
P
os
te
d
on

23
A
u
g
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
69
27
75
93
.3
78
91
05
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Dynamic Texture Model for Eye Blinking Re-identification under

Partial Occlusion

Cheng-You Hu1, Shih-Kai Tai1, Wei-Syuan Lee1, Hsuan-Yu Liu1, Yung-Hui Lin1, and
Huang-Chia Shih1

1Yuan Ze University

August 23, 2023

Abstract

In this study, an eye blinking re-identification system was proposed. A fast local binary pattern was used for feature extraction

because its grayscale invariance and rotational invariance allow for the effective acquisition of feature information even in the

presence of noise. Finally, a recurrent neural network and long short-term memory were used for model training. The results

indicated that, compared with the model trained using static data, the models based on dynamic features were less affected by

environmental noise in terms of accuracy. In addition, the model trained using the recurrent neural network was highly effective

in identifying unenrolled users and achieved high overall accuracy.
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In this study, an eye blinking re-identification system was proposed. A 

fast local binary pattern was used for feature extraction because its 

grayscale invariance and rotational invariance allow for the effective 

acquisition of feature information even in the presence of noise. Finally, 

a recurrent neural network and long short-term memory were used for 

model training. The results indicated that, compared with the model 

trained using static data, the models based on dynamic features were less 
affected by environmental noise in terms of accuracy. In addition, the 

model trained using the recurrent neural network was highly effective in 

identifying unenrolled users and achieved high overall accuracy.   

 

1.  Introduction: A major challenge in face recognition for identification 

is compromised identification accuracy as a result of occluded features. 

For example, face masks conceal the lower half of the face, and bangs 

may conceal a quarter of the face. Such incomplete facial information 

may result in a lower accuracy and a higher false acceptance rate 

compared with when complete facial information is available. Therefore, 

this study used various data models and feature descriptions to enhance 

the available facial data surrounding the eyes. The analysis of eye blink 

artifacts, most studies are focused on the viewpoints of signal processing 

in scalp electroencephalogram (EEG) recording [1], [2]. Vision-based 

approaches also utilized to detect the eye blink event [3] and the eye state 

classifier for virtual reality headsets [4]. In biometric identification, 

reduced recognition accuracy due to missing feature information is 

considered the least desirable scenario and must be avoided. To increase 

the accuracy of identification with occlusion, contemporary researchers 

have increased the number of training and prediction levels through 

networks such as deep convolutional neural networks (CNNs), 16-layer 

visual geometry group networks, and 50-layer residual neural networks 

[5], [6]. Although only few studies have used dynamic time-series data 

to differentiate individual features, dynamic models have demonstrated 

superior performance in terms of classifying and detecting abnormalities 

compared with static models and have been applied in industrial 

classification and defect identification [7].  

    Based on our observations, current research focuses on feature 

enhancement and comparison using static data or emphasizes algorithm 

speed. This study proposes a method that will place more emphasis on 

the use of dynamic texture temporal data for achieving re-identification 

application. The proposed method in this study will mainly be applied to 

biometric unlocking, identify verification, and facial recognition. This 

study will prioritize the evaluation of differences in reliability and 

accuracy. Furthermore, considering the application on mobile devices, 

the proposed method will also focus on developing a method that 

maintains prediction confidence and accuracy without being affected by 

various environmental factors such as lighting intensity, lighting angles, 

day-night variations, color temperature, etc. Based on the above 

statements, the objectives of this study can be summarized as follows: 

 Propose a model that uses temporal data capturing the dynamic 

texture variations around the eye during blinking behavior to 

enhance the accuracy of re-identification under mask-wearing 

conditions. 

 Utilize the differences in blinking behavior as individual feature 

enhancements to reduce the probability of misidentifying unknown 

individuals as known individuals. 

 Compare different feature descriptors to evaluate their impact on 

model decision-making under various environmental noise caused 

by changing factors. 

 Based on the above points, compare and summarize the more 

efficient and accurate combination of features and the advantages 

of dynamic texture features over static ones in practical applications. 

 

2. Methodology: In this study, OpenCV was used to convert facial 

information captured by cameras into a matrix. This matrix was then 

imported into the MediaPipe Face Mesh module, which uses machine 

learning to infer the three-dimensional facial surface. This module is  

 
Fig. 1 Flowchart of the system. 

 

capable of estimating 468 three-dimensional face landmarks in real time, 

even on mobile devices with only a camera input, and does not require a 

dedicated depth sensor. 

   Throughout the pipeline, a lightweight model architecture is used along 

with graphics processing unit acceleration to achieve real-time 

performance critical to live experiences [8]. However, face masks that 

partially cover these 468 landmarks may prevent data collection from 

certain features. Therefore, this study collected coordinate data from 

points on the face that considerably vary when the mask wearer blinks, 

are not covered by the mask, and are representative of the face. A total of 

52 sets of coordinates were used as the reference point for feature 

collection. For each frame, features were collected using each of these 

points as the center to extract images within the 15 × 15-pixel area of 

each center point as the database for subsequent use. 

    2.1 Data Acquisition: Blinking was defined in accordance with the eye 

aspect ratio [9], [10]. For training purposes, the dynamic data length was 

set to 50 frames, meaning that each blink was expected to appear in the 

(25 ± 4)th frame of each group of dynamic data. Therefore, a matrix was 

established to continuously store the segmented images of the mask 

wearer’s face. Each frame had a timestamp. To prevent memory overload, 

all data that entered the matrix for more than 2 seconds were deleted by 

the system. When the system detected a blink, the data obtained 1 second 

before and after the blink were extracted. Because of the variability of the 

frame rate in the hardware and camera, the system continuously deleted 

the first and then the final data points in each data group until the data 

length reached 50 frames. This process was conducted for each data 

group, which was then used in subsequent feature descriptions. Figure 2 

depicts the overall data model. 

   2.2 Texture Feature Representation: The facial identification 

technology has become mature, with numerous edge-computing devices 

capable of performing standalone recognition. Regarding the applications 

in facial verification or re-identification, the mesh-based method can be 

employed to analyze the entire face if computational cost is not the major 

issue. However, for usage on mobile devices with limited computational 

power, lightweight algorithms are necessary. Furthermore, considering 

the issue of facial occlusion, especially when users are wearing masks, 

only the eye portion is visible. Therefore, this study proposes the use of 

motion texture features to enhance the feature dimensionality and 

maintain a low false positive rate. In this approach, each frame of video 

sequence is analyzed separately, and a model-based facial feature point 

detection method is employed instead of feature point matching to 

establish correlations between patches. Using feature point matching for 

adjacent frames would be more complex and chaotic, requiring additional 

anti-noise techniques such as random sample consensus (RANSAC) [11] 

algorithm and non-maximum suppression (NMS) [12] method to perform 

correspondence. Such a system would entail significant computational 

resources. Instead, this study adopts simple and well-known texture 

descriptors to extract texture features as the foundation for feature 

analysis. To eliminate external noise and irrelevant image information 

introduced during the segmentation of the original images, feature 

extraction was performed to reduce the dimensionality of the training 
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Fig. 2 Depicts the overall data model. 

 
(a)                                             (b) 

Fig. 3 RNN model training curve based on LBP feature description, (a) 

Accuracy training curve, (b) Loss training curve. 

 
(a)                                             (b) 

Fig. 4 Bidirectional LSTM model training curve based on LBP feature 

description, (a) Accuracy training curve, (b) Loss training curve. 

 

data. The extraction procedure enhanced the critical information, reduced 

the hardware load, and accelerated the training process. In addition, local 

binary pattern (LBP) [13] and histogram of gradient (HoG) [14] 

descriptors were used to represent the texture features. 

    2.2.1 LBP descriptor: The LBP descriptor is originally used to describe 

the local feature operators of images. Its advantages include grayscale 

invariance and rotational invariance. In LBP feature description, a center 

pixel is used as a threshold, which is then compared to the neighboring 

pixels, with those greater than the center pixel value marked as 1 and 

those lower than the center pixel value marked as 0, to create a binary 

pattern. Finally, the established patterns are classified and rearranged into 

histograms, with each pattern corresponding to a single bin. 

   2.2.2 HoG descriptor: In HoG feature description, the appearance and 

shape of local targets in images are typically well described with the 

distributions of gradient or edge orientation densities even when the 

accurate relative gradient or edge positions are unknown. The translation 

invariance of the histogram contributes to its effectiveness in reflecting 

changes in lighting and shadows. HoG descriptors produce features that 

summarize the measurement distribution within an image area and are 

particularly effective in identifying textures with variable shapes. 

   2.3 Model Training: In this study, time-series data were used to reflect 

dynamic feature changes, and a recurrent neural network (RNN) and 

bidirectional long short-term memory (LSTM) were used to train a time-

series model. For comparison, another model was established by training 

static data with the conventional CNN. 

2.3.1 RNN training: During the time-series data training process, an 

RNN was selected because of its light weight. The training data set 

comprised 450 dynamic data points (150 for each of the three individuals 

whose identity was registered). The model training process was then 

conducted using the hyperparameter of a 0.0005 learning rate, a binary 

cross-entropy loss function, and an Adam optimizer. The training epoch 

and batch size were set to 50 and 8, respectively. Figure 3 depicts the 

accuracy and loss curve of the training process. 

2.3.2 Bidirectional LSTM: During the bidirectional LSTM training 

process, the same data set and training parameters adopted in RNN 

 
(a)                                                (b) 

Fig. 5 CNN model training curve based on static data LBP feature 

description, (a) Accuracy training curve, (b) Loss training curve. 

 
(a)                                                             (b) 

Fig. 6 Results of identification, (a)enrolled user identification, 

(b)unenrolled user identification. 

Algorithm I: Identify Re-identification 

Input : Data 

Output : Verification 

1 : D  Data 

2 : RP  Registered Data 

3 : S  Shape of Data 

4 : MD  Model Prediction 

5 : V  Verification 

6 : L  Lengith (F) 

7 : D  Reshape(Data, S[Frame], Sx * Sy* Sz)/255 

8 : MD  Predict(D) 

9 : if MD is registered AND MD confidence >0.9 then 

10 :  V  RP[MD] 

11 : else 

12:  V  Fasle 

13 : end if 

 

training were used. Figure 4 shows the accuracy and loss curve of the 

training process. 

2.3.3 Static CNN model: The CNN model, which is based on static data, 

was subjected to CNN training for two-dimensional reconstruction using 

LBP-segmented data. The training set comprised 750 images (250 for 

each of the three registered users). The model parameters used were the 

same as those employed in RNN training, and EarlyStopping callback 

was used to prevent overfitting. Figure 5 depicts the accuracy and loss 

curve of the training process. 

2.4. Identification and Removal of Unenrolled Users: To achieve 

identity verification, the user is required to provide facial information 

input to the camera. This information is then subjected to image 

segmentation, with the data being accessed and the features being 

extracted. The model then provides a confidence value for each label, 

which the system uses to calculate the average confidence as a threshold 

to determine whether the user’s identity has been registered in the 

database. In this study, the average confidence was 90%, indicating that 

any user with a label whose confidence value exceeded the 90% threshold 

was considered a registered user. By contrast, users with all of their label 

confidence values below the 90% threshold did not pass the identification 

step and were deemed unenrolled users. Figures 6 and Algorithm I depict 

the verification procedure and the computational details, respectively. 

3. Experimental Results:  

3.1. Identification Accuracy of Dynamic and Static Models with 

Different Feature Descriptors:  

3.1.1. Experimental procedures: The purpose of this experiment was to 

determine how noise-containing data affect static and dynamic models 

and how feature descriptors handle these data. During the experiment, 

noise was created by changing the lighting intensity, lighting angle, and 

ambient color temperature and rotating the image. The experiment was  
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Table 1: Architecture of training model for CNN. 

Model Accuracy (%) Average Confidence (%) 

Dynamic LBP-RNN 95.6 92.1 

Dynamic LBP-BILSTM 93.3 99.4 

Dynamic HoG-BILSTM 71.1 98.8 

Static LBP-CNN 72.6 86.4 

Table 2: Test results based on 90 noise-containing and 90 optimal-

environment data points. 

Model Accuracy (%) Average Confidence (%) 

Dynamic LBP-RNN 97.8 95.0 

Dynamic LBP-BILSTM 96.7 99.6 

Dynamic HoG-BILSTM 85.6 99.1 

Ststic LBP-CNN 86.3 91.8 

Table 3: Confusion matrix of the dynamic LBP-LSTM model. 

 Forecast known Forecast unknown 

Actually known 88 2 

Actually unknown 55 5 
 

Sensitivity 0.98 Precision 0.62 

Specificity 0.08 F1 score 0.76 

Table 4: Confusion matrix of the dynamic LBP-RNN model. 

 Forecast known Forecast unknown 

Actually known 80 10 

Actually unknown 0 60 
 

Sensitivity 0.89 Precision 1.00 

Specificity 1.00 F1 score 0.94 

Table 5: Confusion matrix of the static LBP-RNN model. 

 Forecast known Forecast unknown 

Actually known 69 21 

Actually unknown 24 36 
 

Sensitivity 0.76 Precision 0.74 

Specificity 0.60 F1 score 0.75 

conducted on two stages. The first stage involved the collection of 90 

noise-containing data points to test the ability of the model to accurately 

identify the three registered users and determine the average confidence 

in the presence of a large amount of noise. The second stage involved the 

collection of another 90 data points in an optimal environment into the 

original data set, with a total of 180 data points, for the same test. 

3.1.2 Experimental results: As shown in Tables 1 and 2, the model 

identified features with dynamic data and effectively reduced the 

influence of noise on the identification results. Therefore, for face 

identifiers to be mounted on mobile devices, factors such as the angle, 

the intensity of ambient lighting, and day and night lighting must be 

considered. Accordingly, in variable environments, dynamic data are 

expected to outperform static data. According to the results from Table 4 

and Table 5, it can be observed that the use of dynamic texture features 

with the LBP descriptor yields results approximately 20% higher than 

static features. The highest performance is achieved using the RNN 

model. However, when utilizing the HoG descriptor for dynamic texture 

features, the effectiveness seems to be worse than static features. This is 

likely due to the low resolution of facial images. The LBP method, which 

employs a more localized and dense texture representation, is better at 

preserving the original texture characteristics. On the other hand, using 

the HoG texture descriptor increases the likelihood of overlapping 

between patches, leading to distorted feature values, especially during 

moments of eye blinking. 

3.2. Identifying Enrolled and Unenrolled User Data with Dynamic and 

Static Models:  

3.2.1 Experimental procedures: During the experiment, two test data 

sets were used to compare the performance of the dynamic and static 

models. The first data set comprised 90 enrolled user data points, 

including both optimal-environment and noise-containing data. The 

second data set comprised 60 unenrolled user data points. The confidence 

threshold was set to 90%. Data with a model-predicted confidence value 

exceeding 90% were categorized as enrolled user data; otherwise, they 

were categorized as unenrolled user data. Both LBP-LSTM and LBP-

RNN models, which demonstrated superior identification performance in 

the first experiment, were compared to the static LBP-CNN model. On 

the basis of the experimental results, data instantiation was then 

performed using confusion matrices for an objective evaluation of the 

differences and respective advantages of dynamic and static data. 

3.2.2 Experimental results: According to the sensitivity results 

presented in Tables 3, 4, and 5, both dynamic models were less likely 

than the LBP-CNN model to misidentify enrolled users as unenrolled 

users. In terms of specificity, the LBP-LSTM model had a relatively high 

likelihood of misidentifying unenrolled users as enrolled users. However, 

compared with the LBP-CNN model, the LBP-RNN model made fewer 

such errors. The LBP-RNN model had the highest F1-score, at 0.94. 

Therefore, to prevent unenrolled users from passing the identity 

verification step and accessing the system, the LBP-RNN model was 

selected. In addition, taking into account both safety against unenrolled 

users and the accuracy of correctly identifying enrolled users, the LBP-

RNN model, which demonstrated the highest specificity and second-

highest accuracy, was selected as the model of choice. 

 

4. Conclusions: This study proposed a method for verifying a user’s 

identity when their forehead and facial features below the nose are both 

obscured and when noise is present. Dynamic data were used with a 

variety of descriptors and various training methods for model training. 

The established models were then evaluated and compared to a model 

constructed using static data. The experiments involved the models 

identifying users whose faces were partially obscured by relying on 

feature changes surrounding their eyes. In terms of identification 

accuracy by feature descriptors and the identification of both enrolled and 

unenrolled users, the dynamic data outperformed the static data. During 

the test that was entirely based on noise-containing data, the dynamic data 

effectively mitigated the influence of noise on the identification results. 

In addition, compared with the LBP-CNN model, the dynamic models, 

particularly the LBP-RNN model, had greater performance in terms of 

eliminating unenrolled users. In conclusion, given the ability of the 

dynamic-data-based LBP-RNN model to identify users correctly despite 

the presence of noise and partial occlusion and its ability to prevent 

unenrolled users from accessing the system, this model achieves optimal 

safety and precision. 
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