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ABSTRACT 

Composing the use case description, which comes in the form of a textual table, is an essential and critical task 

while developing software. Usually, this process results from manually extracting the actors and their use cases 

and defining other essential information like the flow of events for each use case. This paper proposes a new 

Intelligent Computer Aided Software Engineering (I-CASE) tool to automatically generate use case descriptions 

and use case diagrams from user requirements by utilisation of the pre-trained GPT-3 and BERT Large Language 

Model (LLM). 

The evaluation showed the tool’s ability to outperform previous studies in creating use case descriptions based on 

high accuracy in extracting actors and their use cases from text written in natural English. 

While there is a lack of test cases, especially in natural languages other than English, this is the first use of the 

Large Language Model (LLM) to automate the generation of use case descriptions and draw the use case 

diagrams. 
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1. Introduction 

Effective communication between clients and software analysts is crucial for successful software 

development as misunderstandings resulting from ambiguous language can lead to poor software 

functionality and project failure [1]. Collecting complete and precise requirements is an essential but 

challenging task in software engineering (SE), with errors often remaining concealed until later stages 

of the Software Development Life Cycle (SDLC) [2]. The precise definition of software requirements 

by using a systematic modelling approach of system specifications from a functional (use case) 

perspective can help software development teams to create software that meets the needs of all 

stakeholders, including end-users and clients, and prevent any misunderstandings that could lead to 

project failure [3]. 

Use case descriptions are crucial to software engineering, particularly in object-oriented software 

requirements engineering. The development of these descriptions entails identifying actors and their 

corresponding use cases, which are the external entities interacting with the system, such as humans, 

systems, companies, or devices, and the system behaviours [4]. The process of identifying actors and 

use cases produces the requirement specification document that serves as a foundation for subsequent 

software development phases, such as design, testing, and validation [5]. Each use case description 

typically consists of several key elements, including the use case name, actors, preconditions, 

postconditions, and flow of events [6]. 

The use case name provides a brief, descriptive title that reflects the goal of the interaction. Actors 

represent the external entities participating in the use case, while preconditions specify any conditions 

that must be met before initiating the use case. Postconditions outline the expected state of the system 

after the successful completion of the use case. The flow of events details the sequence of steps and 
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interactions between the system and the actors, leading to the desired outcome   [6]. An example of the 

use case description is shown in Fig 1. 

 
Fig 1: Use Case Description Example 

In most software development projects, the extracting of use cases is generally done manually by system 

analysts, who use the user requirements to develop use case models [7]. However, as software 

development becomes increasingly complex, automating the process of requirements engineering 

becomes a growing need, to create comprehensive and more accurate functional requirements 

specifications while speeding up the process as well. Automated tools are needed that can parse user 

requirement documents, automate extracting actors, and use cases. Extracting use cases is a form of 

extracting information from text, which is automated using the increasingly prevalent Natural Language 

Processing (NLP) approach  [8].  

This paper aims to automate the extraction of actors and use cases from user requirements and the 

generation of use case descriptions. To achieve this, we propose a tool that utilizes the pre-trained 

Bidirectional Encoder Representation from the Transformers (BERT), and the Generative Pre-trained 

Transformer 3 (GPT-3) to extract actors and use cases and to generate the use case description.  

BERT and GPT are two of the most influential NLP models developed in recent years. Both models are 

based on transformer architecture and have made significant contributions to the field of NLP by 

achieving state-of-the-art results on a wide range of tasks  [9]. 

BERT is a deep learning model that was developed by Google and was first introduced in 2018 by 

Devlin et al.  [10]. Unlike previous NLP models, BERT [11] is bidirectional, meaning it can consider a 

word’s pre- and post-context in each sequence. This allows a better understanding of the meaning of 

words and sentences and produces more accurate predictions. BERT is highly effective in a variety of 

NLP tasks, such as sentiment analysis, NER, question answering, sentence classification, and SRL  [11]  

[12]. 

GPT, on the other hand, is a generative model that can generate new high-quality natural language text 

that is like the text it was trained on  [13]. OpenAI introduced GPT in 2018, and since then it has achieved 

state-of-the-art results on a variety of NLP tasks, such as language modelling, text completion, and 

machine translation  [14]. Unlike BERT, GPT is not bidirectional, but it still deeply understands 

language structure and can generate coherent and meaningful text  [15]. Both BERT and GPT are pre-

trained on large corpora of text data, which allows them to learn the underlying structure of language 

and develop a deep understanding of natural language. This pre-training is then fine-tuned on specific 

NLP tasks, making them highly effective for a wide range of applications  [9].  

The research approach used in this paper starts with the study of related works and passes through 

proposing a tool, testing, and reporting the results of the proposed tool, evaluating the proposed tool, 

and ending with a conclusion. 



2. Related Works 

Previous research studies employed several methods to automatically extract actors and use cases from 

the natural language requirements, one of which involved utilizing business models. In one such 

approach, Dijkman et al.  [16] presented an approach that derived functional requirements specifications 

(use case diagram) from business process models. The meta-models were established for both business 

process models & use case diagrams and compared to derive a formal mapping that serves as the 

foundation of their approach.  

Another approach was proposed by Giachetti et al.  [17], which utilized a model-based digital 

engineering process that involves recording all program data in machine-readable models. The aim is to 

replace the extensive written requirement specifications traditionally generated during new systems' 

development.  

NLP is a vital tool for comprehending the text of software requirements. It leverages techniques like 

text analytics and text mining to perform this task. Many researchers used NLP tools to extract actors 

and cases. For example, Hyder et al.  [18] proposed an approach called LESSA based on NLP. This 

approach involves conducting lexical and syntactic analysis to generate use case diagrams from software 

requirement text. Similarly, Deeptimahanti et al.  [19] presented an approach that utilizes NLP tools to 

create use case diagrams from user requirements. Their approach is designed to break down complex 

requirements into simpler ones, streamlining the process of generating use case diagrams. 

Part of Speech (POS) tagging is a subfield of NLP that involves classifying words in a text as lexical 

terms. This technique utilizes NLP methods to identify the POS of each word, such as noun, verb, 

adjective, etc., in a sentence. Alksasbeh  [20] presented an approach that leverages POS to create use-

case diagrams. The proposed method identifies POS from sentences and applies specific grammatical 

patterns to label them, thereby enabling the identification of actors and use cases. Following this, a 

stemming algorithm and heuristic rules are applied to specify actors and use cases and subsequently 

generate the use case diagram. Likewise, Arman et al.  [21] used Stanford Parser to parse user 

requirements. The method extracts a list of verbs and nouns from the text, which can then be used as 

actors and use cases in generating use case diagrams. 

Imam et al.  [22] introduced a novel approach that combines NLP with ANN to improve the software 

requirement elicitation process. They used an NLP parser to produce lexicons, syntaxes, and 

dependencies. The combination of ANN and NLP in their approach improved the accuracy of the POS 

tagging and allowed for better identification of actors and use cases. Similarly, Jebril et al. [7] developed 

an approach utilizing the thematic role principle to extract use cases and actors. This technique is a 

linguistic domain used to analyse the text from a semantic level. They automated the process of 

extracting the actors and actions utilizing thematic roles. Imam et al.  [23] proposed an approach to 

extract the actors and use cases from user requirements by training Support Vector Machine (SVM). 

They utilized POS tagging and Name Entity Recognition (NER) to label the different words in the 

software requirements text and SVM to classify them in the user functional requirement text. 

However, these approaches have several limitations, including difficulty in identifying complex 

sentence structures, inability to capture the context of the text, and limited semantic understanding  [24] 

[8] [25]. Moreover, traditional techniques, such as lexical and syntactic analysis, have been used, but 

they may not be sufficient for complex tasks such as generating use case descriptions. 

As a conclusion from these previously reported related works, modern pre-trained adapter models such 

as BERT and GPT-3, which have emerged as game-changers in NLP  [26], have not yet been used to 

achieve use case description configuration and extract actors and their use cases. In this study, a pre-

trained GPT-3 model (to generate a use case description) and a BERT model (to accomplish the SRL 

process) are used to develop a new Intelligent Computer Aided Software Engineering (I-CASE)  tool 

[27]. This tool aims to overcome the limitations of existing approaches used in generating use case 

descriptions and extracting the actors and their use cases as will be explained in the following sections. 



3. The Proposed Use-Case Description Generator Based on Transformer 

Models  

The proposed Use-Case Description Generator Based on Transformer Models (UCDGT) tool has been 

developed using the Python programming language and the PyQt5 library. The purpose of the tool is to 

extract actors and use cases from a given text and generate both the use case diagram and the use case 

description.  

As shown in Fig 2, the UCDGT tool performs several steps to analyze a given text. First, it tokenizes 

the text and identifies each token's POS tags. The tool extracts the modal verbs from the POS tags. Then, 

the tool loads an SRL prediction model from Allennlp and applies it to the text. Using the NLTK library, 

the tool extracts the base form of the verbs and their associated arguments from the SRL prediction. 

Next, the tool iterates through the extracted verbs and retrieves their corresponding arguments. The tool 

skips any modal verbs and uses the remaining verbs to generate use cases and actors. Then, it generates 

the use case diagram from the extracted actors and use cases. Finally, the tool leverages OpenAI's GPT-

3 to generate a description for each resulting use case. 

 

Fig 2: Flow Diagram of the UCDGT Tool 

The tool has been designed as a graphical user interface (GUI) application, enabling users to input text, 

extract relevant information, and view the results. The tool includes two tabs; the first tab is used to 

extract actors, use cases, and generate the use case diagram and descriptions, while the second tab is 

used to extract the SRL. Fig 3 provides snapshots of the tool's interface for SRL Tab and use case 

Extraction Tab, respectively. 

  
Fig 3. Snapshot of SRL Tab and Snapshot of use case Extraction Tab 

 



 

As mentioned above, the UCDGT tool utilizes various NLP libraries, including NLTK and AllenNLP, 

to perform text processing and analysis. Additionally, it incorporates OpenAI's GPT-3 to generate a 

description for the extracted use cases. To draw the resulting use case diagram, Graphviz, a library for 

generating graphs and diagrams, is utilized. The libraries used in the UCDGT tool are: 

• PyQt5: This is a library for creating desktop applications with a GUI. This library is used to create 

the GUI for our tool. 

• Natural Language Toolkit (NLTK): This library is used to tokenize the sentence and identify the 

part-of-speech tags. In our tool, it is used to extract the modal verbs to be excluded. 

• Allennlp: This library for NLP provides pre-trained models for various NLP tasks. It is used to 

load the structured prediction SRL model and parse the text. 

• Openai: This library provides access to OpenAI's artificial intelligence models and tools. This 

library is used to generate the use case description for the resulting use cases using GPT-3. 

• Graphviz: A library for generating graphs and diagrams; it is used to draw the use case diagram. 

The UCDGT tool combines a pre-trained BERT model for SRL (AllenNLP-SRL) and GPT-3 (Text-

Davinci-003) to extract actors, use cases, and the use case description from a given text. The tool first 

tokenizes the input sentence, identifies the part-of-speech tags for each token, and extracts the modal 

verbs from the tags. It then uses a pre-trained SRL model to parse the sentence and extract the base form 

of the verb and its arguments. The code then filters out model verbs and uses the remaining verbs to 

construct use cases and actors in addition to generate a description for the extracted use cases using 

GPT-3. 

3.1 Extracting Actors and Use Cases 

In this step, we use an SRL model to extract actors and use cases from given sentences. First, the SRL 

model is loaded, and the sentence is passed through the model to extract the base form of the verb and 

its arguments. Then, the arguments are processed for each extracted verb, and the actors are stored 

separately from the use cases. The arguments are categorized into two types - ARG0 and ARG1. ARG0 

represents the actor or the entity that acts, and the use case is formed by combining the base verb and 

the argument represented by (ARG1). Fig 4 illustrates the pseudocode used for extracting actors and use 

cases from a sentence. 

 
Fig 3: The Pseudocode for Extracting Actors and Use-Cases 

3.2 Generating the Use Case Description  

This step involves utilizing OpenAI's GPT-3 model to generate the use case description for each 

extracted use case identified in the previous step. Fig 5 illustrates the pseudocode for generating a use 

case description for each extracted use case. A carefully crafted prompt is created, instructing the GPT-

3 model to produce a use case description based on the extracted use case. Several parameters need to 

be specified to ensure the GPT-3 model generates the desired output. The following is a brief explanation 

of the parameters used in the GPT-3 model for developing use case descriptions: 



• Prompt: The input prompt or query for the model to generate a response to. In our study, the prompt 

is formulated to request a use case description for each use case extracted in the previous step. 

• Engine: The specific GPT-3 model to use. In this study, the text-DaVinci-003 engine is used, which 

is the most powerful and expensive one offered by OpenAI. 

• Max_tokens: The maximum number of tokens (words or symbols) allowed in the generated output. 

This parameter is used to limit the length of the generated description. 

• n: The number of completions to generate. This parameter determines the number of alternative 

descriptions generated by the model. 

• Stop A string or list of strings that cause the model to stop generating further text when encountered 

in the generated output. In this study, none is used to allow the model to generate the full description 

without stopping prematurely. 

• Temperature: A parameter that controls the randomness or creativity of the generated output. A 

lower temperature value leads to more conservative and predictable text, while a higher value can 

lead to more imaginative and varied text. A value of 0.5 is used in this study, which is a relatively 

moderate level of randomness. 

 
Fig 4: Pseudocode to Generate Use Case Description 

Once the prompt and parameters have been configured, the GPT-3 model is executed, generating a use 

case description for the extracted use case. This description then fills the corresponding fields in the use 

case description table. The process is automatically repeated for each extracted use case, creating a 

comprehensive set of use case descriptions derived from the initial text input. 

3.3 Generating Use Case Diagram 

In this step, the process of generating the use case diagram begins by initializing a new Graphviz graph 

object, which serves as the foundation for building the use case diagram. The primary loop iterates 

through the list of verbs and their base forms, extracted earlier in the process. For each verb, the code 

evaluates whether it is a modal verb. If it is, the loop skips the current verb and proceeds to the next one 

in the sequence. 

When encountering a non-modal verb, the code extracts the corresponding arguments (ARG0 and 

ARG1) from the verb's tags and prediction words. ARG0 typically represents the actor, while ARG1 

signifies the object involved in the use case. If the verb does not have an ARG0, it is skipped, and the 

loop continues with the following verb. 

The use case is generated by concatenating the base verb and the ARG1, while the actors are extracted 

from ARG0. The results are then appended to the 'results' list, which will store the extracted use cases 

and actors for further processing. 

For each extracted use case and its corresponding actors, the code creates nodes in the Graphviz graph 

object. An edge is added between the actor node and the use case node, representing their relationship 

in the diagram. 



Upon completion of the loop, the code generates a use case diagram by creating nodes for the actors and 

use cases and edges to represent their relationships. The Graphviz graph object is then rendered and 

displayed as an image, visually representing the extracted use cases and actors from the input text. Fig 

6 illustrates the pseudocode for generating the use case diagram. 

 
Fig 5: Pseudocode to Generate Use Case Diagram 

4. Testing and Results 

This step aims to assess the UCDGT system and report the results gained from this testing. The testing 

was accomplished on the two functions of the UCDGT system, which are the extracting of the use case 

and actors, and the generating of the use case description.  

4.1 The Experiments on Extracting Actors and Use Cases  

To evaluate the classification performance of the tool, we conducted testing on four case studies 

covering a variety of industries and use cases. Each case study was manually reviewed and analyzed to 

extract the actors, and use cases, which were then compared with the results generated by the tool. The 

following provides an overview of each case study's testing and result. 

4.1.1 Case Study 1- A Food Delivery Application 

The description of the food delivery application is shown in Fig 7. The UCDGT tool successfully 

extracted all the actors and use cases in this case study very closely to the results of manual extraction, 

with only minor differences in structure. Table 1 shows the results obtained from the UCDGT tools and 

those of manual extraction. 

 
Fig 6: The Case Study 1- Food Delivery 

 

 

 

“The customer can easily create an account by their email or phone number. Then, the customer browses 

the menu page with the items and desirable times and can quickly place an order for their favorite meal 

online. The customer can cancel the order only within a specific period. The customer can also view the 

status of the order. The customer picks up the order once it is ready. Cook can view customer’s order, confirm 

the order, and send notifications if the order is ready. Cook can also edit order status. The Administrator 

can modify the menu of food items. Also, the Administrator can edit the menu information, such as price and 

items available presently. The Administrator can view the Order queue and reassign the order.”  [29] 



Table 1. Tool-Extraction and Manually Extraction of Actos and Use-Cases from the Description of 

Food Delivery Application 

Actor Tool-Extracted Use Cases Manual- Extracted Use Cases 

C
u

sto
m

er 

Create an account Create an account 

Browse menu page Browse menu page 

Place an order for your favourite meal Place an order online 

Cancel order Cancel the order within a specific period 

View the status of an order View the status of the order 

Pick order Pick up the order 

C
o

o
k

 

View the customer’s order View the customer’s order 

Confirm order Confirm the order 

Send notifications Send notifications 

Edit order status Edit the order status 

A
d

m
in

istrato
r 

Modify the menu of food items Modify the menu of food items 

Edit the menu information, such as price 

and items available presently 
Edit the menu information 

View order queue View the order queue 

Reassign order Reassign the order 

 

4.1.2 Case Study 2 – The ATM System 

The description of the ATM system is shown in Fig 8. The UCDGT tool was able to extract actors and 

use cases with one error. However, the overall results were still considered useful for further analysis 

and development. Table 2 reports the detailed results.  

 
Fig 7: Case Study 2 – The ATM System 

Table 2. Tool-Extraction and Manually Extraction of Actos and Use cases from the Description of the 

ATM System 

Actor Tool-Extracted Use Cases Manual- Extracted Use Cases 

B
an

k
 clien

t 

Deposit an amount Deposit an amount 

Withdraw an amount Withdraw an amount 

Use bank application Review all transactions 

Review all transactions performed 

against a given account 
Use bank application 

Have two types of accounts: a 

checking account and a saving-account 

Have two types of accounts: a checking 

account and a saving-account 

gain access to his or her account gain access to his or her account using a PIN 

A
p
p

licatio
n
 

verify that a client can gain access to 

his or her account identification via a 

personal identification number (PIN) 

code 

verify that a client can gain access to his or 

her account using a PIN code 

withdraw funds withdraw funds 

inform user inform user 

“The bank client must be able to deposit an amount to and withdraw an amount from his or her accounts 

using the bank application. Each transaction must be recorded, and the client must have the ability to review 

all transactions performed against a given account. Recorded transactions must include the date, time, 

transaction type, amount and account balance after the transaction. A bank client can have two types of 

accounts: a checking-account and a saving-account. For each checking account, one related saving-account 

can exist. The application must verify that a client can gain access to his or her account by identification via 

a personal identification number (PIN) code. Neither a checking account nor a saving account can have a 

negative balance. The application should automatically withdraw funds from a related saving account if the 

requested withdrawal amount on the checking-account is more than its current balance. If the saving-account 

balance is insufficient to cover the requested withdrawal amount, the application should inform the user and 

terminate the transaction”.  [30] 



terminate transaction terminate transaction 

A
cco

u
n

t 

check  

 

It should be notable that the word "application" in this description is considered an actor based on the 

definition of the actor, which could be defined as any person, group, or system that interacts with the 

software system being developed, which can also include software applications. In many cases, an 

application may be an actor that interacts with the system. In this case study, the "application" is an 

external system that interacts with the system being developed (ATM system). 

4.1.3 Case Study 3 - The Cafeteria Ordering System (COS) 

As shown in Fig 9, the description of this system uses uncommon terms that are ambiguous and 

uncertain, even to human readers, to denote actions or responses that occur within the system and that 

are the services provided by the system to the user. The ambiguous and uncertain terms are considered 

a true challenge to the UCDGT tool as the problems of ambiguity and uncertainty are the default 

challenges in the processing of the natural language. However, the tool accurately extracted all actors 

and use cases. The tool's output matches the manual extraction with slight wording and structure 

differences as shown in Table 3. 

 
Fig 8: Case Study 3 – COS 

Table 3. Tool-Extraction and Manually Extraction of Actos and Use cases from the Description of the 

COS System 

Actor Tool-Extracted Use Cases Manual- Extracted Use Cases 

W
eb

 A
p

p
licatio

n
 

let a patron place an order for one or more 

meals 

let a patron place an order for one or more 

meals 

confirm that the patron is registered for payroll 

deduction to place an order 

confirm that the patron is registered for 

payroll deduction to place an order 

give options to register now and continue 

placing an order 

give options to register now and continue 

placing an order 

prompt the Patron prompt the Patron for the meal date 

inform patron inform the patron that it is too late to order 

P
atro

n
 

log in to cos Log in to cos 

place an order for one or more meals place an order for one or more meals 

register Register into cos 

continue placing an order continue placing an order 

exit from cos exit from cos 

change meal date change meal date 

Cancel order Cancel order 

specify whether the order is to be picked up or 

delivered 

specify whether the order is to be picked 

up or delivered 

provide a valid delivery location provide a valid delivery location 

Worth to note that the term "web application" (rather than just “application” word) was used in the 

description of the COS as an actor to denote an external system that interacts with the COS. 

“The web application shall let a Patron, who is logged into the COS, place an order for one or more meals. The 

web application shall confirm that the Patron is registered for payroll deduction to place an order. If the Patron 

is not registered for payroll deduction, the web application shall give the Patron options to register now and 

continue placing an order, to place an order for pickup in the cafeteria, or to exit from the COS. The web 

application shall prompt the Patron for the meal date. If the meal date is the current date and the current time is 

after the order cutoff time, the web application shall inform the patron that it’s too late to place an order for 

today. The Patron may either change the meal date or cancel the order. The Patron shall specify whether the 

order is to be picked up or delivered. If the order is to be delivered and there are still available delivery times 

for the meal date, the Patron shall provide a valid delivery location”.  [31] 



4.1.4 Case Study 4 – The Call for Help Application 

The Call for Help Application, which is illustrated in Fig 10, features multiple actors and their use cases. 

The UCDGT tool successfully identified the relevant actors and use cases in this description with one 

encountered error, which makes the output useful for future development. Table 4 reports a detailed 

breakdown of the results. 

 
Fig 9: Case Study 4 – The Call for Help Application 

Table 4. Tool-Extraction and Manually Extraction of Actos and Use cases from the Description of the 

Call for Help Application 

Actor Tool-Extracted Use Cases Manual- Extracted Use Cases 

U
ser 

Register  Register  

Log  Log  

Select services Select services 

View Schedule View Schedule 

reserve the most suitable slot reserve the most suitable slot 

receive service receive service 

enter that particular location enter particular location 

give feedback Give feedback 

seek help  

L
o
catio

n
 

S
erv

ice 

P
ro

v
id

er 

check the availability of technicians in that 

particular location which the user entered 

check the availability of technicians in that 

particular location which the user entered 

authenticate user authenticate user 

notify technician notify technician 
A

d
m

in
 

govern the overall working of the system govern the overall working of the system 

verify customer and service provider verify customer and service provider 

manage services category manage services category 

view all pending services view all pending services 

View feedback View feedback 

T
ech

n
ician

 

Login Login 

View schedule and location provided View schedule and location provided 

provide services provide services 

 

4.2 The Experiment on Generating the Use Case Description   

The UCDGT tool was also assessed to generate the description for different use cases. The tool was able 

to generate the use case description, and the resulting description closely matched the expected 

description for each use case, demonstrating the tool's ability to generate the use description. Fig 11 

shows a snapshot of the use case description generated by the UCDGT tool for the following text "Users 

can register, log in, select the services, view the schedule on which time the service provider is available, 

reserve the most suitable slot, and then receive the service". 

“Users can register, log in, select the services, views the schedule on which time the service provider is 

available, reserve the most suitable slot, and then receive the service. After receiving the service user gives 

feedback. Location Service Provider (LSP) authenticates user, check the availability of technicians in that 

particular location which the user entered. Admin governs the overall working of the system, and can verify 

the customer and the service provider, manages the services category, views all the pending services, and 

lastly, views the feedback if the feedback is given by the user. Technician can Login and get notified about 

their next destination by LSP. Technician views their schedule and the location provided by the user seeking 

help. Then technician provides services”.  [29] 



 
Fig 10: A Snapshot of the Use Case Description Generated by the Tool 

4.3 The Experiments on Generating the Use Case Diagram 

The capability of the UCDGT tool to generate use case diagrams was evaluated. Fig 12 provides an 

example of a use case diagram produced by the UCDGT tool based on the following input text: “The 

customer can easily create an account by their email or phone number. Then, the customer browses the 

menu page with the items and desirable times and can quickly place an order. The customer can cancel 

the order only within a specific period. The customer can also view the status of the order. Cook can 

view customers’ orders, confirm the order, and send notifications if the order is ready". The tool 

demonstrated the ability to create use case diagrams accurately representing the extracted information. 

 
Fig 11: A Snapshot of the Use Case Diagram Generated by the Tool 

5. Evaluation 

This section aims to demonstrate the effectiveness of our tool in extracting actors and use cases from 

user requirement specifications. To measure the accuracy and completeness of the classification, we 

used the binomial classification accuracy metric, commonly used to evaluate the performance of 

classification models  [28]. We also measured the tool's precision, recall, and F-measure for both actors 

and use cases. 

The precision metric evaluates the tool's accuracy in extracting valid actors and use cases, while the 

recall metric measures the completeness of the extraction process. The F-measure is the harmonic mean 

of precision and recall, providing an overall measure of the tool's effectiveness in extracting actors and 

use cases. To calculate these metrics, we used the following formulas  [28]: 



• Precision = 
TP

TP+FP
 

• Recall = 
TP

TP+FN
 

• F-measure = 
2 × ( Precision × Recall)

Precision + Recall
 

where True Positive (TP) is the number of valid extracted actors and use cases, False Positive (FP) is 

the number of invalid extracted actors and use cases, and False Negative (FN) is the number of actors 

and use cases not extracted. 

Table 5 shows the number of TP, FP, and FN for both actors and use cases in each case study. Table 6 

shows the precision, recall, and F-measure for both actors and use cases in each case study and the 

overall average across all case studies. 

Table 5. Number of TP, FP, and FN for Actors and Use Cases in each Case Study 

Case Study 
Actors 

TP FP FN TP FP FN 

Food Delivery Application 3 0 0 14 0 0 

ATM system 2 1 0 10 1 0 

Cafeteria Ordering System 2 0 0 14 0 0 

Call for Help Application 4 0 0 19 1 0 

 

As shown in Table 5, our tool extracted many valid actors and use cases with few false positives and 

false negatives across all case studies. The precision, recall, and F-measure results in Table 6 

demonstrate that the tool performed well in terms of both accuracy and completeness, with an overall 

average precision of 91.67% for actors and 96.23% for use cases. These results demonstrate the 

effectiveness of our tool in extracting actors and use cases from user requirement specifications. 

Table 6. Precision, Recall, and F-measure for Actors and Use Cases  

Case Study 
No. of 

Words 

Actors 
Precision 

% 

Recall 

% 

F-measure 

% 

Precision 

% 

Recall 

% 

F-measure 

% 

Food Delivery Application 125 100 100 100 100 100 100 

ATM system 168 66.67 100 80 90.91 100 95 

Cafeteria Ordering System 176 100 100 100 100 100 100 

Call for Help Application 123 100 100 100 95 100 97.44 

Average  91.67 100 95.00 96.23 100 98.17 

 

To further evaluate the effectiveness of our tool, we compared its performance to that of three previous 

studies that also focused on extracting actors and use cases from user requirement specifications. We 

summarized the results in Table 7, which shows each study's precision, recall, and F-measure values. 

Our tool outperformed two studies in all three metrics, indicating a higher accuracy and completeness 

in recognizing the actors and use cases in the input documents. For the third study, our tool achieved 

higher recall and F-measure scores but slightly lower precision than the previous approach. These results 

demonstrate the superiority of our tool in extracting actors and use cases from user requirements. 

Table 7. Comparison of Metrics for Tool Performance with Related Studies 

Related Studies Precision % Recall % F-measure % 

Bajaj et al.  [29] 97.4 91.95 94.44 

Alksasbeh  [20] 84 96 89.6 

Imam et al.  [22] 76 76.2 76.09 

Proposed Tool 93.95 100 96.59 

 

Our tool distinguishes itself from the previous studies by being the first to generate a description for 

each extracted use case. This feature provides additional benefits to the tool's users, such as a clearer 



understanding of the interactions between actors and the system and a more precise representation of 

the use cases. 

6. Conclusion 

This research proposes an I-CASE tool to automate the composing of the use case description next to 

the automatic extracting of the actors and their use cases from user requirements by using NLP and AI 

tools and techniques. The proposed UCDGT tool utilizes pre-trained models; including GPT-3 model 

(to generate a use case description) and the BERT model (to achieve the SRL process) from OpenAI. 

The accuracy of the UCDGT tool to extract the actors and their use cases is evaluated on four case 

studies from different industries. The evaluation of the results, which is achieved by using the binomial 

classification accuracy metric, demonstrates that the proposed UCDGT tool is highly accurate in 

extracting actors and use cases, with only minor structural differences compared to manual extraction. 

To evaluate the effectiveness of the UCDGT tool, a comparison of its performance to three previous 

studies is made, in which the comparison focused on extracting actors and use cases from user 

requirement specifications. The comparison demonstrated the originality of the UCDGT tool in 

composing the use case description, and the superiority of the UCDGT tool in extracting actors and use 

cases from user requirements. In short, this study differs from the conventional approaches by: 

• The use of generative AI, particularly with the advent of OpenAI’s GPT-3, which is the most 

extensive Artificial Neural Network (ANN) that can answer questions, summarize lengthy texts, 

write paragraphs, translate languages, and generate programming code. 

• The use of SRL, an NLP activity that identifies the roles of words or phrases in a sentence relative 

to the verb, categorizing them into agents, themes, and others based on their semantic features. 

This approach is useful in various NLP applications, including sentiment analysis, information 

extraction, and question answering, as it illuminates the connections between different entities 

and events.  

Concisely, our proposed UCDGT tool has demonstrated significant benefits of using the new era AI and 

machine learning tools in automating various SE processes and achieving the I-CASE principle.  
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