
P
os
te
d
on

7
A
u
g
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
69
14
15
11
.1
55
51
48
5/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

On the Sustainability of Deep Learning Projects: Maintainers’

Perspective

Junxiao Han1, Jiakun Liu2, David Lo2, Chen Zhi3, Yishan Chen4, and Shuiguang Deng3

1Hangzhou City University
2Singapore Management University
3Zhejiang University
4JiangXi University of Science and Technology

August 7, 2023

Abstract

Deep learning (DL) techniques have grown in leaps and bounds in both academia and industry over the past

few years. Despite the growth of DL projects, there has been little study on how DL projects evolve, whether

maintainers in this domain encounter a dramatic increase in workload, and whether or not existing maintainers

can guarantee the sustained development of projects. To address this gap, we perform an empirical study to

investigate the sustainability of DL projects, understand maintainers’ workloads and workloads growth in

DL projects, and compare them with traditional OSS projects. In this regard, we first investigate how DL

projects grow, then, understand maintainers’ workload in DL projects, and explore the workload growth of

maintainers as DL projects evolve. After that, we mine the relationships between maintainers’ activities

and the sustainability of DL projects. Eventually, we compare it with traditional OSS projects. Our study

unveils that although DL projects show increasing trends in most activities, maintainers’ workloads present a

decreasing trend. Meanwhile, the proportion of workload maintainers conducted in DL projects is significantly

lower than in traditional OSS projects. Moreover, there are positive and moderate correlations between the

sustainability of DL projects and the number of maintainers’ releases, pushes, and merged pull requests. Our

findings shed lights that help understand maintainers’ workload and growth trends in DL and traditional OSS

projects, and also highlight actionable directions for organizations, maintainers, and researchers.

1

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE - EMPIRICAL

On the Sustainability of Deep Learning Projects: Maintainers’
Perspective

Junxiao Han1 | Jiakun Liu2 | David Lo2 | Chen Zhi3 | Yishan Chen4 | Shuiguang Deng5

1School of Computer & Computing
Science, Hangzhou City University,
Hangzhou, China

2School of Information Systems,
Singapore Management University,
Singapore, Singapore

3School of Software Technology, Zhejiang
University, Ningbo, China

4College of Information Engineering,
Jiangxi University of Science and
Technology, Ganzhou, China

5College of Computer Science and
Technology, Zhejiang University,
Hangzhou, China

Correspondence
*Jiakun Liu, School of Information
Systems, Singapore Management
University, Singapore, Singapore. Email:
jkliu@smu.edu.sg

Deep learning (DL) techniques have grown in leaps and bounds in both academia and

industry over the past few years. Despite the growth of DL projects, there has been little

study on how DL projects evolve, whether maintainers in this domain encounter a dramatic

increase in workload, and whether or not existing maintainers can guarantee the sustained

development of projects. To address this gap, we perform an empirical study to investigate

the sustainability of DL projects, understand maintainers’ workloads and workloads growth

in DL projects, and compare them with traditional OSS projects. In this regard, we first

investigate how DL projects grow, then, understand maintainers’ workload in DL projects,

and explore the workload growth of maintainers as DL projects evolve. After that, we mine

the relationships between maintainers’ activities and the sustainability of DL projects.

Eventually, we compare it with traditional OSS projects. Our study unveils that although

DL projects show increasing trends in most activities, maintainers’ workloads present a

decreasing trend. Meanwhile, the proportion of workload maintainers conducted in DL

projects is significantly lower than in traditional OSS projects. Moreover, there are positive

and moderate correlations between the sustainability of DL projects and the number of

maintainers’ releases, pushes, and merged pull requests. Our findings shed lights that help

understand maintainers’ workload and growth trends in DL and traditional OSS projects,

and also highlight actionable directions for organizations, maintainers, and researchers.

KEYWORDS:

Deep Learning, Sustainability, Maintainers, Workload

1 INTRODUCTION

Deep learning (DL) has grown in leaps and bounds in both academia and industry over the past few years, producing a wide variety of deep
learning algorithms for various applications such as image processing 1,2,3, speech recognition 4,5, autonomous driving 6,7,8, disease diagnosis and
drug discovery 9,10,11, and financial fraud detection 12. However, comparedwith open-source software (OSS) projects, DL projects have an additional
set of DL-specific issues 13. For instance, DL projects encode the network structure of a satisfying DL model and use a large amount of data to train
the task-solving model, while traditional OSS projects directly encode the model to solve a target problem 14.

The popularity of DL projects has given rise to a widespread trend: while the development and deployment of DL systems are relatively fast and
cost-effective, their sustainability proves to be challenging and costly 13,15. The concept of sustainability is certainly multifaceted and no general
definition exists. In this regard, Valiev et al. 16 denotes a project as dormant if it has an average of less than one commit per month in the 12
months prior to its most recent commit. Zhang et al. 17 denotes a project as dormant if it has not received any commit for more than 6 months after
its most recent commit. These two studies all adopt the frequency of commits to determine the sustainability of OSS projects. Therefore, in this

2

Figure 1 An issue in fastai project. This example shows that the DL project maintainers did not respond to a pull request for a long time.

study, we also adopt the frequency of commits to determine the sustainability. Instead of generating labels for sustainability, we use the number
of commits over time to characterize the sustainability of projects. In this way, we can better understand the relationships between maintainers’
monthly activities and the sustainability of DL projects over time.

Intuitively, the maintenance of a project is related to its sustainability. According to the definition of ISO/IEC 25051 (ISO/IEC, 2014), maintainers
modify a software systemor component after delivery to correct faults, improve performance or other attributes, or adapt to a changed environment
to maintain the project. However, maintainers may have a heavy workload so that they cannot deal with tasks in time. As illustrated in Figure 1, a
contributor from a DL project complained that the maintainers were so busy that the pull request he raised had not been noticed and replied to
for a long time.1 As DL projects continue to expand, the projects draw increasing numbers of participants and accumulate a growing body of pull
requests. We would like to understand: is the workload of maintainers steadily increasing? Can maintainers in DL projects effectively manage and
sustain the rapid development of DL systems?

Despite numerous studies characterizing the work of maintainers in DL projects 18,19, their focus has been limited to technical aspects, such
as the number of files maintained, commits committed, and authors managed. However, a comprehensive understanding of maintainers’ work is
crucial for ensuring the long-term sustainability of DL projects and may also offer valuable guidance to other OSS projects.

To fill the gap, in this paper, we characterize maintainers’ activity in DL projects. To compare the differences between DL and traditional OSS
projects in terms ofmaintainers’ activity, we collect 19 popular DL projects and 19 popular traditional OSS projects. Then, we holistically understand
how to characterize theworkload ofmaintainers (i.e., including not only technical works but also non-technical works), alongwith understanding the
growth of projects and maintainers’ workload. Our preliminary study shows that besides technical tasks (e.g., commits committed), maintainers also
write comments under issues and write WiKis to sustain the coordination and collaboration of participants. To understand how DL and traditional
OSS projects grow and whether the growth is sustainable, we assemble all activities (i.e., events identified via GitHub API) of these projects to
answer the following research questions:
RQ1. How to characterize the workload of maintainers holistically?

Our findings show that we can employ the number of issues, closed issues (i.e., issues that are solved by maintainers), issue comments, commits,
commit comments, pushes, pull requests, merged pull requests (i.e., pull requests that are merged by maintainers), pull request reviews, pull request
review comments, and releases to characterize the workload of maintainers holistically.
RQ2. How do DL and traditional OSS projects grow? How do the overall workloads of maintainers grow? And if there exist differences regarding
these between DL and traditional OSS projects?

1https://github.com/fastai/fastai/issues/575

3

We observe that there is a significant difference in the growth of most activities between DL and traditional OSS projects. Meanwhile, although
the overall workload of most activities is increasing in DL projects, the maintainers’ workload of most activities is decreasing. In contrast, in tra-
ditional OSS projects, the overall workload and the maintainers’ workload are both stable. Statistical test results indicate that the proportion of
workload that maintainers performed on many activities in DL projects is significantly lower than those in traditional OSS projects.
RQ3. How does the average workload of maintainers grow as DL and traditional OSS projects evolve? And if there exist differences between
them?

On average,maintainers in bothDL and traditional OSS projects are experiencing an increasingworkload in some activities, such as Pull Requests,
merged Pull Requests, Pull Request Review Comments, and Releases. However, the Commit Comment activity per maintainer performed is the only
activity that shows a significant difference in growth rates between DL and traditional OSS projects. Additionally, when it comes to each project,
most DL projects demonstrate significant differences in growth rates across various activities of maintainers, while traditional OSS projects with a
larger size tend to show no significant differences in growth rates across various activities for maintainers.
RQ4. What are the relationships between maintainers’ activities and sustainability of DL and traditional OSS projects?

We observe that the sustainability of DL projects is positively and moderately correlated with the number of releases, pushes, and merged pull
requests of maintainers. However, the number of releases of maintainers shows no significant correlation with the sustainability of traditional OSS
projects.

Based on our findings, we suggest that GitHub or project owners propose new gamification systems to encourage maintainers to maintain DL
projects. For example, maintainers could be rewardedwith a DL-specific badge or a certain number of points for each release, push, andmerged pull
request. Moreover, we suggest that organizations, developers, maintainers, and researchers should be aware of the significant differences in the
growth of activities between DL and traditional OSS projects, as well as the significant differences in the proportion of workload that maintainers
performed in DL and traditional OSS projects. This awareness will help them differentiate projects from different domains in their work processes.

In summary, we make the following contributions to this paper:
• To the best of our knowledge, we are the first to explore the sustainability of DL projects from maintainers’ perspective. By comparing with

traditional OSS projects, we understand the specificity of the growth of DL projects, the specificity of DL maintainers’ workload and its
growth. Moreover, we also expound on the specific relationships between maintainers’ activities and the sustainability of DL projects.

• We highlight some practical implications for organizations, maintainers, and researchers in both the DL and other OSS domains. We help
organizations, maintainers, and researchers recognize the significant differences in the growth of DL and traditional OSS projects. We also
help them develop a more comprehensive understanding of maintainers’ workloads in DL and traditional OSS projects. Additionally, by
pointing out the relationships between maintainers’ activities and the sustainability of DL projects, we provide valuable suggestions to
maintainers for ensuring the sustained development of DL projects and shed light on researchers for further research.

The rest of this paper is organized as follows. Section 2 describes the research methodology. Section 3 presents the findings and insights of our
research questions. Section 4 introduces the related works and discusses the difference between our work and other papers that are close to ours.
Section 5 discusses the threats to the validity of our findings. Finally, Section 6 concludes this paper, gives directions to future work, and provides
replication packages.

2 METHODOLOGY

In this section, we introduce how we construct our dataset, including how we determine targeted projects, the process to obtain activity data, the
approach to identify maintainers, and the approach to identify maintainers’ workload.

2.1 Collecting Data

To characterize the differences between DL and traditional OSS projects regarding maintainers’ activities, we need to collect both DL and tra-
ditional OSS projects. For DL projects, we selected the top 15 most starred projects that depend on five popular and widely investigated DL
frameworks 20,21,22, respectively, where the five DL frameworks are TensorFlow2, PyTorch3, Caffe4, Keras5, and Theano6. In this regard, 75 DL

2https://github.com/tensorflow/tensorflow3https://github.com/pytorch/pytorch4https://github.com/Theano/Theano5https://github.com/BVLC/caffe6https://github.com/keras-team/keras

https://github.com/tensorflow/tensorflow
https://github.com/pytorch/pytorch
 https://github.com/Theano/Theano
 https://github.com/BVLC/caffe
https://github.com/keras-team/keras

4

projects are collected. To safeguard the quality of the dataset, we then use the following rules to select targeted DL projects: 1) projects must be
large enough and have maintained relatively long traceable records on GitHub (at least 500 commits, 10 contributors, and survived for 2 years), 2)
DL projects that are tutorials, examples, courses, handbooks, or learning notes were excluded. After that, we manually observe the remaining DL
projects, excluding those DL projects with lower contributors or commits, and, finally, 19 projects remained.

For OSS projects, we adopted the 20 OSS projects published in Wang et al.’s 23 study, and further obtained the top 10 most starred projects
that come from Apache and OpenStack ecosystems, respectively. The rationale why we further select these two ecosystems is that they are
representative in traditional OSS domains and are widely investigated bymany researches 24,25. As a result, we obtained 40 traditional OSS projects.
To safeguard the quality of the dataset, we conducted the filtering rules applied to DL projects again, and further selected traditional OSS projects
with a wide range of tech stacks and application domains, such as a web development framework (react), a team collaboration tool (zulip), and a
database (tidb). Finally, we also obtained 19 traditional OSS projects.

Table 1 and 2 list the project names, and detailed descriptions are publicly available at https://github.com/HJXPaperData/SustainabilityofDL.
The average age of the collected DL projects is 6 years, accompanied by an average of 28,905 stars, 163,624KB of sizes, 13,325 commits, and
576 contributors. In comparison, the collected traditional OSS projects have been operational for 8 years on average, boasting 28,588 stars,
186,448KB of sizes, 11,889 commits, and 536 contributors. These statistics suggest a relative similarity towards the characteristics between the
two constructed datasets. They are typically large in size, have a relatively long traceable history, and involve a significant number of commits and
contributors.

After collecting the targeted projects, we employed Google BigQuery to extract all the histories of activities for each project. GH Archive
provides most of the activity events such as issues, issue comments, pull requests, and pull request reviews for each project 26, and is available
as a public dataset on Google BigQuery 27. We ran SQL-like queries over the entire dataset to collect activity events that are performed in each
targeted project from January 2015 to April 2022 26,23. Consequently, we obtained 15 activity types with about 12GB for the 19 DL projects and
about 16GB for the 19 traditional OSS projects. The 15 activity types are Issues, Issue Comments, Commit Comments, Pull Requests, Pull Request
Review, Pull Request Review Comments, Push, Release, Gollum (editing wiki), Watch, Member, Public, Fork, Create, and Delete.7.

2.2 Characterizing the Project Sustainability

The definition of sustainability is multi-faceted 28,16,29,30,31,32,33. Most prior studies focused on investigating the success of OSS projects 34,28,66. In
this regard, Joblin et al. 66 defined successful projects as those who have long-term popularity, exhibiting highly active development histories with
tens of thousands of commits, andwithin a large development communitywith hundreds to thousands of contributors. Coelho et al. 28 characterized
failed projects as those who achieved a high level of popularity, but eventually abandoned.

Nevertheless, there are still several studies investigated the sustainability of OSS projects. Valiev et al. 16 denoted a project as dormant if it has an
average of less than one commit per month in the 12 months prior to its most recent commit. Otherwise, it can be regarded as sustainable. Zhang
et al. 17 defined a project as dormant if it has not received any commit for more than 6 months after its most recent commit. In this regard, Valiev
et al. 16 and Zhang et al. 17 all defined project sustainability from the perspective of commit frequency. Moreover, Noman et al. 32 revealed that
the technical (code-based) aspect of sustainability is considered most important by a majority of professionals. Since most relevant studies define
sustainability from technical perspective and commit frequency. Therefore, to analyze the relationships between maintainers’ monthly activities
and project’s dynamic sustainability (detailed in Section 3.3), we thus used the monthly number of commits to approximately characterize the
dynamic sustainability of projects.

2.3 Identifying Maintainers

Maintainers are different from ordinary developers in OSS projects: they devote a significant proportion of their work to maintaining the OSS
projects. Maintainers in smaller projects are usually core developers, while in bigger projects, theymay need to excel in many other activities beyond
coding 35, e.g., communications with other developers and users. To obtain the list of maintainers, Zhou et al. 18 get the maintainers for the Linux
kernel ecosystem from the file named MAINTAINERS. MAINTAINERS contains information about maintainers, including the names of Linux kernel’s
subsystems, people who maintain it, and the files associated with different subsystems. However, in our dataset, the organization membership is
unavailable fromGitHub. Therefore, we cannot get the list of maintainers fromGitHub directly. Nevertheless, Zhou et al. observed that maintainers
are some of the contributors that can commit to projects directly. This motivates us to identify maintainers from all contributors that can commit
to projects directly.

7https://docs.github.com/en/developers/webhooks-and-events/events/github-event-types

https://github.com/HJXPaperData/SustainabilityofDL
https://docs.github.com/en/developers/webhooks-and-events/events/github-event-types

5

To do so, we collected all the committers of our targeted projects and surveyed them to understand how they define amaintainer. Consequently,
we obtained 2,615 committers for DL projects and 2,166 committers for traditional OSS projects. After that, we surveyed them and asked 1) “We
defined maintainers as the contributors who have the commit privilege to projects. Do you agree with that?”, and 2) “In your opinion, how do you define
maintainers?” As a result, we received 30 responses from DL committers and 21 responses from traditional OSS committers. Out of those, 10 out
of 30 DL committers and 7 out of 21 traditional OSS committers disagreed with the definition. We then applied open card sorting 36,37 to analyze
the responses of those committers to the second question using the following steps: 1) the first author and a Ph.D. candidate separately read the
answers to the second question, 2) they generated the initial coding schema separately, 3) searching if the cards have already existed, 4) classifying
the generated cards into potential themes for the theme similarity (as described in LaToza et al.’s study 38), 5) discussing and determining the final
themes. We then computed the Cohen’s Kappa value 39 to examine the agreement between the two labelers. Consequently, the Kappa value is
0.89, which indicates an excellent agreement. Results to the second question reveal that, among DL and traditional OSS committers, about 40%
of them believed that maintainers are those contributors who also have the merge privilege.

According to the definition of maintainers in ISO/IEC 25000 (ISO/IEC, 2014) and the definition of maintenance in ISO/IEC 25051:2014 (see
Section 1), we thus defined maintainers as contributors possessing both merge and commit privileges. This resulted in 155 maintainers for DL
projects and 266 maintainers for traditional OSS projects.

2.4 Identification of Maintainers’ activities

To understand why maintainers need the merge privilege and the commit privilege, we characterize maintainers’ activities. In Section 2.1, we have
gathered 15 types of activities from both DL and traditional OSS projects from GitHub. However, it is unclear whether maintainers only perform
these activities in practice and what are their most common activities. To understand maintainers’ activities, we surveyed the maintainers, listed all
types of activities, and asked “Among these activities, which activities can be considered as maintainers’ workload in their maintenance progress?" and
“Apart from these activities mentioned above, do you conduct other workloads in your maintenance process?".

As a result, for the first question, more than half of both DL and traditional OSS respondents believe that maintainers’ workload includes: Issue
Comment, Pull Request Review, Pull Request Review Comment, Release, Commit, Pull Request, Issue, Push, and Commit Comment. Regarding the
second question, it was found that among the 30 DL respondents, 10 did not provide any answers, 7 gave ambiguous answers, and 6 indicated that
the activities mentioned in the first question had already covered their workload. Among the remaining DL respondents, several mentioned that
they “use the forum and slack to collaboratewith othermaintainers", “put proposals for newwork", “promote their projects", “update libraries", “solve
issues", and “merge pull requests". Simultaneously, among the 21 traditional OSS respondents, 6 did not provide any answers to this question, and
3 believed that the activities identified in the first question had already covered their workload. Among the remaining traditional OSS respondents,
they stated that they “solve issues", “merge pull requests", “plan roadmaps for projects", and “manage forums, documentation, and contributors".
This indicates that maintainers need the commit privilege to “solve issues" and need the merge privilege to “merge pull requests" to maintain the
projects. The solved issues and the merged pull requests can be used to correct faults and improve performance (corresponding to the definition
of maintainers in ISO/IEC 25000 (ISO/IEC, 2014) and the definition of maintenance in ISO/IEC (25051:2014)).

Based on the responses frommaintainers, we use the number of issues, closed issues (i.e., issues that are solved bymaintainers), issue comments,
commits, commit comments, push, pull requests, merged pull requests (i.e., pull requests that are merged by maintainers), pull request reviews, pull
request review comments, and releases, to characterize the workload of maintainers holistically. This answers RQ1.

Notably, we do not consider communication on forums and other channels, as well as project promotion and planning in our work. This is
because we aim to mine the development data hosted on GitHub, and the information hosted outside the github.com website (e.g., forums and
other channels) is hard to monitor.

3 RESULTS

This section presents the results for RQ2-4.

3.1 RQ2: How do DL and traditional OSS projects grow? How do the overall workloads of maintainers grow?
And if there exist differences regarding these between DL and traditional OSS projects?

Motivation: Here, wewould like to have a basic understanding of howDL projects grow.Meanwhile, wewould like to form a first impression on how
much workload is performed by maintainers among various activities in DL projects. More specifically, considering there are various participants

6

during the life cycle of a software project, we also compare the growth trends of the number of maintainers, the number of authors the maintainers
were obligated to deal with, and the number of newcomers attracted between DL and traditional OSS projects.
Approach: To this end, we explore the growth trends of various activities in DL projects and compare themwith those of traditional OSS projects. To
do so, we count the number of each type of activity in eachmonth for bothDL and traditional OSS projects. Afterward, we perform the Kolmogorov-
Smirnov test 40 to examine whether there exist significant differences in the distribution of various activities between DL and traditional OSS
projects. The null hypothesis is that DL and traditional OSS projects have the same distribution in various activities.

Besides, we also explore the growth trends of the workload that is conducted by maintainers in DL projects and compare them with those
of traditional OSS projects. To do so, for each type of activity, we count the number of activities that are conducted by maintainers who have
participated in the activity each month respectively. Then, for both DL and traditional OSS projects, for each type of activity, we calculate the
proportion of activities that are conducted by maintainers among all activities respectively. Meanwhile, we ran the Kolmogorov-Smirnov test to
check whether there exist significant differences in the distribution of the proportions of workload for maintainers between DL and traditional OSS
projects, and the null hypothesis is that maintainers in DL and traditional OSS projects have the same distribution of the proportions of workload.

Furthermore, we also depict the growth trends of maintainers, authors, and newcomers in DL projects, and compare them with those of tradi-
tional OSS projects. To do so, we count the number of maintainers, authors, and newcomers each month for both DL and traditional OSS projects.
We also ran the Kolmogorov-Smirnov test to check whether there exist significant differences in the distribution towards the number of main-
tainers, authors, and newcomers in DL and traditional OSS projects, and the null hypothesis is that the distributions of maintainers, authors, and
newcomers are the same in DL and traditional OSS projects.
Result: We observe that (1) there are significant differences between DL and traditional OSS projects in the evolution of 8 out of 11 types of
activities, i.e., Push, Commit Comment, Issue Comment, Release, Pull Request, merged Pull Request, Pull Request Review, and Pull Request Review
Comment. Besides, (2) there are significant differences between DL and traditional OSS projects in terms of the proportion of workload that is
conducted by maintainers for 10 out of 11 types of activities (except for Release). To better understand the differences between DL and traditional
OSS projects, we take activities Commit, PullRequest, Issue, IssueComment, and Release as examples. Fig. 2 to Fig. 6 depict the trend lines of
sampled activities in DL and traditional OSS projects, along with the proportion of workload handled by maintainers.

Specifically, Fig. 2 shows the number of commits in DL and traditional OSS projects per month, as well as the proportion of workload that
is conducted by maintainers. Our statistical test results highlight a significant difference in the distribution of commit activity between DL and
traditional OSS projects. The number of commits in DL projects shows almost linear growth before the beginning of 2019 and becomes relatively
stable after early 2019. However, the number of commits in traditional OSS projects appears to have a decreasing trend at the end of 2017
and keeps relatively stable during 2018 and 2022. Meanwhile, we also find that the proportion of commits that maintainers conducted all has a
decreasing trend over time, while maintainers in traditional OSS projects have a higher proportion of commits than maintainers in DL projects.
However, no significant difference is found in the proportion of workload between maintainers in DL and traditional OSS projects.

1 13 25 37 49 61 73 85
Number of months

0

1000

2000

3000

4000

#N
um

be
r

Commit (DL)
Commit (non-DL)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Maintainers' ratio (DL)
Maintainers' ratio (non-DL)

Figure 2 Number of commits in DL and traditional OSS projects,
along with the proportion of workload (written as "ratio" on the
right side) that is conducted by maintainers.

1 13 25 37 49 61 73 85
Number of months

0

1000

2000

3000

4000

#N
um

be
r

PullRequest (DL)
PullRequest (non-DL)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Maintainers' ratio (DL)
Maintainers' ratio (non-DL)

Figure 3 Number of pull requests in DL and traditional OSS
projects, along with the proportion of workload (written as "ratio"
on the right side) that is conducted by maintainers.

Fig. 3 illustrates the number of pull requests in DL and traditional OSS projects permonth, as well as the proportion of workload that is conducted
by maintainers. Our statistical test results show a significant difference in the distribution of pull request activity between DL and traditional OSS
projects, and there also exists a significant difference in the proportion of workload for maintainers between DL and traditional OSS projects. As
illustrated in Fig. 3, the number of pull requests in DL projects increases almost consistently, while the proportion of pull requests maintainers

7

1 13 25 37 49 61 73 85
Number of months

0

1000

2000

3000

4000

5000

#N
um

be
r

Issues (DL)
Issues (non-DL)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Maintainers' ratio (DL)
Maintainers' ratio (non-DL)

Figure 4 Number of issues in DL and traditional OSS projects,
along with the proportion of workload (written as "ratio" on the
right side) that is conducted by maintainers.

1 13 25 37 49 61 73 85
Number of months

0

5000

10000

15000

#N
um

be
r

IssueComment (DL)
IssueComment (non-DL)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Maintainers' ratio (DL)
Maintainers' ratio (non-DL)

Figure 5 Number of issue comments in DL and traditional OSS
projects, along with the proportion of workload (written as "ratio"
on the right side) that is conducted by maintainers.

1 13 25 37 49 61 73 85
Number of months

0

20

40

60

80

100

#N
um

be
r

Release (DL)
Release (non-DL)

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio

Maintainers' ratio (DL)
Maintainers' ratio (non-DL)

Figure 6 Number of releases in DL and traditional OSS projects,
along with the proportion of workload (written as "ratio" on the
right side) that is conducted by maintainers.

2015 2016 2017 2018 2019 2020 2021 2022
0

20

40

60

80

Nu
mb

er

DL

non-DL

Figure 7Number ofmaintainers inDL and traditionalOSS projects.

conducted in DL projects decreases in this process. This phenomenon indicates that more and more authors and users are joining DL projects,
and have made more and more contributions. Meanwhile, the number of pull requests in traditional OSS projects experiences fluctuations, with
a pronounced increase before the end of 2016, followed by a decline until the beginning of 2019, and a subsequent upsurge. During this period,
the proportion of pull requests maintainers conducted in traditional OSS projects remains relatively stable and high, with an average proportion
of approximately 0.6. This phenomenon implies that maintainers in traditional OSS projects are still burdened with a considerable workload in
managing the project. Remarkably, maintainers in DL projects exhibit a lower proportion of workload concerning pull requests than those in
traditional OSS projects.

Fig. 4 depicts the number of issues in DL and traditional OSS projects per month, as well as the proportion of workload that is conducted by
maintainers. Our statistical test results indicate that there is no significant difference in the evolution of issue activity between DL and traditional
OSS projects. However, there is a significant difference in the proportion of workload of issue activity for maintainers in DL and traditional OSS
projects. Fig. 4 reveals that both DL and traditional OSS projects show an increasing number of issues, where the growth trend is slower for
traditional OSS projects compared to DL projects. Simultaneously, the proportion of issues handled by maintainers is relatively stable in traditional
OSS projects, while it exhibits a decreasing trend in DL projects, indicating that more and more issues are being handled by common authors and
other users in DL projects. Remarkably, maintainers in DL projects show a lower proportion of issues than maintainers in traditional OSS projects.

As for issue comments, our statistical test results show a significant difference in the distribution of issue comment activity between DL and
traditional OSS projects, and there also exists a significant difference in the proportion of workload for maintainers in DL and traditional OSS
projects. Results in Fig. 5 show that maintainers in DL projects have a lower proportion of issue comments than those in traditional OSS projects.
We can also observe that DL projects have almost linear growth before the end of 2020, then a decrease after the beginning of 2021. Conversely,
traditional OSS projects show an increasing trend in the number of issue comments. Especially, the proportion of issue comments maintainers

8

conducted in traditional OSS projects fluctuates over time but remains relatively stable, while it shows a decreasing trend for maintainers in DL
projects.

Fig. 6 displays the number of releases in DL and traditional OSS projects per month, as well as the proportion of workload that is conducted by
maintainers. It shows that the number of releases is small for both DL and traditional OSS projects before the end of 2019. However, in the last
two years of our studied period, the release frequency increased substantially, with DL projects exhibiting a higher number than traditional OSS
projects. During this time, maintainers in DL projects accounted for a higher proportion of releases than maintainers in traditional OSS projects.
Our statistical test results further confirm a significant difference in the distribution of release activity between DL and traditional OSS projects.
However, there is no significant difference in the proportion of workload for maintainers between DL and traditional OSS projects.

Sincewe have presented a comprehensive analysis of the evolution of DL projects, and compared themwith traditional OSS projects. Specifically,
we also depicted the monthly changes in the number of maintainers, authors, and newcomers for both DL and traditional OSS projects, as shown
in Fig. 7 to Fig. 9. Our findings in Fig. 7 indicate that traditional OSS projects have a higher number of maintainers than DL projects during the
studied period. Moreover, the number of maintainers in traditional OSS projects exhibits a more dynamic pattern than in DL projects. In terms of
the number of authors in Fig. 8, we observe a sharp increase in DL projects before the middle of 2020, whereas the number of authors in traditional
OSS projects grows sharply only until 2017, after which it remains relatively constant. These findings confirm that DL projects are growing fast
and have attracted more and more contributions from various authors 41.

Regarding the number of newcomers, as illustrated in Fig. 9, we can observe that although the inflow of newcomers fluctuates, it exhibits a
long-term increasing trend in DL projects. Notably, the growth trend of authors is steeper than the growth trend of newcomers in DL projects,
suggesting that an increasing number of newcomers are joining DL projects and staying to make consistent contributions over time. In contrast,
the inflow of newcomers in traditional OSS projects also fluctuates but exhibits a relatively stable trend in the long run. Based on the results of
our statistical tests, we found a significant difference in the number of maintainers between DL and traditional OSS projects, while there was no
significant difference observed in the number of authors and newcomers between the two types of projects.

In summary, the results obtained in this study reveal significant differences in the evolution of most activities between DL and traditional OSS
projects. Additionally, there also exist significant differences in the proportion of workload for maintainers across almost all activities between DL
and traditional OSS projects. Specifically, the proportion of workload for maintainers in DL projects are significantly lower than those in traditional
OSS projects, and they show a decreasing trend for most activities. Furthermore, the number of maintainers in DL projects is also significantly
lower than that in traditional OSS projects, and it exhibits a fluctuating trend.

2015 2016 2017 2018 2019 2020 2021 2022

100

200

300

400

500

600

700

Nu
mb

er

DL

non-DL

Figure 8 Number of authors in DL and traditional OSS projects.
2015 2016 2017 2018 2019 2020 2021 2022

25

50

75

100

125

150

175

200

Nu
mb

er

DL

non-DL

Figure 9Number of newcomers inDL and traditional OSS projects.

3.1.1 Implications.

Organizations and developers:Organizations and developers who are planning to undertake DL projects should be aware of the significant differ-
ences in the evolution of activities between DL and traditional OSS projects, as well as the significant differences in the proportion of workload
that maintainers conducted in DL and traditional OSS projects. Especially, as maintainers in DL projects tend to have a lower workload compared
to those in traditional OSS projects, therefore, organizations should consider this point when planning and allocating resources for DL projects,
and developers should consider this point when choosing OSS projects in different domains to contribute to.

9

Maintainers:Maintainers in bothDL and traditional OSS projects should be aware of this phenomenon, closelymonitor their proportion ofworkload
in various activities and try their best to maintain a healthy workload distribution. Meanwhile, given the rapid influx of authors and newcomers
observed in DL projects, to alleviate the workload of maintainers in user management, we recommend maintainers in DL projects provide DL-
specific workflows and detailed readme files to authors and newcomers, making the development process of their managed projects clear and
precise. Additionally, we suggest that maintainers examine and identify outstanding authors and integrate them into their group to ensure the
long-term sustainability of DL projects from maintainers’ perspectives.
Researchers:Meanwhile, researchers in the software engineering domain should recognize the significant discrepancies discussed above between
DL and traditional OSS projects, and be cautious when selecting open-source projects in different areas for their studies. Furthermore, the decreas-
ing trend in the proportion of workload for maintainers in DL projects for most activities should be further investigated by researchers to identify
the reasons behind this trend. They can also investigate the factors contributing to the differences in the evolution of various activities between
DL and traditional OSS projects.

Moreover, the number of maintainers in DL projects is significantly lower than the number of maintainers in traditional OSS projects and shows
a fluctuating trend. Hence, it highlights the need for further investigation into the factors that influence the number of maintainers in DL projects.
Researchers could check the impact of factors such as project goals, company domination patterns, and project complexity on the number of
maintainers in DL projects. Researchers can also explore practical strategies to help attract more maintainers. In this way, researchers can help
ensure the long-term sustainability of DL projects from maintainers’ perspectives.
There is a significant difference in the growth of most activities between DL and traditional OSS projects, and there is also a significant
difference in the proportion of workload for maintainers in DL and traditional OSS projects. Specifically, the proportion of workload for
maintainers on many activities in DL projects are significantly lower than those in traditional OSS projects, and they show a decreasing trend
for most activities.

3.2 RQ3: How does the average workload of maintainers grow as DL and traditional OSS projects evolve? And if
there exist differences between them?

Motivation: Findings in RQ2 reveal a decreasing trend in the proportion of workload for maintainers across many activities in DL projects. Mean-
while, the number of maintainers is also showing a fluctuating trend. Therefore, further investigation is required to explore the evolution of the
average workload per maintainer perform. Moreover, given the continuous influx of authors and newcomers in DL projects, it remains unclear
whether existing maintainers in DL projects can handle the ever-increasing authors and newcomers. Hence, in this RQ, we analyze historical data
to investigate the dynamic evolution of maintainers’ workload during their maintenance process. Understanding the evolution of maintainers’
workloads can help us better understand the sustainability of their work.
Approach: To determine if the workload per maintainer conducted has increased with the development of DL and traditional OSS projects, we
pictured the monthly changes in the average workload per maintainer conducted in our sampled projects. Subsequently, to examine whether there
exist significant differences in growth rates of various activities for maintainers in DL and traditional OSS projects, we applied a one-way ANOVA 42
test to verify it. The null hypothesis is that the growth rates of various activities for maintainers in DL and traditional OSS projects are identical.

Then, to gain insights into the growth trends ofmaintainers’ various activities within each project, we derived themonthly changes in the average
workload of maintainers in each sampled project. Due to space constraints, we only present the growth trends for two sampled projects. Take the
complex DL project - Tensorflow, and the complex traditional OSS project - React, as examples. We depicted the monthly changes in the average
workload of maintainers in these two projects, as shown in Fig. 11 and Fig. 12, respectively.

Subsequently, we further calculated the average monthly growth rates of various activities per maintainer for each project. Accordingly, we have
11 growth rates for each sampled project (comprising 19 DL projects and 19 traditional OSS projects). We then performed a one-way ANOVA
test again to verify if there is any difference in the 11 growth rates of maintainers for each sampled project. In this way, we can gain a better
understanding of whether there exist significant differences in the average workload of maintainers across various activities.
Result: Our findings indicate that there almost exist no significant differences in the growth rates of average workload on various activities per
maintainer between our sampled DL and traditional OSS projects. Figure 10 displays the monthly changes in average workload per maintainer
for our sampled projects. On average, DL project maintainers show increasing workloads in Pull Requests, merged Pull Requests, Pull Request
Review Comments, Releases, and Pushes, with a sharp increase during 2020 and 2022. Meanwhile, traditional OSS project maintainers show
increasing workloads in Issue Comments, Pull Requests, merged Pull Requests, Pull Request Review Comments, and Releases. Notably, we find that
maintainers in DL projects release new versions more frequently than those in traditional OSS projects during 2020 and 2022, which is consistent
with previous findings that ML libraries release new versions more frequently 43. Specifically, it is worth noting that different scales are used to
emphasize trend similarities among various activities. For instance, the commit number is multiplied by 10, and the number of commit comments

10

is multiplied by 100. Our statistical test results show that there only exists a significant difference (F(1,170) = 3.717, p < 0.05) in the growth rate
of Commit Comment for maintainers between DL and traditional OSS projects.

2015 2016 2017 2018 2019 2020 2021 2022

0

20

40

60

80

100

Av
er
ag
e
Nu
mb
er

Commit-DL*10

Commit-OSS*10

CommitComment-DL*100

CommitComment-OSS*100

(a) Commit & Commit Comment
2015 2016 2017 2018 2019 2020 2021 2022

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

Nu
mb

er

PullRequest-DL

PullRequest-OSS

PullRequestReview-DL

PullRequestReview-OSS

(b) Pull Request & Pull Request Review
2015 2016 2017 2018 2019 2020 2021 2022

0

2

4

6

8

10

12

14

16

18

Av
er
ag
e
Nu
mb
er

Merge-DL

Merge-OSS

PullRequestReviewComment-DL

PullRequestReviewComment-OSS

(c) merged-Pull Request & Pull Request ReviewComment

2015 2016 2017 2018 2019 2020 2021 2022
0

25

50

75

100

125

150

175

Av
er
ag
e
Nu
mb
er

Release-DL*100

Release-OSS*100

Push-DL*10

Push-OSS*10

(d) Release & Push
2015 2016 2017 2018 2019 2020 2021 2022

0

5

10

15

20

25

30

Av
er

ag
e

Nu
mb

er

Issues-DL

Issues-OSS

IssueComment-DL

IssueComment-OSS

(e) Issues & Issue Comment
2015 2016 2017 2018 2019 2020 2021 2022

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

Nu
mb

er

ClosedIssues-DL

ClosedIssues-OSS

(f) closed-Issues
Figure 10 Comparison of the trends of an average number of activities conducted by per maintainer in DL and OSS projects. Notably, different
scales are used to emphasize trend similarities among various activities. For instance, the commit number is multiplied by 10, and the number of
commit comments is multiplied by 100.

The monthly changes in the average workload of maintainers in Tensorflow and React are shown in Fig. 11 and Fig. 12. Results in Fig. 11
demonstrate that maintainers in Tensorflow experienced a high average workload across various activities from 2016 to 2018. However, their
workload appears to drop at the beginning of 2019. This finding is in line with the evolutionary history of Tensorflow 41, where the project was
first released in November 2015. Therefore, in its initial stages, most works tend to be accomplished by the project’s maintainers. As the project
grew, more developers and contributors joined, resulting in a decrease in the average workload per maintainer.

In contrast, Fig. 12 shows that there exist fluctuating trends of the average workload of maintainers in React. In general, per maintainers’ average
workload in React are stable for most activities during the studied period, while their average workload on Issue Comment, Pull Request, merged
Pull Request, and Pull Request Review Comment fluctuates dramatically during this period. Nevertheless, it still presents a decreasing pattern in
the long run.

20152016201720182019202020212022
0

20

40

60

80

Av
er

ag
e

Nu
mb

er

Commit

CommitComment

Issues*10

closedIssues*10

IssueComment

Push

(a) Activity Set1
20152016201720182019202020212022

0

2

4

6

8

10

12

14

Av
er

ag
e

Nu
mb

er

PullRequest

Merge

PullRequestReview

PullRequestReviewComment

Release

(b) Activity Set2
Figure 11 Trends of maintainers’ average workload on various activities in Tensorflow.

11

20152016201720182019202020212022
0

10

20

30

40

50

Av
er

ag
e

Nu
mb

er

Commit

CommitComment

Issues

closedIssues

IssueComment

Push

(a) Activity Set1
20152016201720182019202020212022

0

5

10

15

20

25

30

Av
er

ag
e

Nu
mb

er

PullRequest

Merge

PullRequestReview

PullRequestReviewComment

Release

(b) Activity Set2
Figure 12 Trends of maintainers’ average workload on various activities in React.

Table 1 uncovers that there indeed have significant differences in the growth rates across various activities of maintainers in most DL projects,
with 14 out of 19 (74%) DL projects demonstrating significant differences. The remaining DL projects, such as Transformers, Keras, MMdnn,
PyTorch-Lightning, and TensorFlow, are mostly DL frameworks or tools. This indicates that maintainers in these projects present relatively even
growth rates on various activities. This finding is consistent with the findings in Fig. 11. Meanwhile, Table 2 reveals that significant differences exist
in the growth rates across various activities of maintainers in most traditional OSS projects, with 11 out of 19 (58%) showing significant differences.
The remaining projects are mostly platforms or frameworks with a larger size or a larger number of maintainers.

Table 1 Statistical Tests for Growth Rates across Various Activities of Maintainers in Each Sampled DL Project. The Second and Third Columns
show F-values and P-values for Average Growth Rates across Various Activities.

Project F-value P-valuecaffe 2.088 <0.05 (*)fastai 3.042 <0.001 (***)transformers 1.609 >0.05gocv 5.756 <0.001 (***)autokeras 4.472 <0.001 (***)keras 1.004 >0.05Lasagne 5.428 <0.001 (***)MMdnn 1.808 >0.05DeepSpeech 5.957 <0.001 (***)DIGITS 4.035 <0.001 (***)mmdetection 4.136 <0.001 (***)photoprism 3.932 <0.001 (***)fairseq 2.001 <0.001 (***)pytorch 2.139 <0.05 (*)pytorch-lightning 0.977 >0.05pytorch-image-models 5.787 <0.001 (***)
ncnn 4.527 <0.001 (***)tensorflow 1.322 >0.05Theano 10.23 <0.001 (***)

3.2.1 Implications.

Maintainers:Maintainers working on both DL and traditional OSS projects should recognize that, except for the Commit Comment activity, there
are no significant differences in the monthly changes of average workload across most activities. Therefore, maintainers who tend to contribute to
both types of projects can utilize similar approaches to manage their workload. In addition, as shown in Fig. 10, maintainers in DL and traditional
OSS projects all experience an increasing workload in activities related to pull requests, such as submitting, merging, reviewing, and commenting
on them. Therefore, maintainers must be mindful of the growth rates of pull request-related activities and identify outstanding contributors to
integrate into their team, so that they can ensure the long-term sustainability of their management works. Maintainers can also adopt automatic

12

Table 2 Statistical Tests for Growth Rates across Various Activities of Maintainers in Each Sampled Traditional OSS Project. The Second and Third
Columns show F-values and P-values for Average Growth Rates across Various Activities.

Project F-value P-valueaframe 4.575 <0.001 (***)goaccess 6.278 <0.001 (***)airflow 1.058 >0.05openwhisk 2.486 <0.001 (***)superset 1.601 >0.05zookeeper 8.576 <0.01 (**)fresco 6.445 <0.001 (***)jest 3.23 <0.001 (***)react 1.103 >0.05gardener 4.006 <0.001 (***)ExoPlayer 0.843 >0.05ZeroNet 17.17 <0.01 (**)manageiq 0.783 >0.05Moya 4.261 >0.05tidb 0.935 >0.05rclone 4.51 <0.001 (***)tesseract 2.489 <0.01 (**)zulip 1.279 >0.05

tools to help them deal with some management tasks, e.g., adopting GitHub’s new detailed code review tools8 to tackle pull request review and
review comments.

Although the monthly changes in the average workload of maintainers for different activities almost have no significant differences between
DL and OSS projects, when it comes to the individual perspective, we found significant differences in the growth rates of maintainers’ average
workload for different activities within individual projects. In this regard, a proportion of 74% DL projects confirmed the above findings, compared
to 58% in traditional OSS projects (see Table 1 and 2). Therefore, maintainers in DL projects should paymore attention to their workload distribution
on various activities over time, and tailor maintenance strategies accordingly.

Besides, as illustrated in Fig. 10, there is also a rising workload of issue comment activities for maintainers in traditional OSS projects. Therefore,
we emphasize the importance that maintainers should provide clear and actionable documentation for practitioners. In this way, more and more
practitioners will become familiar with the details of OSS projects, which in turn, reduces the number of issues and also reduces maintainers’
workload on issue comments.
Researchers: Researchers in the software engineering domain should recognize the significant differences in the growth rates of maintainers’
average workload for different activities within individual projects, especially in individual DL projects. They should be cautious when selecting
open-source projects in different domains to study maintainers’ works. Furthermore, they could consider a larger scale of DL and traditional OSS
projects to verify if this finding is also applicable to most DL and traditional OSS projects.

Moreover, to alleviate maintainers’ workload in pull request-related activities, researchers can explore the development of automatic code
generation tools based on existing studies 44,45,46, derive automatic code review tools on top of existing studies 47, and help to process code
comments automatically. Furthermore, they can also contribute to generating usable models that help maintainers find available contributors to
engage in dealing with management tasks, such as the multiple-committer model adopted in the Linux kernel community 19.
Except for the activity of Commit Comment, there are no significant differences in the growth rates of average workload on various activities
per maintainer between sampled DL projects and traditional OSS projects. Regarding each project, our findings show that most DL projects
demonstrate significant differences in growth rates across various activities of maintainers, and traditional OSS projects with a larger size tend
to show no significant differences in growth rates across various activities for maintainers.

3.3 RQ4: What are the relationships between maintainers’ activities and sustainability of DL and traditional
OSS projects?

Motivation: Maintainers perform various activities when they maintain DL projects, and their activities may influence the sustainability of DL
projects. Therefore, we investigate the relationships between maintainers’ monthly activities and the sustainability of DL projects, and analyze how
the evolution of maintainers’ activities influences the sustainability of DL projects.

8https://github.com/features/code-review/

13

Approach: In this section, we use the metric defined in Section 2.2 to assess project sustainability. We then conduct a Spearman’s rank correlation
test 48,49 to examine the correlation betweenmaintainers’ monthly activities and project sustainability in DL projects.We also compare these results
with those of traditional OSS projects.
Results: Our findings uncover that the relationships between project sustainability and maintainer activities differ significantly between DL and
traditional OSS projects. Specifically, only one type of maintainer activity, i.e., the number of pull request review comments made by maintainers,
exhibits a similar correlation with sustainability in both DL and OSS projects. Other maintainer activities all have different correlations with project
sustainability in DL and OSS projects. For instance, the number of pull requests merged by maintainers, the number of releases and pushes made
by maintainers are positively and moderately correlated with the sustainability of DL projects. However, the number of pull requests merged by
maintainers only has a low correlation with the sustainability of traditional OSS projects, and the number of releases has no correlation with the
sustainability. Fig. 13 illustrates the monthly changes in the number of commits for DL and traditional OSS projects, and Fig. 14(a) and Fig. 14(b)
show the relationships between the number of commits and maintainers’ activities in DL and traditional OSS projects, respectively.

Fig. 14(a) reveals that there is a high positive correlation between the number of commits in DL projects and the number of pushes made by
maintainers, and a moderate correlation between the number of commits and the number of pull requests merged by maintainers and the number
of releases made by maintainers. This implies that maintainers’ push, merge, and release activities have a positive and relatively high effect on the
sustainability of DL projects. However, there only exists a low correlation between the number of commits and the number of issues, closed issues,
pull requests, pull request reviews, and pull request review comments. Additionally, there is no significant relationship between the sustainability
of DL projects and the number of commit comments and issue comments made by maintainers.

By comparingwith traditional OSS projects, we also obtained the relationships between the indicators of sustainability andmaintainers’ activities
in traditional OSS projects, which is shown in Fig. 14(b). We can observe that the number of commits is positively and moderately correlated with
the number of commit comments, issues, closed issues, pull requests, and pushes made bymaintainers. However, there only exists a low correlation
between the number of commits and the number of issue comments, pull requests merged by maintainers, and pull request review comments
made by maintainers. This result is somewhat different from DL projects, where pull requests merged by maintainers have a moderate correlation
with DL projects’ sustainability. In addition, there is no significant relationship between the sustainability of DL projects and the number of pull
request reviews and releases made by maintainers.

20152016201720182019202020212022

1000

2000

3000

4000

#N
um
be
r

Commit (DL)

Commit (non-DL)

Figure 13 Sustainability of DL and traditional OSS projects, using the metric of the number of commits.

3.3.1 Implications.

Maintainers: Based on the findings, it is important for maintainers to consider the differences between DL and traditional OSS projects in terms of
project sustainability. For example, through maintaining a high number of pull requests merged, releases, and pushes, maintainers in DL projects
can positively and highly impact the sustainability of DL projects. However, these activities made by maintainers may not be effective in traditional
OSS projects. Hence, maintainers in DL and traditional OSS projects may need to focus on specific activities that are effective in improving the
sustainability of projects. In this way, they can ensure the long-term sustainability of projects from maintainers’ perspectives.

14

(a) DL (b) OSS
Figure 14 Relationships between the sustainability of projects (i.e., the number of commits) and maintainers’ activities in DL and OSS projects. The
blue color indicates a positive correlation, and the red color indicates a negative correlation. The darker the color is, the stronger the correlation is.
“X" implies that the correlation is insignificant 50. An absolute value of correlation that is less than 0.4 means a low correlation, an absolute value
of correlation that ranges from 0.4 to 0.7 means a moderate correlation, an absolute value of correlation that ranges from 0.7 to 0.9 means a high
correlation, and an absolute value of correlation that great than 0.9 means a very high correlation 51.

Researchers: Results in this RQ derive empirical evidence of the relationships between maintainers’ activities and the sustainability of DL and
traditional OSS projects. These preliminary results call for further investigations to establish definitive causal relationships between the indicators
of sustainability and maintainers’ activities. Researchers can delve deeper into various other factors that may impact the sustainability and compare
DL projects with traditional OSS projects. By doing so, we can gain a better understanding of how maintainers can effectively contribute to
sustainable projects.

Furthermore, as previous studies 43 stated that the proportion of new Python projects that depend on ML libraries has increased from 2% in
2013 to 50% in 2018; hence, we recommend software engineering researchers use our findings as a starting point to investigate the fine-grained
tasks that maintainers faced, and explore the sustained maintenance practices specific to DL projects. By doing so, we can better understand the
unique challenges and opportunities in managing DL projects, promote sustainable development of DL projects, and also provide guidance to many
other OSS projects.
The study reveals that the correlation between project sustainability and maintainer activities differs substantially between DL and traditional
OSS projects. For instance, the number of pull requests merged, the number of releases and pushes made by maintainers are positively
and moderately correlated with the sustainability of DL projects, while the number of pull requests merged by maintainers only has a low
correlationwith the sustainability of traditionalOSS projects, and the number of releases has no correlationwith the sustainability of traditional
OSS projects.

4 RELATED WORK

In this section, we describe the related works regarding the behaviors and works of maintainers, the evolution and sustainability of open source
projects, and the particular analyses of deep learning projects.

15

4.1 The behaviors and works of maintainers

A tremendous amount of research effort has focused on studying developers’ works and the evolution of developer communities 52,53,54,55,56,23.
Closely related to our work, Wang et al. 23 conducted an empirical study to investigate elite developers’ fine-grained activities in open source
projects, and studied the impacts of these activities on projects’ quality and productivity. Although they revealed a set of tasks performed by elite
developers, it is unclear whether these elite developers are maintainers or not.

Hence, there is still little research on the observation of maintainers and maintainers’ works. Among them, Dias et al. 35 investigated to unveil
the unique attributes that great OSS maintainers might have. Eghbal et al. 57 analyzed the OSS maintenance process and found that some hidden
costs of maintaining OSS projects exist. Zhou et al. 18 reported an empirical study to understand the scalability of the Linux Kernel and paid
more attention to characterizing the workload of maintainers. Although Zhou et al.’s work is closely related to ours, their paper only focused on
the technical works (i.e., the number of commits, files, authors, and new joiners) of maintainers, but neglected the fact that maintainers are also
responsible for many other tasks. Hence, in this study, we study maintainers’ activities from various dimensions to deeper understand maintainers’
tasks in DL projects and traditional OSS projects.

4.2 The evolution and sustainability of open source projects

As open source software evolves continuously, it becomes increasingly large and complex 58. Due to its longevous evolution, there have yielded a
considerable body of studies to investigate the evolution and sustainability of software evolution. Among them, Lehman et al. 58 initially elaborated
on the laws of software evolution, whereas Scacchi et al. 59 conducted a study to examine whether and how the evolution of open source software
conforms to the laws of traditional software evolution. Mockus et al. 53 examined the development process of the Apache web server. By extracting
data from email archives and issue reports, they generated several critical views of the OSS project, including developer participation, core team
size, code ownership, defect density, productivity, and problem resolution interval.

Prior works are concentrated on the evolution and sustainability of open source projects, whereas our study focuses on maintainers’ activities
and the sustainability of DL prjects, and compares with traditional OSS projects, which has not been investigated in previous studies.

4.3 The analyses of deep learning systems

Deep learning techniques grow at a rapid pace, which has led to a tremendous amount of empirical research effort. Among them, a considerable
body of literature puts their effort into studying bugs, failures, and faults of deep learning projects 60,14,20,21,61,62. For instance, Thung et al. 60
conducted an empirical study on the bugs in machine learning systems, to find a sample set of bugs and corresponding fixes. Zhang et al. 14 collected
program bugs existed in deep learning projects that depend on TensorFlow and endeavored to determine the root causes and symptoms of these
bugs. Islam et al. 20,21 collected data from Stack Overflow and GitHub with the aim to understand the bugs types, root causes, bug impacts on
outcomes, bug-prone stages as well as bug fixing patterns of deep learning projects. Simultaneously, Zhang et al. 61 presented an empirical study
on program failures of deep learning jobs in Microsoft. Liu et al. 62 analyzed the prevalence, types, and distribution of self-admitted technical debt
in 7 popular deep learning frameworks.

Simultaneously, there also exist some empirical studies exploring themigration process of deep learning libraries. Han et al. 63 put their effort into
dependency networks of deep learning libraries. They studied the dependency degrees that projects depend on deep learning libraries, the update
behaviors, and reasons when updating deep learning libraries, and the version distributions of deep learning projects. Dilhara et al. 43 examined
to mine how developers in Software-2.0 use deep learning libraries, and whether or not the deep learning library evolution affects their code.
Moreover, they also expounded on the challenges of DL library evolution by performing a survey on developers involving deep learning libraries.

Most prior studies focused on the program bugs/failures/faults of deep learning projects or the migration process of DL libraries. However,
these prior studies have not explored maintainers’ activities, the growth of maintainers’ activities, not to mention the growth of DL projects and
the relationships between maintainers’ activities and the sustainability of DL projects, which is studied in our paper.

5 THREATS TO VALIDITY

Internal Threats. One potential threat can be attributed to the selection of DL and traditional OSS projects. To mitigate this threat, in this study,
we select 5 popular DL frameworks and 14 other DL software projects to compose our DL dataset. We also select 19 traditional OSS projects
with diverse application domains to make a comparison. Another threat may be the number of selected projects. Although having more projects
is desirable, practically, to ensure the feasibility of manual observations and generate reasonable statistical results, we comply with rules defined
in Kalliamvakou et al.’s study 64 and GitHub’s annual report 65. In this regard, we select projects that are representative in DL and traditional OSS

16

domains and have sufficient records to trace in GitHub. We also manually check the uniqueness and verify the correctness of the extracted data,
where our results declare the correctness of our dataset. Another threat is related to the determination of maintainers’ workload. To alleviate this
threat, we surveyed maintainers and asked for their help choosing activities they performed in their maintenance process. After that, we analyzed
their responses and determined the maintainers’ main workload according to their choices.
External Threats. The first external validity relates to the small dataset of 19 DL projects and 19 OSS projects, which limits the generalizability of
our findings. To alleviate this threat, we referred to extant literature and found that Wang et al.’s 23 study only collected 20 OSS projects to unveil
elite developers’ activities, and Joblin et al. 66 obtained 32 OSS projects to undertand how socio-technical factors affect the success of projects.
Moreover, Yue et al.’s 25 study selected 54 OSS projects to investigate the correlations between newcomers’ dynamic contribution patterns with
their technical success in their early careers. Our constructed dataset includes 38 OSS projects, which is quite similar in scale with prior studies.
This helps to alleviate this threat to a certain degree. The second external validity involves the limitation of DL projects. As we gather DL projects
to study their growth and sustainability, therefore, our findings focused on DL projects may not be generalizable to other OSS projects. However,
we compare the findings in DL projects with traditional OSS projects, therefore, the findings in traditional OSS projects can also be generalizable
to other OSS projects. This helps to mitigate this threat.

6 CONCLUSION AND FUTURE WORK

In this paper, we conduct an empirical study to explore maintainers’ workload in DL projects, investigate the evolution and sustainability of DL
projects, understand the workload growth of maintainers, and compare them with traditional OSS projects. To achieve that, we collect 19 DL
projects and 19 traditional OSS projects, and extract all the histories of activities of these projects to characterize the workload of maintainers
holistically (RQ1), the evolution of DL projects (RQ2), and the workload growth of maintainers (RQ3), as well as the relationships between main-
tainers’ activities and the sustainability of DL projects (RQ4). Our analysis uncovers the following findings: 1) there exists a significant difference
in the growth of most activities between DL and traditional OSS projects, and maintainers in DL projects conduct significantly lower workloads
than maintainers in traditional OSS projects; 2) although DL projects show increasing trends on most types of activities, maintainers’ workload on
most activities show a decreasing trend, which is quite different with traditional OSS projects; 3) there only exists a significant difference in the
growth rates of average workload on Commit Comment of maintainers between DL and traditional OSS projects; 4) there exist positive and mod-
erate correlations between the sustainability of DL projects and maintainers’ releases and pushes as well as the number of pull requests merged
by maintainers. However, the number of releases of maintainers does not correlate with the sustainability of traditional OSS projects.

In the future, we plan to consider more DL projects with small and medium sizes to expand the generalization of our results. Moreover, we also
encourage further studies to extend our work, e.g., to find the definitive causalities between the sustainability of DL projects and other factors,
to generate actionable tools that can recommend proper contributors to maintainers in DL projects, etc. To facilitate replications or other types of
future work, we make the data and scripts used in this study publicly available at https://github.com/HJXPaperData/SustainabilityofDL.

References

1. Ciregan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification. In: IEEE. ; 2012: 3642–3649.
2. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: ; 2016: 770–778.
3. Acuna D, Kar A, Fidler S. Devil is in the edges: Learning semantic boundaries from noisy annotations. In: ; 2019: 11075–11083.
4. Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups.

IEEE Signal processing magazine 2012; 29(6): 82–97.
5. Nassif AB, Shahin I, Attili I, Azzeh M, Shaalan K. Speech recognition using deep neural networks: A systematic review. IEEE access 2019; 7:

19143–19165.
6. Chen C, Seff A, Kornhauser A, Xiao J. Deepdriving: Learning affordance for direct perception in autonomous driving. In: ; 2015: 2722–2730.
7. Huval B, Wang T, Tandon S, et al. An empirical evaluation of deep learning on highway driving. arXiv preprint arXiv:1504.01716 2015.
8. Tian Y, Pei K, Jana S, Ray B. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In: ; 2018: 303–314.

https://github.com/HJXPaperData/SustainabilityofDL

17

9. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug discovery today 2018; 23(6): 1241–
1250.

10. Oktay O, Schlemper J, Folgoc LL, et al. Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 2018.
11. Petersen J, Jäger PF, Isensee F, et al. Deep probabilistic modeling of glioma growth. In: Springer. ; 2019: 806–814.
12. Roy A, Sun J, Mahoney R, Alonzi L, Adams S, Beling P. Deep learning detecting fraud in credit card transactions. In: IEEE. ; 2018: 129–134.
13. Wan Z, Xia X, LoD,MurphyGC. Howdoesmachine learning change software development practices?. IEEE Transactions on Software Engineering

2019; 47(9): 1857–1871.
14. Zhang Y, Chen Y, Cheung SC, Xiong Y, Zhang L. An empirical study on TensorFlow program bugs. In: ; 2018: 129–140.
15. Penzenstadler B, Bauer V, Calero C, Franch X. Sustainability in software engineering: a systematic literature review. In: IET; 2012; Ciudad Real,

Spain: 32–41
16. Valiev M, Vasilescu B, Herbsleb J. Ecosystem-level determinants of sustained activity in open-source projects: A case study of the PyPI

ecosystem. In: ; 2018: 644–655.
17. Zhang Y, Stol KJ, Liu H, Zhou M. Corporate dominance in open source ecosystems: a case study of OpenStack. In: ; 2022: 1048–1060.
18. Zhou M, Chen Q, Mockus A, Wu F. On the scalability of Linux kernel maintainers’ work. In: ; 2017: 27–37.
19. Tan X, Zhou M, Fitzgerald B. Scaling open source communities: an empirical study of the Linux kernel. In: IEEE. ; 2020: 1222–1234.
20. Islam MJ, Nguyen G, Pan R, Rajan H. A comprehensive study on deep learning bug characteristics. In: ; 2019: 510–520.
21. Islam MJ, Pan R, Nguyen G, Rajan H. Repairing deep neural networks: Fix patterns and challenges. In: IEEE. ; 2020: 1135–1146.
22. Chen J, Liang Y, Shen Q, Jiang J, Li S. Toward understanding deep learning framework bugs. ACM Transactions on Software Engineering and

Methodology 2022.
23. Wang Z, Feng Y, Wang Y, Jones JA, Redmiles D. Unveiling elite developers’ activities in open source projects. ACM Transactions on Software

Engineering and Methodology (TOSEM) 2020; 29(3): 1–35.
24. Yin L, Chen Z, Xuan Q, Filkov V. Sustainability Forecasting for Apache Incubator Projects. arXiv preprint arXiv:2105.14252 2021.
25. Yue Y, Wang Y, Redmiles D. Off to a Good Start: Dynamic Contribution Patterns and Technical Success in an OSS Newcomer’s Early Career.

IEEE Transactions on Software Engineering 2022; 49(2): 529–548.
26. GH Archive. 2021.
27. Google BigQuery. 2021.
28. Coelho J, Valente MT. Why modern open source projects fail. In: ; 2017: 186–196.
29. Mendez C, Padala HS, Steine-Hanson Z, et al. Open source barriers to entry, revisited: A sociotechnical perspective. In: ; 2018: 1004–1015.
30. Qiu HS, Nolte A, Brown A, Serebrenik A, Vasilescu B. Going farther together: The impact of social capital on sustained participation in open

source. In: IEEE. ; 2019: 688–699.
31. Manotas I, Bird C, Zhang R, et al. An empirical study of practitioners’ perspectives on green software engineering. In: IEEE. ; 2016: 237–248.
32. Noman H, Mahoto NA, Bhatti S, Abosaq HA, Al Reshan MS, Shaikh A. An Exploratory Study of Software Sustainability at Early Stages of

Software Development. Sustainability 2022; 14(14): 8596.
33. Trinkenreich B, Guizani M, Wiese I, et al. Pots of Gold at the End of the Rainbow: What is Success for Open Source Contributors?. IEEE

Transactions on Software Engineering 2021; 48(10): 3940–3953.
34. Crowston K, Howison J, Annabi H. Information systems success in free and open source software development: Theory andmeasures. Software

Process: Improvement and Practice 2006; 11(2): 123–148.

18

35. Dias E, Meirelles P, Castor F, Steinmacher I, Wiese I, Pinto G. What Makes a Great Maintainer of Open Source Projects?. In: IEEE. ; 2021:
982–994.

36. Tan X, Zhou M, Sun Z. A first look at good first issues on GitHub. In: ; 2020: 398–409.
37. Han J, Deng S, Lo D, Zhi C, Yin J, Xia X. An Empirical Study of the Landscape of Open Source Projects in Baidu, Alibaba, and Tencent. In: IEEE.

; 2021: 298–307.
38. LaToza TD, Venolia G, DeLine R. Maintaining mental models: a study of developer work habits. In: ; 2006: 492–501.
39. Cohen J. A coefficient of agreement for nominal scales. Educational and psychological measurement 1960; 20(1): 37–46.
40. Massey Jr FJ. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American statistical Association 1951; 46(253): 68–78.
41. Han J, Shihab E, Wan Z, Deng S, Xia X. What do programmers discuss about deep learning frameworks. Empirical Software Engineering 2020;

25(4): 2694–2747.
42. Heiberger RM, Neuwirth E. One-way anova. In: Springer. 2009 (pp. 165–191).
43. DilharaM, Ketkar A, Dig D. Understanding Software-2.0: a study of machine learning library usage and evolution. ACMTransactions on Software

Engineering and Methodology (TOSEM) 2021; 30(4): 1–42.
44. Hu X, Men R, Li G, Jin Z. Deep-autocoder: Learning to complete code precisely with induced code tokens. In: . 1. IEEE. ; 2019: 159–168.
45. Bernaschina C, Falzone E, Fraternali P, Gonzalez SLH. The virtual developer: Integrating code generation andmanual development with conflict

resolution. ACM Transactions on Software Engineering and Methodology (TOSEM) 2019; 28(4): 1–38.
46. Liu F, Li G, Zhao Y, Jin Z. Multi-task learning based pre-trained language model for code completion. In: ; 2020: 473–485.
47. Chen Q, Zhou M. A neural framework for retrieval and summarization of source code. In: IEEE. ; 2018: 826–831.
48. Sedgwick P. Spearman’s rank correlation coefficient. Bmj 2014; 349.
49. Borges H, Hora A, Valente MT. Understanding the factors that impact the popularity of GitHub repositories. In: IEEE. ; 2016: 334–344.
50. Dong Y, Zhang P, Wang J, et al. An Empirical Study on Correlation between Coverage and Robustness for Deep Neural Networks. In: IEEE. ;

2020: 73–82.
51. Guilford JP. Fundamental statistics in psychology and education. 1950.
52. Sonnentag S. Excellent software professionals: Experience, work activities, and perception by peers. Behaviour & Information Technology 1995;

14(5): 289–299.
53. Mockus A, Fielding RT, Herbsleb J. A case study of open source software development: the Apache server. In: ; 2000: 263–272.
54. Zhou M, Mockus A. Developer fluency: Achieving true mastery in software projects. In: ; 2010: 137–146.
55. Zhou M, Mockus A. What make long term contributors: Willingness and opportunity in OSS community. In: IEEE. ; 2012: 518–528.
56. Bao L, Xia X, Lo D, Murphy GC. A large scale study of long-time contributor prediction for github projects. IEEE Transactions on Software

Engineering 2019.
57. Eghbal N.Working in public: the making and maintenance of open source software. Stripe Press . 2020.
58. Lehman MM, Ramil JF, Wernick PD, Perry DE, Turski WM. Metrics and laws of software evolution-the nineties view. In: IEEE. ; 1997: 20–32.
59. Scacchi W. Understanding open source software evolution. Applying, breaking and rethinking the laws of software evolution. 2003.
60. Thung F, Wang S, Lo D, Jiang L. An empirical study of bugs in machine learning systems. In: IEEE. ; 2012: 271–280.
61. Zhang R, Xiao W, Zhang H, Liu Y, Lin H, Yang M. An empirical study on program failures of deep learning jobs. In: IEEE. ; 2020: 1159–1170.

19

62. Liu J, Huang Q, Xia X, Shihab E, Lo D, Li S. Is using deep learning frameworks free? characterizing technical debt in deep learning frameworks.
In: ; 2020: 1–10.

63. Han J, Deng S, Lo D, Zhi C, Yin J, Xia X. An empirical study of the dependency networks of deep learning libraries. In: IEEE. ; 2020: 868–878.
64. Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D. The promises and perils of mining github. In: ; 2014: 92–101.
65. GitHub Annual Report. 2020.
66. Joblin M, Apel S. How do successful and failed projects differ? a socio-technical analysis. ACM Transactions on Software Engineering and

Methodology (TOSEM) 2022; 31(4): 1–24.

	On the Sustainability of Deep Learning Projects: Maintainers' Perspective
	Abstract
	Introduction
	Methodology
	Collecting Data
	Characterizing the Project Sustainability
	Identifying Maintainers
	Identification of Maintainers' activities

	Results
	RQ2: How do DL and traditional OSS projects grow? How do the overall workloads of maintainers grow? And if there exist differences regarding these between DL and traditional OSS projects?
	Implications.

	RQ3: How does the average workload of maintainers grow as DL and traditional OSS projects evolve? And if there exist differences between them?
	Implications.

	RQ4: What are the relationships between maintainers' activities and sustainability of DL and traditional OSS projects?
	Implications.

	Related Work
	The behaviors and works of maintainers
	The evolution and sustainability of open source projects
	The analyses of deep learning systems

	Threats to Validity
	Conclusion and Future Work
	References

