p = 0.

Then, for any ε > 0, there exists δ > 0 such that

‖Xt1 −Xt2‖p = ‖Xt1 −X
(n)
t1

+X
(n)
t1
−X(n)

t2
+X

(n)
t2
−Xt2‖p

≤ ‖Xt1 −X
(n)
t1
‖p + ‖X(n)

t1
−X(n)

t2
‖p + ‖X(n)

t2
−Xt2‖p

< ε, as n→∞, ∀ t1, t2 ∈ [t0, T ] satisfying |t1 − t2| < δ.

It shows that Xt is Lp-continuous and adapted on [t0, T ] since X
(n)
t is Lp-continuous and adapted.

We shall prove that {Xt}t≥t0 is the solution of

Xt = Z +

∫ t

t0

F (Xs, s)dWs +

∫ t

t0

dWsG(Xs, s) +

∫ t

t0

H(Xs, s)ds, a.s. t0 ≤ t ≤ T.

Indeed, ∥∥∥∥∫ t

t0

F (X(n)
s , s)dWs −

∫ t

t0

F (Xs, s)dWs

∥∥∥∥2
p

≤ C(p)2‖F (X(n)
s , s)− F (Xs, s)‖2Hp([t0,t])

≤ C(p)2
∫ t

t0

‖F (X(n)
s , s)− F (Xs, s)‖2pds

≤ C(p)2
∫ t

t0

ρ
(
‖X(n)

s −Xs‖2p
)
ds

→ 0, n→∞,

since X
(n)
s → Xs in Lp(C ) for any t0 ≤ s ≤ T and ρ is continuous. Similarly,∫ t

t0

dWsG(X(n)
s , s)→

∫ t

t0

dWsG(Xs, s) and

∫ t

t0

H(X(n)
s , s)ds→

∫ t

t0

H(Xs, s)ds

in Lp(C ). Taking limits on both sides of (3.1), it deduces that

Xt = lim
n→∞

X
(n+1)
t

= lim
n→∞

(
Z +

∫ t

t0

F (X(n)
s , s)dWs +

∫ t

t0

dWsG(X(n)
s , s) +

∫ t

t0

H(X(n)
s , s)ds

)
=Z +

∫ t

t0

F (Xs, s)dWs +

∫ t

t0

dWsG(Xs, s) +

∫ t

t0

H(Xs, s)ds.

11



That is, {Xt}t≥t0 is a solution for any t0 ≤ t ≤ T.
Uniqueness: Suppose that {Yt}t≥t0 is another adapted Lp-continuous solution with Yt0 = Z.

Then, by QSDE (1.6), we obtain

Yt = Z +

∫ t

t0

F (Ys, s)dWs +

∫ t

t0

dWsG(Ys, s) +

∫ t

t0

H(Xs, s)ds, a.s. t0 ≤ t ≤ T.

Furthermore, for any t0 ≤ t ≤ T ,

‖Xt − Yt‖p ≤
∥∥∥∥∫ t

t0

{F (Xs, s)− F (Ys, s)}dWs

∥∥∥∥
p

+

∥∥∥∥∫ t

t0

dWs{G(Xs, s)−G(Ys, s)}
∥∥∥∥
p

+

∥∥∥∥∫ t

t0

{H(Xs, s)−H(Ys, s)}ds
∥∥∥∥
p

.

Continuing to use the same technique as Step 2 of existence, we can yield that

‖Xt − Yt‖2p ≤ C(p, T )

∫ t

t0

ρ
(
‖Xs − Ys‖2p

)
ds, t0 ≤ t ≤ T.

It follows that,

‖Xt − Yt‖p = 0, a.s. t0 ≤ t ≤ T,

that is, the solution is unique. The proof is finished.

As described in [8], the Itô product rule dA(χ[0,t])dA
∗(χ[0,t]) = dt holds for any t ≥ 0. Based

on [16], let

ξt = α1A(uχ[0,t)) + α2A
∗(uχ[0,t)), t ≥ 0, α1, α2 ∈ C,

the stochastic integral
∫ t
0 f(s)dξs defines a quantum martingale for any f ∈ SpA(R+). Next,

let At := A(χ[0,t)), we study the properties of the Lp-solutions of QSDE (1.3) with respect

to the fermion creation process A(t) and annihilation process A(t)∗ on the basis of martingale

inequalities. From Lemma 2.5 and the canonical anti-commutation relation, we derive the

corresponding noncommutative Burkholder-Gundy inequalities.

Theorem 3.2. Let f : [0, T ] → Lp(C ) be adapted processes with p ≥ 2. Then, for any

0 ≤ t ≤ T ,
∫ t
0 f(s)dAs and

∫ t
0 dA

∗
sf(s) are Lp-martingales and∥∥∥∥∫ t

0
f(s)dAs

∥∥∥∥
p

≤ 2βp

(∫ t

0
‖f(s)‖2pds

) 1
2

,

∥∥∥∥∫ t

0
dA∗sf(s)

∥∥∥∥
p

≤ 2βp

(∫ t

0
‖f(s)‖2pds

) 1
2

.

(3.2)

Proof. First, we consider simple adapted Lp-process f ∈ SpA([0, T ]), then
∫ t
0 f(s)dAs and

∫ t
0 dA

∗
sf(s)

are Lp-martingales.

Let

0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tn = t

12



be a partition of [0, t]. Then,

Q(t) =

∫ t

0
f(s)dAs =

n−1∑
k=0

f(tk)
(
Atk+1

−Atk
)
,

Q(tk) =

k−1∑
i=0

f(ti)
(
Ati+1 −Ati

)
, k ∈ Z, 0 ≤ k ≤ n.

Define the martingale difference of Q(t) as

dQk = Q(tk+1)−Q(tk) = f(tk)(Atk+1
−Atk), k ∈ Z.

By Theorem 2.1 of [33], there exists βp such that

∥∥∥∥∫ t

0
f(s)dAs

∥∥∥∥
p

≤ βp max


∥∥∥∥∥∥∥
∑
k≥0
|dQk|2

 1
2

∥∥∥∥∥∥∥
p

,

∥∥∥∥∥∥∥
∑
k≥0
|dQ∗k|2

 1
2

∥∥∥∥∥∥∥
p

 . (3.3)

By the canonical anticommutation relation:

AtA
∗
t +A∗tAt = t, t ≥ 0,

one has

(At −As)(A∗t −A∗s) ≤ t− s, (A∗t −A∗s)(At −As) ≤ t− s, 0 ≤ s ≤ t. (3.4)

By means of (2.10), f = fe + fo for any f ∈ Lp(C ), so

∑
k≥0
|dQk|2 =

n−1∑
k=0

(
A∗tk+1

−A∗tk
)
f(tk)

∗f(tk)
(
Atk+1

−Atk
)

=

n−1∑
k=0

(fe(tk)
∗ − fo(tk)∗) (f(tk)− fo(tk))

(
A∗tk+1

−A∗tk
) (
Atk+1

−Atk
)

≤
n−1∑
k=0

(fe(tk)
∗ − fo(tk)∗) (f(tk)− fo(tk)) (tk+1 − tk)

=

∫ t

0
|fe(s)− fo(s)|2ds,

(3.5)

and ∑
k≥0
|dQ∗k|2 =

n−1∑
k=0

f(tk)(Atk+1
−Atk)(A∗tk+1

−A∗tk)f∗(tk)

≤
n−1∑
k=0

f(tk)f(tk)
∗(tk+1 − tk)

=

∫ t

0
|f(s)∗|2ds,

(3.6)

where the above two inequalities are based on Lemma 2.5 and (3.4).
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Substituting (3.5) and (3.6) into the right side of (3.3) and applying Theorem 2.3, we get

∥∥∥∥∫ t

0
f(s)dAs

∥∥∥∥
p

≤ βp max


∥∥∥∥∥
(∫ t

0
|f(s)∗|2ds

) 1
2

∥∥∥∥∥
p

,

∥∥∥∥∥
(∫ t

0
|fe(s)− fo(s)|2ds

) 1
2

∥∥∥∥∥
p


≤ βp max

{(∫ t

0
‖f(s)∗‖2pds

) 1
2

,

(∫ t

0
‖fe(s)− fo(s)‖2pds

) 1
2

}
.

From (2.11), ∥∥∥∥∫ t

0
f(s)dAs

∥∥∥∥
p

≤ 2βp

(∫ t

0
‖f(s)‖2pds

) 1
2

, 0 ≤ t ≤ T. (3.7)

Similarly, one has ∥∥∥∥∫ t

0
dA∗sf(s)

∥∥∥∥
p

≤ 2βp

(∫ t

0
‖f(s)‖2pds

) 1
2

, 0 ≤ t ≤ T. (3.8)

Finally, (3.2) can be obtained by (3.7) and (3.8) directly since the general adapted Lp-

processes can be approximated by simple processes.

As an immediate consequence of Theorem 3.1 and Theorem 3.2, we have the following result.

Corollary 3.3. Under the assumptions of this subsection, there is a unique solution M(·) ∈
CA([t0, T ];Lp(C )) of QSDE (1.3) with initial condition Mt0 = Z ∈ Lp(Ct0) on [t0, T ].

If Lipschitz condition (A3) substitutes for Osgood condition (A3’) in Theorem 3.1 and

Corollary 3.3, then the existence and uniqueness of Lp-solution of QSDE (1.3) and QSDE (1.6)

are obvious.

3.2 The stability of Lp-solutions of QSDEs

In this subsection, we shall prove that the solutions of QSDE (1.3) and QSDE (1.6) are

stable, namely, small changes in the initial condition Z and in the coefficients F, G and H with

Lipschitz condition lead to small changes in the solutions over a given finite time horizon [t0, T ]

when assumptions (A1), (A2), (A3) of Assumption 1.1 hold.

Let {Xt}t≥t0 , {Yt}t≥t0 be the solution of QSDE (1.6) with initial conditions Xt0 = Z and

Yt0 = Z
′

for any Xt0 , Yt0 ∈ Lp(Ct0), respectively. The solution Xt is stable under the changes

in the initial condition as follows:

Theorem 3.4. Given that the above conditions hold, for any ε > 0, there exists δ > 0 such that

if ‖Z − Z ′‖p < δ, then ‖Xt − Yt‖p < ε for all t0 ≤ t ≤ T .
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Proof. Similar to the analysis Theorem 3.1,

‖X(n+1)
t − Y (n+1)

t ‖2p ≤4‖Z − Z ′‖2p + 4C(p, T )
(∫ t

t0

‖F (X(n)
s )− F (Y (n)

s )‖2pds

+

∫ t

t0

‖G(X(n)
s )−G(Y (n)

s )‖2pds+

∫ t

t0

‖H(X(n)
s )−H(Y (n)

s )‖2pds
)

≤4‖Z − Z ′‖2p + 4C(p, T )

∫ t

t0

‖X(n)
s − Y (n)

s ‖2pds.

Since lim
ε→0
‖Z − Z ′‖p = 0, by Lemma 2.6,

lim
ε→0
‖X(n+1)

t − Y (n+1)
t ‖2p = 0, a.s. t0 ≤ t ≤ T.

Setting n→∞, we conclude that

lim
ε→0
‖Xt − Yt‖2p = 0, a.s. t0 ≤ t ≤ T.

The result is our desired.

In a similar manner, we can get the convergence theorem.

Theorem 3.5. Let F, G, H, Fn, Gn, Hn, for n = 1, 2, · · · , satisfy assumptions (A1), (A2)

and (A3) of Assumption 1.1, and Wt be as in (1.5). Assume that Fn → F, Gn → G, Hn → H

in Lp(C ) as n→∞, uniformly on Lp(C )× [t0, T ], and the initial condition Zn → Z in Lp(Ct0).

Then Xn(t)→ X(t) in Lp(C ) uniformly on compact set [t0, T ], where X(t) is the solution of the

QSDE  dX(t) = F (X(t), t)dWt + dWtG(X(t), t) +H(X(t), t)dt, in [t0, T ],

X(t0) = Z,

and Xn(t) is the corresponding solution with F,G,H,Z replaced by Fn, Gn, Hn, Zn respectively.

Likewise, by Lemma 3.2 and Corollary 3.3, we can obtain the results related to QSDE (1.3).

Corollary 3.6. With the above assumptions, the Lp-solution M(·) ∈ CA([0, T ];Lp(C ) of QSDE

(1.3) is stable on [t0, T ] when initial condition Mt0 = Z ∈ Lp(Ct0) and the coefficients change

slightly, respectively.

In this section, the initial condition Xt0 of QSDE (1.6) is replace by Xt0 = Z +R(X) where

R(·) : Lp(C )→ Lp(C ) constitutes the nonlocal condition. That is, dXt = F (Xt, t)dWt + dWtG(Xt, t) +H(Xt, t)dt, in [t0, T ],

Xt0 = Z +R(X).
(3.9)

Furthermore, R is continuous and adapted and there exists a constant 0 < C(R) < 1 such that

‖R(x1)−R(x2)‖p ≤ C(R)‖x1 − x2‖p, ∀ x1, x2 ∈ Lp(C ). (3.10)

Theorem 3.1, Theorem 3.4 and Theorem 3.5 hold. Similarly, Corollary 3.3 and Corollary 3.6

also hold if nonlocal condition Mt0 = Z +R(M) of QSDE (1.3) replaces of the initial condition

Mt0 = Z.
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4 Lp-solutions of QSDEs in infinite time horizon

Based on the analysis of Section 3, this section is devoted to proving the existence and

uniqueness of Lp-solution and the dependence of Lp-solutions on initial value and coefficients of

QSDE (1.6) for p > 2 whose integral form is

Xt = Xt0 +

∫ t

t0

F (Xs, s)dWs +

∫ t

t0

dWsG(Xs, s) +

∫ t

t0

H(Xs, s)ds, t ≥ t0, (4.1)

provided that assumptions (A1), (A2), (A3) and (A4) of Assumption 1.1 hold in infinite time

horizon.

Firstly, we introduce the special linear spaces of infinite time horizon whose values belong

to noncommutative space Lp(C ). Let 1 ≤ p, q <∞ and µ ∈ R be fixed. Define

Lq,µ(0,∞;Lp(C )) :=

{
f : [0,∞)→ Lp(C )

∣∣∣f is measurable,

∫ ∞
0

eqµt‖f(t)‖qpdt <∞
}
,

and

Lq,µA (0,∞;Lp(C )) :=
{
f : [0,∞)→ Lp(C )

∣∣∣f ∈ Lq,µ(0,∞;Lp(C )) and f(·) is adapted
}
.

Lemma 4.1. Fix µ ∈ R with KH
µ +

(KF+KG)βp√
2µ

<∞. Then for any Xt, X
′
t ∈ L

2,−µ
A (t0,∞;Lp(C )),

it holds that(∫ ∞
t0

e−2µt
∥∥∥∥∫ t

t0

{F (Xs, s)− F (X
′
s, s)}dWs

∥∥∥∥2
p

dt

) 1
2

≤ βpKF√
2µ

(∫ ∞
t0

e−2µt‖Xt −X
′
t‖2pdt

) 1
2

,

(4.2)(∫ ∞
t0

e−2µt
∥∥∥∥∫ t

t0

dWs{G(Xs, s)−G(X
′
s, s)}

∥∥∥∥2
p

dt

) 1
2

≤ βpKG√
2µ

(∫ ∞
t0

e−2µt‖Xt −X
′
t‖2pdt

) 1
2

,

(4.3)

and(∫ ∞
t0

e−2µt
∥∥∥∥∫ t

t0

{H(Xs, s)−H(X
′
s, s)}ds

∥∥∥∥2
p

dt

) 1
2

≤ KH

µ

(∫ ∞
t0

e−2µt‖Xt −X
′
t‖2pdt

) 1
2

. (4.4)

Proof. By (2.7), one has∥∥∥∥∫ t

t0

{F (Xs, s)− F (X
′
s, s)}dWs

∥∥∥∥
p

≤ βp
(∫ t

t0

‖F (Xs, s)− F (X
′
s, s)‖2pds

) 1
2

, t ≥ 0.
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Combining with Lemma 2.7 and assumption (A3) of Assumption 1.1, we have(∫ ∞
t0

e−2µt
∥∥∥∥∫ t

t0

{F (Xs, s)− F (X
′
s, s)}dWs

∥∥∥∥2
p

dt

) 1
2

≤
(∫ ∞

t0

e−2µtβ2p

∫ t

t0

‖F (Xs, s)− F (X
′
s, s)‖2pdsdt

) 1
2

≤
(∫ ∞

t0

e−2µtβ2pK
2
F

∫ t

t0

‖Xs −X
′
s‖2pdsdt

) 1
2

=

(
β2pK

2
F

∫ ∞
t0

∫ t

t0

e−2µ(t−s)e−2µs‖Xs −X
′
s‖2pdsdt

) 1
2

≤ βpKF

(∫ ∞
t0

e−2µtdt

∫ ∞
t0

e−2µt‖Xt −X
′
t‖2pdt

) 1
2

=
e−µt0βpKF√

2µ

(∫ ∞
t0

e−2µt‖Xt −X
′
t‖2pdt

) 1
2

.

Similarly, by Theorem 2.3, Lemma 2.2 and Lemma 2.7,(∫ ∞
t0

e−2µt
∥∥∥∥∫ t

t0

dWs{G(Xs, s)−G(X
′
s, s)}

∥∥∥∥2
p

dt

) 1
2

≤
(∫ ∞

t0

e−2µtβ2p

∫ t

t0

‖G(Xs, s)−G(X
′
s, s)‖2pdsdt

) 1
2

≤ e−µt0βpKG√
2µ

(∫ ∞
t0

e−2µt‖Xt −X
′
t‖2pdt

) 1
2

.

From assumption (A3) of Assumption 1.1, Hölder inequality and Lemma 2.7, we get(∫ ∞
t0

e−2µt
∥∥∥∥∫ t

t0

{H(Xs, s)−H(X
′
s, s)}ds

∥∥∥∥2
p

dt

) 1
2

≤

(∫ ∞
t0

e−2µt
(∫ t

t0

‖H(Xs, s)−H(X
′
s, s)‖pds

)2

dt

) 1
2

≤

(∫ ∞
t0

e−2µtK2
H

(∫ t

t0

‖Xs −X
′
s‖pds

)2

dt

) 1
2

=

(∫ ∞
t0

K2
H

∫ t

t0

e−µ(t−s)e−µs‖Xs −X
′
s‖2pdsdt

) 1
2

≤
(∫ ∞

t0

e−µtdt

)(∫ ∞
t0

e−2µt‖Xt −X
′
t‖2pdt

) 1
2

=
e−µt0KH

µ

(∫ ∞
t0

e−2µt‖Xt −X
′
t‖2pdt

) 1
2

.

The proof is complete.
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On the basis of the above lemma, we define

λX := inf

{
λ ∈ R

∣∣∣∣ e−λt0 (βp(KF +KG)√
2λ

+
KH

λ

)
≤ 1

}
∈ R. (4.5)

We now give the existence and uniqueness of Lp-solution of QSDE (1.6) in infinite horizon time.

Theorem 4.2. Let µ ∈ (λX ,∞). Then for any initial condition Xt0 ∈ Lp(C ), QSDE (1.6)

admits a unique adapted solution X(·) ∈ L2,−µ
A (t0,∞;Lp(C )). Further, the following estimate

holds (∫ ∞
t0

e−2µt‖Xt‖2pdt
) 1

2

≤ Cµ
1√
2µ
‖Xt0‖p, (4.6)

where

Cµ :=
1

eµt0 − KH
µ −

βp(KF+KG)√
2µ

.

Proof. Let us prove the existence and uniqueness of the solution by Banach’s fixed-point theorem.

Firstly, we define a map Ψ : L2,−µ
A (t0,∞;Lp(C ))→ L2,−µ

A (t0,∞;Lp(C )) by

Ψ(X)(t) := Xt0 +

∫ t

t0

F (Xs, s)dWs +

∫ t

t0

dWsG(Xs, s) +

∫ t

t0

H(Xs, s)ds, t ≥ t0,

for each X(·) ∈ L
2,−µ
A (t0,∞;Lp(C )). By Lemma 4.1, the map Ψ is well-defined. Let X ′(·), X(·) ∈

L2,−µ
A (t0,∞;Lp(C )) be fixed. Then(∫ ∞

t0

e−2µt‖Ψ(X)(t)−Ψ(X ′)(t)‖2pdt
) 1

2

≤

(∫ ∞
t0

e−2µt
∥∥∥∥∫ t

t0

{F (Xs, s)− F (X
′
s, s)}dWs

∥∥∥∥2
p

dt

) 1
2

+

(∫ ∞
t0

e−2µt
∥∥∥∥∫ t

t0

dWs{G(Xs, s)−G(X
′
s, s)}

∥∥∥∥2
p

dt

) 1
2

+

(∫ ∞
t0

e−2µt
∥∥∥∥∫ t

t0

{H(Xs, s)−H(X
′
s, s)}ds

∥∥∥∥2
p

dt

) 1
2

≤ e−µt0
(
βp(KF +KG)√

2µ
+
KH

µ

)(∫ ∞
t0

e−2µt‖Xt −X
′
t‖2pdt

) 1
2

.

Since µ ∈ (λX ,∞) with λX ∈ R defined by (4.7), it holds that e−µt0
βp(KF+KG)√

2µ
+ KH

µ < 1. It

shows that Ψ is a contraction map on the Banach space L2,−µ
A (t0,∞;Lp(C )). Hence, there is a

unique fixed point X(·) ∈ L
2,−µ
A (t0,∞;Lp(C )) of Ψ, which is the solution of the equation (4.1).

By the same calculation, we can deduce that(
1− e−µt0

(
βp(KF +KG)√

2µ
+
KH

µ

))(∫ ∞
t0

e−2µt‖Xt‖2pdt
) 1

2

≤ ‖Xt0‖p
(∫ ∞

t0

e−2µtdt

) 1
2

,

which implies (4.6).
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Based on Theorem 3.2 and Lemma 4.1, let

λM := inf

{
λ ∈ R

∣∣∣∣ e−λt0 (2βp(KF +KG)√
2λ

+
KH

λ

)
≤ 1

}
∈ R. (4.7)

Corollary 4.3. Given that the above assumptions hold, µ ∈ (λM ,∞) and initial condition Mt0 ∈
Lp(C ), QSDE (1.3) admits a unique adapted solution M(·) ∈ L

2,−µ
A (t0,∞;Lp(C )). Furthermore,

the following estimate holds(∫ ∞
t0

e−2µt‖Mt‖2pdt
) 1

2

≤ Cµ
1√
2µ
‖Mt0‖p, (4.8)

where

Cµ :=
1

eµt0 − KH
µ −

2βp(KF+KG)√
2µ

.

Meanwhile, we get the dependence of Lp-solutions on initial value and coefficients.

Theorem 4.4. Let F ′, G′ and H ′ satisfy assumption as above, µ ∈ (λX ,∞) and X ′t0 be given.

If X ′(·) ∈ L
2,−µ
A (t0,∞;Lp(C )) is the solution of QSDE (1.6) corresponding to (X ′t0 , F

′, G′, H ′),

then(∫ ∞
t0

e−2µt‖X ′t −Xt‖2pdt
) 1

2

≤ Cµ
(∫ ∞

t0

e−2µt
(
‖X ′t0 −Xt0‖p +

∥∥∥∥∫ t

t0

{F ′(X ′s, s)− F (Xs, s)}dWs

∥∥∥∥
p

+

∥∥∥∥∫ t

t0

dWs{G′(X ′s, s)−G(Xs, s)}
∥∥∥∥
p

+

∥∥∥∥∫ t

t0

{H ′(X ′s, s)−H(Xs, s)}ds
∥∥∥∥
p

)2
dt
) 1

2
.

(4.9)

Proof. Since X ′(·) ∈ L
2,−µ
A (t0,∞;Lp(C )) is the solution of the equation (4.1) corresponding to

(X ′t0 , F
′, G′, H ′),

X ′t = X ′t0 +

∫ t

t0

F ′(X ′s, s)dWs +

∫ t

t0

dWsG
′(X ′s, s) +

∫ t

t0

H ′(X ′s, s)ds, t ≥ t0. (4.10)

Let X(·) = X(·) −X ′(·). From (4.1) and (4.10),

Xt = Xt0 +

∫ t

t0

F (Xs, s)dWs +

∫ t

t0

dWsG(Xs, s) +

∫ t

t0

H(Xs, s)ds, t ≥ t0,

where

Xt0 =X ′t0 −Xt0 +

∫ t

t0

{F ′(X ′s, s)− F (X ′s, s)}dWs

+

∫ t

t0

dWs{G′(X ′s, s)−G(X ′s, s)}+

∫ t

t0

{H ′(X ′s, s)−H(X ′s, s)}ds,

F (Xs, s) = F (X ′s, s)− F (Xs, s), G(Xs, s) = G(X ′s, s)−G(Xs, s),

H(Xs, s) = H(X ′s, s)−H(Xs, s).
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By the same calculation as (4.6), we can obtain(∫ ∞
t0

e−2µt‖Xt‖2pdt
) 1

2

≤ Cµ
(∫ ∞

t0

e−2µt‖Xt0‖2pdt
) 1

2

≤ Cµ
(∫ ∞

t0

e−2µt
(
‖X ′t0 −Xt0‖p +

∥∥∥∥∫ t

t0

{F ′(X ′s, s)− F (X ′s, s)}dWs

∥∥∥∥
p

+

∥∥∥∥∫ t

t0

dWs{G′(X ′s, s)−G(X ′s, s)}
∥∥∥∥
p

+

∥∥∥∥∫ t

t0

{H ′(X ′s, s)−H(X ′s, s)}ds
∥∥∥∥
p

)2
dt
) 1

2
.

The proof is complete.

Corollary 4.5. Under the Corollary 4.3, let F ′, G′ and H ′ satisfy assumptions as above, and

M ′t0 be given. If M ′(·) ∈ L2,−µ
A (t0,∞;Lp(C )) is the solution of QSDE (1.3) in infinite time

horizon corresponding to (M ′t0 , F
′, G′, H ′), then(∫ ∞

t0

e−2µt‖M ′t −Mt‖2pdt
) 1

2

≤ Cµ
(∫ ∞

t0

e−2µt
(
‖M ′t0 −Mt0‖p +

∥∥∥∥∫ t

t0

{M ′(X ′s, s)−M(Xs, s)}dAs
∥∥∥∥
p

+

∥∥∥∥∫ t

t0

dA∗s{G′(M ′s, s)−G(Ms, s)}
∥∥∥∥
p

+

∥∥∥∥∫ t

t0

{H ′(M ′s, s)−H(Ms, s)}ds
∥∥∥∥
p

)2
dt
) 1

2
.

5 The Self-adjointness and Markov Property

In this section, we discuss the self-adjointness and Markov property of Lp-solutions of QSDE

(1.6) for p > 2. In order to prove the self-adjointness of Lp-solution, together with the description

of parity in Section 2, we first give an auxiliary lemma.

Lemma 5.1. Let F : [0, T ]→ Lp(C ) be adapted and satisfy
∫ t
0 ‖F (s)‖2pds <∞. Suppose further

that F (t) = F (t)∗ ∈ Lp(Ce) for each 0 ≤ t ≤ T . Then
∫ t
0 F (s)dWs is self-adjoint element of

Lp(C ), and
∫ t
0 F (s)dWs =

∫ t
0 dWsF (s).

Proof. It is sufficient to consider the case that F (t) is simple with values in E for any 0 ≤ t ≤ T .

Since F is simple, F (t) =
n−1∑
k=0

F (tk)χ[tk,tk+1)(t) and

∫ t

0
F (s)dWs =

n−1∑
k=0

F (tk)(Wtk+1
−Wtk),

where {tk}nk=0 is a partition of interval [0, t].
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On the other hand, F (t) and Wt are hermitian for any t ≥ 0, then(∫ t

0
F (s)dWs

)∗
=

(
lim
n→∞

n−1∑
k=0

F (tk)(Wtk+1
−Wtk)

)∗

=
n−1∑
k=0

(
Wtk+1

−Wtk

)∗
F (tk)

∗

=

n−1∑
k=0

(
Wtk+1

−Wtk

)
F (tk)

=

∫ t

0
dWsF (s).

Since F (t) is even for any 0 ≤ t ≤ T , by Lemma 2.5,(
Wtk+1

−Wtk

)
F (tk) = F (tk)

(
Wtk+1

−Wtk

)
, ∀ F (tk) ∈ Lp(Ce).

Then,
∫ t
0 dWsF (s) =

∫ t
0 F (s)dWs. It is obvious that

∫ t
0 F (s)dWs is self-adjoint element in Lp(C )

by virtue of
∫ t
0 ‖F (s)‖2pds <∞ and Corollary 2.4. The proof is complete.

Let Lp(C )sa denote the self-adjoint part of Lp(C ). Let Fi, Gi : Lp(C )sa → Lp(C ), (i = 1, 2)

be adapted and each Fi be an even function. Set

F̃i(h) = Fi(ho), G̃i(h) = G(he), ∀ h ∈ Lp(C )sa.

Evidently, F̃i(h), G̃i(h) (i = 1, 2) are even by Lemma 4.1 of [14] for any h ∈ Lp(C )sa. Let

Φ̃i := F̃i + G̃i, i = 1, 2.

It is seen that Φ̃i satisfies the Osgood conditions and maps self-adjoint elements of Lp(C ) into

self-adjoint elements of Lp(Ce). Then, we have the self-adjointness of the solutions of QSDEs.

Theorem 5.2. Let Φ̃1, Φ̃2 be as above. Let H̃ : Lp(C )sa → Lp(C ) be adapted and satisfy Osgood

conditions on Lp(C ) in Assumption 1.1. Thus, for any Z = Z∗, there is a unique self-adjoint,

adapted, Lp-continuous solution {Xt}t≥t0 of the following QSDE

dXt = Φ̃1(Xt)dWt + dWtΦ̃2(Xt) + H̃(Xt)dt, t ≥ t0 (5.1)

with initial condition Xt0 = Z.

Proof. Since Φ̃1, Φ̃2, H̃ satisfy the Osgood conditions (A3’) as in Assumption 1.1, it follows

from Theorem 3.1 that QSDE (5.1) admits a unique Lp-continuous, adapted solution {Xt}t≥t0
such that

Xt = Z +

∫ t

t0

Φ̃1(Xs)dWs +

∫ t

t0

dWsΦ̃2(Xs) +

∫ t

t0

H̃(Xs)ds, a.s. t ≥ t0.
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Next, it is enough to prove the self-adjointness of the solution of QSDE (5.1). We can define

the following integral equation by inductively with Xt0 = Z,

X
(n+1)
t = Z +

∫ t

t0

Φ̃1(X
(n)
s )dWs +

∫ t

t0

dWsΦ̃2(X
(n)
s ) +

∫ t

t0

H̃(X(n)
s )ds. (5.2)

To prove the self-adjointness of Xt, it is sufficient to show that X
(n+1)
t is self-adjoint by induction

for all n ≥ 0. It is obvious thatX
(1)
t is self-adjoint since Z = Z∗. Assume thatX

(n)
t is self-adjoint,

then Φ̃i(X
(n)
s ) ∈ Lp(Ce) ∩ Lp(Cs)sa. By Lemma 5.1,

∫ t
t0

Φ̃1(X
(n)
s )dWs and

∫ t
t0
dWsΦ̃2(X

(n)
s ) are

self-adjoint. In addition,
∫ t
0 H(X

(n)
s )ds is also self-adjoint. Hence, X

(n+1)
t is self-adjoint. Then,

the fact that Xt is self-adjoint for any t ≥ t0 is easily proved, and the proof by iteration is similar

to Theorem 3.1.

Theorem 5.2 also holds when the initial condition Xt0 = Z is replaced by nonlocal condition

Xt0 = Z +R(X) as described in Section 3 .

This result of self-adjointness of Lp-solutions is the basis for the study of studying optimal

control problems of QSDEs. The Markov property is another important property of stochastic

processes. Accardi, Frigerio, Lewis and their co-authors [2, 3, 5–7] have done a series of works

on Markov properties of quantum Markov processes. Next, we discuss Markov property of

the solution of the QSDEs by the transition probability which is consistent with Theorem 2.2,

Corollary 2.3 and Corollary 2.4 of [15].

For any interval I ⊆ [t0,∞), let AI denote the W ∗-algebra generated by 1 and the solution

Xt of QSDE (1.6) for t ∈ I, and write As for A[s,s]. Since the solution Xt is adapted, i.e.

Xt ∈ Lp(Ct) for all t ≥ t0, it follows that AI is a W ∗-subalgebra of Ct whenever I ⊆ [t0, t].

Let ÃI = AI ∨ β(AI) be the W ∗-subalgebra of C generated by AI and β(AI). It is clear that

β(ÃI) = Ã and Ãs ⊆ Cs for any s ≥ t0.
Next, we denote the algebra generated by field differences. Let Fs denote the W ∗-subalgebra

of C generated by the field differences {Wτ −Ws : t0 ≤ s ≤ τ}, Ãs ∨Fs be the W ∗-subalgebra

of C generated by Ãs and Fs. Thus, β(Ãs ∨ Fs) = Ãs ∨ Fs. Then, we obtain the Markov

property of the adapted solution {Xt}t≥t0 of QSDE (1.6).

Theorem 5.3. Let assumptions (A1), (A2) and (A3) of Assumption 1.1 hold and {Xt}t≥t0 be

an adapted, unique, continuous Lp-solution of QSDE (1.6), then Xs ∈ Lp(Ãs ∨ Fs) for all

t0 ≤ s ≤ t. Moreover, the process {Xt}t≥t0 is a Markov process in the following sense: for any

s ≥ t0 and f ∈ L
p
2 (Ã[s,∞)), one has

m(f |Ã[t0,s]) = m(f |Ãs), (5.3)

where m(·|B) denotes the conditional expectation with respect to the subalgebra B of C .

The proof of Theorem 5.3 is similar to Theorem 2.2 of [15]. Furthermore, the result for the

solution {Mt}t≥t0 of QSDE (1.3) also holds.
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6 Conclusion

In this paper, we have used some useful inequalities such as Hölder inequality, the non-

commutative Burkholder-Gundy inequalities, Bihari inequality and Picard approximation to

obtain the existence and uniqueness of solution of QSDEs driven by the fermion field in non-

commutative space Lp(C ). Moreover, the stability, dependence on initial value and coefficients,

self-adjointness and Markov property are developed for QSDEs. This paper will play a key role

in studying optimal control problem of quantum control system for future work.

References
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[30] K.R. Parthasarathy, Quantum Itô’s formula, Rev. Math. Phys. 1, 89-112 (1989).

[31] K.R. Parthasarathy, An introduction to quantum stochastic calculus, Monographs in Math-

ematics, 1992.

[32] K.R. Parthasarathy, K.B. Sinha, Stochastic integral representation of bounded quantum

martingales in Fock space, J. Funct. Anal. 67, 126-151 (1986).

[33] G. Pisier, Q. Xu, Non-Commutative Martingale Inequalities, Comm. Math. Phys. 189,

667-698 (1997).

[34] I.E. Segal, A Non-Commutative Extension of Abstract Integration, Ann. of Math. 57(3),

401-457 (1953).

[35] I.E. Segal, Tensor algebras over Hilbert spaces. I, Trans. Amer. Math. Soc. 81, 106-134

(1956).

[36] I.E. Segal, Tensor algebras over Hilbert spaces. II, Ann. of Math. 63(1), 160-175 (1956).

[37] I.E. Segal, Algebraic integration theory, Bull. Amer. Math. Soc. 71, 419-489 (1965).

[38] M. Takesaki, Conditional expectation in von Neumann algebras, J. Funct. Anal. 9, 306-321

(1972).

[39] I.F. Wilde, The free fermion field as a Markov field, J. Funct. Anal. 15, 12-21 (1974).

[40] I.F. Wilde, Quantum martingales and stochastic integrals, Quantum probability and appli-

cations, III (Oberwolfach, 1987), Lecture Notes in Math. 1303, 363-373 (1988).

[41] Q. Xu, T.N. Bekjan, Z. Chen, Introduction to Operator Algebra and Non-commutative Lp

Space, vol. 134, Sciencep, Beijing, 2010.

[42] G. Zhang, M. Guo, Functional Analysis, Peking University Press, Beijing, 2006.

25


	Introduction
	Preliminaries and the Burkholder-Gundy inequalities
	Lp-solutions of QSDEs in finite time horizon
	The existence and uniqueness of Lp-solutions of QSDEs
	The stability of Lp-solutions of QSDEs

	Lp-solutions of QSDEs in infinite time horizon
	The Self-adjointness and Markov Property
	Conclusion

