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Greater sage-grouse face tradeoffs between predation risk and

thermal exposure in selecting habitat
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Abstract

Climate change is likely to drive widespread species range shifts and extirpations, mostly on the warm distribution edges,

where habitat tends to be fragmented, of lower quality, support lower population density, and at greater risk from extreme

weather events. In the Intermountain West, future climate will likely be warmer and drier, driving a reduction in sagebrush

(Artemesia sp.) and other shrubland cover. Among the species threatened by more xeric climate is the Greater sage-grouse

(Centrocercus urophasianus), which depends on sagebrush for forage and shelter, though their response to temperature is not

well studied. We deployed 75 data loggers across two valleys in southern Utah and Nevada, near the southern edge of sage-grouse

distribution, and collected temperature data for 27 months. We used random forest models to test the impacts of temperature,

land cover, and topography on sage-grouse habitat selection and found that temperature influenced selection in all seasons and

both sites. In Utah, the warmer site, sage-grouse selected areas near trees during the extremes of both winter and summer. In

autumn and spring those extremes were rarer and sage-grouse avoided habitat near trees. Conversely, sage-grouse in the cooler

Nevada site selected contiguous patches of sagebrush in extremes periods but only selected habitat near trees during winter

cold, avoiding trees during summer. Our findings show that extreme temperatures drive sage-grouse to select habitat near trees

despite the risk likely posed by avian predators. The difference between the Utah and Nevada sites suggests that sage-grouse

prefer sagebrush as thermal shelter but that it may be inadequate during the hottest times, forcing riskier selection. These

models point toward a more mechanistic understanding of how sage-grouse distribution may retract at its warm edges. This

will refine our understanding of seasonal habitat requirements and inform management decisions to prioritize thermal refugia

for an imperiled species.
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ABSTRACT

Climate change is likely to drive widespread species range shifts and extirpations, mostly on the warm distri-
bution edges, where habitat tends to be fragmented, of lower quality, support lower population density, and
at greater risk from extreme weather events. In the Intermountain West, future climate will likely be warmer
and drier, driving a reduction in sagebrush (Artemesia sp. ) and other shrubland cover. Among the species
threatened by more xeric climate is the Greater sage-grouse (Centrocercus urophasianus ), which depends
on sagebrush for forage and shelter, though their response to temperature is not well studied. We deployed
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75 data loggers across two valleys in southern Utah and Nevada, near the southern edge of sage-grouse dis-
tribution, and collected temperature data for 27 months. We used random forest models to test the impacts
of temperature, land cover, and topography on sage-grouse habitat selection and found that temperature
influenced selection in all seasons and both sites. In Utah, the warmer site, sage-grouse selected areas near
trees during the extremes of both winter and summer. In autumn and spring those extremes were rarer and
sage-grouse avoided habitat near trees. Conversely, sage-grouse in the cooler Nevada site selected contiguous
patches of sagebrush in extremes periods but only selected habitat near trees during winter cold, avoiding
trees during summer. Our findings show that extreme temperatures drive sage-grouse to select habitat near
trees despite the risk likely posed by avian predators. The difference between the Utah and Nevada sites
suggests that sage-grouse prefer sagebrush as thermal shelter but that it may be inadequate during the
hottest times, forcing riskier selection. These models point toward a more mechanistic understanding of
how sage-grouse distribution may retract at its warm edges. This will refine our understanding of seasonal
habitat requirements and inform management decisions to prioritize thermal refugia for an imperiled species.

KEYWORDS: greater sage-grouse, habitat selection, thermal ecology, Basin and Range, random forest,
range margins, Centrocercus urophasianus

COVER LETTER:

Allen Moore, Andrew Beckerman, Chris Foote, Gareth Jenkins, Marcus Lashley, and Zhaoxue Ma

Editors-in-chief

Ecology and Evolution

Dear Editors,

We are very pleased to submit our article, Greater sage-grouse face tradeoffs between predation risk and
thermal exposure in selecting habitat , for consideration at Ecology and Evolution .

In this research, we used GPS transmitters to track the habitat selection of greater sage-grouse in the
fragmented habitat of their southern range margin. As sagebrush habitat specialists, greater sage-grouse are
more vulnerable to predation in areas of greater habitat fragmentation. It is clear that encroaching conifer
forests provide perches for avian predators and threaten sage-grouse habitat, and previous research suggests
that sage-grouse select more rugged terrain when near trees. However, it is unclear what may compel sage-
grouse to select habitat near trees rather than avoiding them altogether. Here, we present evidence that
along their southern range margin, greater sage-grouse may be forced by high temperatures to seek thermal
refuge in tree cover when sagebrush is inadequate shelter. This has important implications for how we
understand the risks faced by this imperiled species and the factors land managers must consider for their
conservation, especially in the face of ongoing climate change.

We believe that Ecology and Evolution would be an excellent means to disseminate our research. Sage-grouse
are a species of conservation concern that may serve as an indicator species for sagebrush ecosystems and
the challenges they face are emblematic of those faced by other habitat specialists and of conservation efforts
in general.

We declare no conflicts of interest and would be happy to correspond further at aidan.beers@montana.edu
or aidantb@gmail.com.

Thank you for your time and consideration.

Dr. Aidan T. Beers

Postdoctoral Researcher

Department of Ecology

Montana State University
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INTRODUCTION

Ongoing climate change is forcing species redistributions and local extirpations, driving shifts in habitat
suitability and connectivity and compelling wildlife to shift their range or modify their behavior to avoid
extirpation (Thomas et al. 2004a, Parmesan 2006, Chen et al. 2011b, Varner et al. 2016, Beever et al. 2017,
Pecl et al. 2017). However, the rates of change in habitat suitability are heterogeneous across a species’
range, as climate is not always the dominant driver of range limits (Arntzen and Espregueira Themudo 2008,
Balzotti et al. 2016, Oldfather et al. 2020). Habitat fragmentation (sometimes as an effect of climate)
has been implicated as a primary driver that both has direct effects and can exacerbate the impacts of
climate (Opdam and Wascher 2004). Furthermore, local- and micro-scale climates can be decoupled from
regional trends, especially by topography, complicating predictions of population persistence and connectivity
(Dobrowski 2011, Ashcroft et al. 2012, Gollan et al. 2015). That decoupling can create microrefugia (Rull
2009, Hannah et al. 2014) where suitable habitat persists longer than expected at macroecological scales.
This complicates and can limit our understanding of how species and ecosystems will respond to climate
change and can reduce the capacity to plan for and manage change for sensitive species.

Microrefugia and their impact on species are especially important at species’ lagging range margin, where
habitat is likely to be fragmented and of lower quality. Even for mobile wildlife species, suitable microhabitat
can provide essential refuge from thermal stress and extreme events that otherwise drive local extirpations
at range margins (Parmesan 2006, Seabrook et al. 2014, Lima et al. 2016). For species of conservation
concern, studying their limiting factors at range margins can provide insight into their capacity to shift their
range or behaviorally adapt to new conditions. In particular, the lagging range margin can be used as a
natural laboratory to evaluate the environmental factors limiting the defining range limits and portend the
conditions likely to become more common at their current range core (Travis and Dytham 2004, Keith et al.
2008, Seabrook et al. 2014). It is therefore critical to identify the mechanisms limiting habitat suitability
for sensitive species at their lagging range margin at multiple scales (Vale et al. 2014).

Large-scale patterns in species distribution often do not scale down and can neglect variation in habitat
suitability at finer scales, especially at range margins where species distribution models (SDMs) tend to be
less accurate (Hannah et al. 2014, Vale et al. 2014). While much of the research on range limitations focuses
on occupancy, studying wildlife habitat selection may offer further insight into how individuals are compelled
to exploit microhabitat in response to thermal stress. Shifts in wildlife behavior in response to thermal stress
or other climatic drivers often precede detectable shifts in distribution or population processes (Berger-Tal
et al. 2011, Beever et al. 2017). By focusing on tendencies in individual habitat selection, we are able to
identify the environmental factors that foster suitable microhabitat and better inform management at local
scales for sensitive species. In combination with large scale distributions, understanding limits on habitat
selection at range margins can provide more accurate estimates of wildlife response and sensitivity to climate
change.

The range of sagebrush of western North America has declined rapidly due primarily to land conversion,
improper grazing management, fire, invasive species, and loss to grassland and forest (Connelly and Braun
1997, Connelly et al. 2004). Sagebrush species (Artemesia sp. ) will likely have varied responses to ongoing
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climate change, but at their southern range limit they are likely to decrease in cover in response to climate
warming (Tredennick et al. 2016, Kleinhesselink and Adler 2018, Renwick et al. 2018).

As a sagebrush obligate, greater sage-grouse (Centrocercus urophasianus , hereafter “sage-grouse”) range has
declined in response to loss of sagebrush-dominated habitats (Braun 1998, Connelly et al. 2004, Schroeder
et al. 2004). Sage-grouse are a species of conservation concern emblematic of the sagebrush system and may
serve as an indicator of ecosystem change there (Rowland et al. 2006, Hanser and Knick 2011, Runge et al.
2019, Ricca and Coates 2020). Habitat specialists like sage-grouse are less able to adapt to novel conditions
(Hampe and Petit 2005), so studying their habitat selection along their lagging (southern) range margin
provides an opportunity to assess the factors likely to limit suitable habitat and portend future changes to
their distribution and to sagebrush habitats.

For sage-grouse, it is clear that sagebrush extent is an essential driver of their habitat, but it is not the only
limitation, as sagebrush range extends far south of that of sage-grouse. So while SDMs for sage-grouse likely
explicitly include sagebrush (Balzotti et al. 2016), a habitat selection framework can elucidate important
points of stress and cryptic fragmentation that would be overlooked at coarser scales or by focusing on
occupancy. In particular, it is important to assess the effects of direct thermal stress on selection, as extreme
weather could preclude using otherwise suitable habitat. While other gallinaceous birds are sensitive to
temperature (Patten et al. 2007, Hovick et al. 2014, Londe et al. 2021), thermal effects on sage-grouse are
not clear. Pratt et al. (2017) used relatively coarse scale PRISM data (4 km resolution: [PRISM Climate
Group 2020]) to study the role of temperature in triggering sage-grouse seasonal migration; that study
indicated sage-grouse make coarse scale decisions about their habitat in response to temperature, but it did
not address the degree to which sage-grouse select habitat within seasons in response to thermal stress or
how seemingly intact habitat can be or will become untenable due to temperature.

In addition to sagebrush extent, sage-grouse habitat selection and long-term persistence is strongly impacted
by tree cover, especially encroaching forests of pinyon pine (Pinus monophyla and P. edulis ) and juniper
(Juniperus spp. ), as conifers can replace sagebrush cover and may provide perches for avian predators (Frey
et al. 2013, Prochazka et al. 2017, Severson et al. 2017b, 2017a, Olsen et al. 2021). Large-scale studies of
sage-grouse lek persistence and population trends suggest that tree cover can be among the greatest threats
to sage-grouse and other sagebrush obligates (Davies et al. 2011, Baruch-Mordo et al. 2013, Knick et
al. 2013), though to our knowledge only one study has directly linked conifer cover with decreased survival
(Prochazka et al. 2017). Yet despite the poorer habitat quality and likely risk of avian predators, sage-grouse
sometimes select habitat near trees, possibly mitigating that risk by exploiting rugged topography to block
predator sightlines (Dinkins et al. 2014, Beers and Frey 2022a). The reason for this apparent incongruity
between some observed selection and population processes is unclear. However, it has been suggested that
sage-grouse may be prone to ecological traps or maladaptive selection, wherein they select areas of greater
risk to exploit its resources in spite of negative fitness impacts (Kirol et al. 2015, Coates et al. 2017, Pratt
and Beck 2021). The reasons for that potentially risky selection have not been explored.

It is likely that sage-grouse will be extirpated from large swathes of their current southern range if warming
and drying trends continue, resulting in sagebrush conversion to grassland, increased fire frequency, and
decreased soil moisture and mesic resources (Schlaepfer et al. 2012a, Kleinhesselink and Adler 2018). To
best conserve sage-grouse, it is therefore important to assess the role that thermal stress plays in driving their
habitat selection in the fragmented habitat of their southern range edge. In identifying the direct impact
of temperature on selection, we will be better able to predict the local and regional variation in habitat
suitability along the lagging range margin and to inform conservation efforts to foster potential microrefugia.
Knowledge of selection for suitable microhabitat can complement larger scale efforts and inform ecosystem
management to better identify areas at multiple scales that are most likely to support that microhabitat and
to take actions to foster or create it (Kirol et al. 2015).

In this study, we sought to identify trends in sage-grouse habitat selection within each season in response to
near-surface temperature, to determine when and where sage-grouse select habitat in response to temperature
and identify where temperature is most likely to limit habitat suitability. We hypothesized that sage-grouse
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would make micro-scale habitat selection in response to extreme temperatures within their home range and
within otherwise suitable sagebrush habitat.

MATERIALS AND METHODS

Study areas

We performed this study in two valleys near the sage-grouse southern range margin. Both valleys were a mo-
saic of sagebrush and grasses bordered by mountains (Figure 1). In this region sagebrush is largelyArtemisia
tridentata wyomingensis with patches of other A. tridentata subspecies and some patches of A. nova in the
more xeric areas. The mountainous areas included some patches of sagebrush, but were largely dominated
by mixed pinyon-juniper forest (P. monophylla and J. osteosperma ), mountain mahogany (Cercocarpus
sp. ), and occasional stands of aspen (Populus tremuloides ). In each valley, the pinyon-juniper forest was
expanding farther into the valley, and in each there had been management actions to remove some of that
expansion.

Buckskin Valley and Bear Valleys in Utah are in the Panguitch Sage-grouse Management Area (SGMA; Utah
Public Lands Policy Coordination Office 2019). This Bear-Buckskin complex (hereafter, Buckskin) was the
smaller of the two study areas (˜220 km2), located farther south, and had a smaller elevation range used
by sage-grouse (2100 – 2500 m). The highest areas were the ridge between the two valleys and the lowest
was the open, flat center of Buckskin Valley. There were large patches of dense sagebrush as well as large
extents with little to no sagebrush, which was covered by grasses (annuals and native bunchgrasses) and
bare ground. Over the 30-year period (1991 – 2020) used to define PRISM data climate normal, Buckskin
had a mean annual temperature of 7.3 °C and received 435 mm of precipitation. A large portion of that
precipitation (127mm) came during the spring, March – May, though the second-wettest month on average
was August and the second-wettest three-month period was December – February (109 mm). There was
a mean monthly difference in maximum and minimum temperatures of 18.1 °C. During the study period,
Buckskin had a mean annual temperature of 8.6 °C and an average of 345 mm of precipitation each year.
The hottest month was August (Tmean = 19.8 °C) and the coldest was February (Tmean = -3.9 °C). There
was a mean monthly difference between maximum and minimum temperatures of 15.2 °C. The northern half
of Buckskin is divided by Utah State Highway 20, which sees moderate traffic. Bear Valley had a few small
houses and ranch buildings, but there were none in Buckskin. Buckskin and Bear Valleys each had a few
small gravel roads through them.

Steptoe Valley is part of the Steptoe/Cave Population Management Unit in Nevada (Emm et al. 2019). It
is larger than Buckskin (˜540 km2) and is interspersed with patches of grasslands throughout the valley,
commonly including cheatgrass (Bromus tectorum ), crested wheatgrass (Agropyron cristatum ), Sandberg’s
bluegrass (Poa secunda or Poa sandbergii ), bluebunch wheatgrass (Pseudoroegneria spicata ), and Indian
ricegrass (Oryzopsis hymenoides ). Within this study area, grouse were generally located at higher elevations
than in Buckskin, Utah (2000 – 2700 m). Buckskin had a greater seasonality in its precipitation and tended
to be warmer than Steptoe in each of their respective wettest and driest quarters of the year.

Compared to Buckskin, Steptoe was drier and of about the same temperature across the entire year, despite
have less seasonality. From 1981 – 2010, Steptoe had a mean annual temperature of 7.3 °C and 317 mm of
annual precipitation. Like in Buckskin, most of the precipitation fell in March – May (87 mm) and the second
wettest quarter was December - February (78 mm). In Steptoe, the warmest month (July) had an average
maximum temperature of 30.3 °C and the coldest month (December) an average minimum temperature of
-11.1 °C. There was a mean monthly difference in maximum and minimum temperatures of 18.1 °C. During
the study period, Steptoe received an average of 233 mm of precipitation. The hottest month was July
(Tmean = 19.6 °C) and the coldest was February (Tmean = -3.9 °C). During the study period there was a
mean monthly difference in maximum and minimum temperatures of 19.3 °C. In Steptoe, there was a dirt
road on either side of the valley and the two met where the low area of the valley narrowed to about 3 km
across. Where the valley is close to 10 – 12 km across, there are a few permanent structures on the west side,
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mostly clustered together. There is also a small state park, Ward Charcoal Ovens State Historic Park, near
the edge of the treeline with several stone charcoal ovens. Like much of sage-grouse habitat in the Great
Basin, both Buckskin and Steptoe are used for cattle ranching and sage-grouse could encounter both cattle
and cattle-grazed habitat in almost any part of each study area.

Landscape covariate data

We downloaded 30 m resolution land cover data from the Landscape Fire and Resource Management Planning
Tools Project database (LANDFIRE; Rollins 2009) to build rasters of cover by sagebrush and trees. We first
generalized the land cover types, reclassifying all cover types that included the words “tree,” “woodland”,
“forest”, “conifer”, and “juniper” as tree cover, and any type described as “sagebrush” or “Artemesia ” as
sagebrush cover. We created metrics of tree cover—the density of “tree” pixels within 400 m and 800 m radii
(TREEDEN400 and TREEDEN800) and the distance to any “tree” pixel (TREEDIST). Because the size and
configuration of sagebrush patches can be important for sage-grouse survival, we used thelandscapemetrics
package in R (Hesselbarth et al. 2019) to calculate the contiguity (CONTIG) and core area index (CAI) of
sagebrush patches. Pixels that fell outside of sagebrush cover received a score of 0 for each of those metrics.
CONTIG measures the degree to which pixels within a patch of a single cover type are connected and values
can range from zero to one. CAI measures the percentage of pixels of cover type patch that are not adjacent
to pixels of a different cover type. As a patch increases in size and interior area, CAI approaches 100.

Because topography plays a role in sage-grouse survival and habitat selection (Aldridge et al. 2008, Knick
et al. 2013, Dinkins et al. 2014, Picardi et al. 2020, Beers and Frey 2022a), We also included metrics
of topographic position and heterogeneity. We first used the R packageelevatr (Hollister et al. 2017) to
download a 10 m resolution digital elevation model (DEM) for each study area, then used that DEM to
calculate indices of topographic position (TPI) and heterogeneity (THI) within moving window sizes of 50
m, 200 m, and 400 m. TPI (Jenness et al. 2013) is a measure of how high or low any DEM cell is compared to
the cells around it within a user-defined radius. Cells with negative values are lower than the terrain around
them and positive values indicate a high point or ridge. THI is a measure of overall ruggedness, calculated
by summing the absolute value of TPI at every cell within moving window sizes of 50 m, 200 m, and 400 m.

Temperature data

We deployed HOBO Pendant Temperature/Light data loggers (Onset Corporation, Bourn, MA, USA, #UA-
002-64) in a stratified random distribution in each valley, placed within areas of known sage-grouse use,
collecting data every 30 minutes from June 2018 – November 2020. We attached the loggers to sagebrush
or other shrubs where available to minimize exposure to direct sunlight, on the north side of the shrub. At
points where there was no shrub available, we attached the logger to an aluminum tent stake and drove it
into the ground on the north side of a bunchgrass. At each type of location, we positioned the logger 15 –
25 cm above the ground to mimic the conditions a sage-grouse would experience.

In July 2019 we picked up the loggers to download the data, install a new battery, and redeploy them in a
different random configuration. In both years some of these loggers failed or were destroyed (seemingly by
cows, ravens, and coyotes). Of the loggers deployed in 2018, we were able to use data from 31 from Steptoe
and 22 Buckskin. Of those deployed in 2019, we used data from 40 loggers from Steptoe and 28 loggers
from Buckskin. For each logger, we excluded any data where light intensity was > 10,000 lumens to exclude
warming from direct sunlight. This filtering left a total of 1,016,833 data points. In combination with loggers
lost to extreme cold and animals, data omitted due to direct sunlight, and the loggers being deployed in
summer, in both Buckskin and Steptoe we had the most temperature data points in Autumn (Buckskin n
= 100,362; Steptoe n = 168,901), followed by Summer (Buckskin n = 94,264; Steptoe n = 156,610), Winter
(Buckskin n = 66,914; Steptoe n = 112,597), and Spring (Buckskin n = 56,816; Steptoe n = 95,823). From
those points, we pulled the daily maximum, minimum, and difference (Tmax, Tmin, Tdiff, respectively) and
then calculated the monthly average for each of those metrics for each logger.

After calculating the Tmax, Tmin, and Tdiff for each logger and each month in the study period, we created
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an interpolated surface at a 100 m resolution and aggregated the monthly averages by season. We performed
the interpolation using the interpolation tools in ArcMap version 10.6 (Environmental Science Research
Institute (ESRI), Inc., Redlands, California, USA), co-kriging across the extent of the study area in each
valley assuming that temperature varied with elevation. While elevation is not the only driver of temperature
at local scales, it is an important factor (Dobrowski 2011, Ashcroft and Gollan 2012), thus we did not include
a separate measure of elevation in the habitat selection analysis to avoid problems of variable collinearity.
We grouped September – November as Autumn, December – February as Winter, March – May as Spring,
and June – August as Summer.

GPS data

For sage-grouse locations, we tracked individual birds using rump-mounted GPS transmitters (22 g Solar
Argos/GPS PTT-100, Microwave Telemetry Inc., Columbia, MD; 22 g GPS-PTT, GeoTrak, Inc., Apex,
NC). We captured sage-grouse at night with little to no moon illumination using spotlights and dip nets,
searching on foot in groups of 2 – 4 in areas of known or suspected sage-grouse use (after Giesen et al. 1982).
While handling the sage-grouse, we assessed their age, sex, mass, and body condition. We declined to put a
transmitter on any grouse with an injury or a mass less than 1 kg. We released grouse at the capture site
and monitored their departure flight to ensure that bird was moving naturally. The sage-grouse included in
this study were captured in years 2017-2019. This research protocol was reviewed and approved by the Utah
State University IACUC ( #10175, #11161).

The GPS transmitters logged four locations per day. For this study, we removed from the dataset any points
from within 48 hours of a sage-grouse’s capture date, points for any grouse with fewer than 100 successful
GPS fixes, and points that fell outside of the spatial extent of the data loggers in each study area or outside
the study period of June 2018 – November 2020. This left a total of 8163 data points from 14 birds in
Buckskin and 7209 locations from 15 birds in Steptoe. We calculated a 90% home range for each sage-grouse
from a kernel density estimator using the R package adehabitatHR (Calenge 2017). Within that home range,
we randomly generated points to sample the landscape as “available habitat” at a 1:10 ratio in a used-
available design (Johnson 1980, McDonald et al. 2013). However, for each run of the models we randomly
selected from within the available habitat point dataset for a 1:1 ratio between used GPS detection points
and available habitat sampling points. This 1:1 ratio avoids problems that can arise from oversampling from
one class of the response variable in a classification method like random forest classification (Chen et al.
2004, MacKenzie 2005, Reisinger et al. 2021, but see Street et al. 2021).

Model Construction

We grouped the data within the two study areas and within four seasons, creating eight groups of data for
analysis. For each of those data groups, we built models both including and excluding temperature to assess
how temperature affected model performance, analogous to using a null model for comparison. For each
analysis, we built random forests (RF) (Breiman 2001), a simple machine learning algorithm that has been
used successfully with complex ecological datasets (De’ath 2007, Yu et al. 2020), including presence-only and
animal habitat selection data (McDonald et al. 2013, Mi et al. 2017, Zhang et al. 2019, Picardi et al. 2020,
Rather et al. 2020). RF is a tree-based classification model that uses a bootstrap sample of the data provided
to train a model and a withheld sample to test each iteration of the tree. It has outperformed a traditional
logistic regression approach in a used-available framework, including wildlife habitat selection (Cushman et
al. 2010, Mi et al. 2017, Cushman and Wasserman 2018, Shoemaker et al. 2018, Rather et al. 2020). We used
the R packages ranger (Wright et al. 2021) and caret (Kuhn 2016) to grow the RF with a leave-group-out
cross validation (LGOCV) grouped by sage-grouse ID to build these models. We used 70% of the data for
initial model training with a random subset of 30% of the data withheld for model validation. We tuned the
models in the training process by allowing the number of features selected for testing at each node (mtry )
to vary between 2, 3, 4, 5, 8, and 10. To minimize the chance of overfitting, we also set the minimum node
size at 50 points, which prevents each decision tree in the model from making inferences on too little data
(Valavi et al. 2021).
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To evaluate each model’s performance, we used the caret package (Kuhn 2016) in R to predict the withheld
30% of the data and measured model performance by the true skill statistic (TSS), Cohen’s kappa, model
sensitivity, and used-habitat calibration (Fieberg et al. 2018). TSS measures both model specificity and
sensitivity while being insensitive to prevalence (Fielding and Bell 1997, Allouche et al. 2006). There is also
an argument that model evaluation metrics for presence-background (i.e., used-available) data should not
be prevalence-insensitive (Stephanie et al. 2001, Lawson et al. 2014), so we also included Cohen’s kappa in
model validation. Kappa ranges from -1 to 1, where higher values indicate greater model performance or
strength of agreement between withheld data and the model’s predictions (Cohen 1960). A guideline for
evaluating kappa suggests that a range 0.41 – 0.6 suggests “moderate” agreement, 0.61 – 0.80 “substantial”
agreement, and 0.81 – 1.00 “almost perfect” agreement (Landis and Koch 1977). The same guideline applies
to TSS. Further, because the available points in a used-available design do not necessarily represent species
absence, we also calculated the model’s performance in predicting only the true presence points (the model’s
sensitivity) and calculated the correlation in used-habitat calibration. We repeated the process of dataset
division ten times for each study area and season and report the average model performance metrics.

We also measured variable importance in each model using the mean decrease in Gini node purity (Calle and
Urrea 2011), which measures each variable’s contribution to the RF model’s ability to distinguish between
response variable classes. We examined the impact of different variables using partial dependence (R package
pdp : Greenwell 2017), which is useful for interpreting RF models and others modeling methods that measure
nonlinear effects (Elith et al. 2008, Robinson et al. 2017). In our models, partial dependence plots visualize
the marginal effect of an independent variable on the model’s predicted used vs available outcome at every
value of that independent variable when the effects of all other covariates are held at their mean value.
Partial dependence plots are also useful for showing the interaction of two variables in predicted selection or
avoidance, where two independent variables are on adjacent axes and the dependent variable is represented
by a color gradient in the two-dimensional space of the plot.

RESULTS

Temperature data

At a broad spatial scale, the average ambient temperatures of Buckskin and Steptoe were nearly equal,
though Steptoe experienced both warmer maximum and colder minimum temperatures while being drier
(PRISM Climate Group 2020). However, the data collected from the data loggers indicated that Buckskin
was slightly warmer in all four seasons (all t-testp < 0.001, Table 1). Buckskin had a higher mean temperature
in summer months; Steptoe had a colder mean winter minimum temperature.

Model performance

We generated sixteen different model combinations of study area, season, and data logger temperature
inclusion. By comparing the performance of models in the same study area and season with and without
temperature metrics, we evaluated the degree to which temperature drives sage-grouse habitat selection
in each of those situations. Most study area – season model combinations performed adequately or better,
regardless of whether the model included temperature data (Table 2). Here, we report a “mean performance”
for each model by averaging the value of each performance metric, which is a simple way to initially describe
model performance.

In Buckskin, Utah, all models that included data logger temperature performed moderately to very well,
showing “substantial” (0.61 < kappa < 0.80) to “near-perfect” (kappa > 0.81) agreement between training
data model predictions and withheld testing data. The best performing model was in Summer, which per-
formed best by all metrics (mean performance = 0.940), followed by Spring (0.840), Winter (0.828), and
Autumn (0.825) (Table 2). For each evaluation metric, the Summer model’s performance was in the range
of “near perfect” agreement between model predictions and withheld data, and including temperature cova-
riates improved model performance most in Summer (Table 2). The performance of the poorest models that
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included temperature still suggest adequate or good performance. When excluding temperature, mean model
performance was again highest in Summer (0.856), followed by Winter (0.824), Spring (0.815), and Autumn
(0.811). Notably, model performance was slightly higher without temperature covariates than with them by
at least one evaluation metric in Winter (sensitivity), Spring (kappa), and Autumn (kappa), suggesting less
impact of temperature on selection in those cooler seasons (Table 2).

In Steptoe, Nevada, the best performing model that included temperature covariates was also in Summer
(mean performance = 0.815). Mean performance was lower but still good in Spring (0.774), Winter (0.788),
and Autumn (0.804). For each seasonal model with temperature covariates, TSS was greater than 0.63,
kappa was greater than 0.62, sensitivity was greater than 0.78, and UHC correlation was greater than 0.96
(Table 2). Steptoe models excluding temperature covariates also performed at least moderately well by each
evaluation metric, with acceptable mean model performance in Summer (0.746), Winter (0.727), Autumn
(0.726), and Spring (0.711). The greatest change in model performance in predicting withheld data due to
including temperature was in Autumn (Δ mean model performance = 0.064). The next largest changes in
performance due to temperature were in Spring (0.061), Winter (0.056), and Summer (0.058).

By including temperature in Steptoe’s Summer and Winter models, when temperatures were most extreme
and therefore most likely to be limiting, model performance improved by model sensitivity = 0.057 and 0.047,
respectively. Similarly, the same comparisons in Buckskin showed a change in sensitivity of 0.134 in Summer
and -0.037 in Winter due to including temperature in the models. This shows a greater impact of temperature
in both study areas during Summer than in Winter. Furthermore, there was a proportionally larger impact
in Buckskin than in Steptoe. Including temperature in Buckskin had a greater absolute impact on model
sensitivity, and the difference in improvement caused by adding temperature was greater in Buckskin (0.171)
than in Steptoe (0.010).

Variable importance

Our RF models of sage-grouse habitat selection showed that temperature metrics played an important role
in each model combination of study area and season as measured by the mean decrease in Gini index.
Compared to the other variables included, temperature was the most important in Summer in both Steptoe
and Buckskin (Table 3). Although of less influence in Winter, temperature variables were still important
to model fit. In Buckskin, sagebrush patch contiguity was among the three most important variables in
every model whether or not temperature was included. In contrast, sagebrush contiguity was not among the
most important variables in Steptoe in any model. Distance to trees (TREEDIST) was more important than
sagebrush patch contiguity and core area index in every model. In all seasonal models excluding temperature
covariates, distance to trees was among the three most important variables.

Response to temperature

Examining the partial dependence of the temperature variables in our models suggest that sage-grouse
avoided extreme temperatures. Partial dependence plots showed that within each season, sage-grouse were
most likely to select moderate temperatures and avoided extremes. In Buckskin, the probability of sage-
grouse selecting areas of the landscape dropped quickly and approached zero where temperatures in Summer
exceeded roughly 35 °C, or 28 °C in Autumn (Figure 2). In Steptoe, the effect was similar but not as clear
(Figure 3). Sage-grouse also selected locations with moderate minimum temperature in Summer, Autumn,
and Spring in both study areas. In Winter, the probability of sage-grouse selecting habitat decreased rapidly
where temperatures were below a minimum temperature of -17 °C but then plateaued (Figure 4). Simi-
larly, maximum temperature in Steptoe was not as limiting to the landscape selected by sage-grouse as in
Buckskin—the rate of change of partial dependence was slower across the available temperature range in
each season and the range of temperatures where selection was most likely was less distinct.

These results indicate the importance of temperature in sage-grouse seasonal habitat selection, but do not
in themselves show how the birds respond to temperature. The two-way partial dependence plots we built
demonstrate the choices sage-grouse tend to make during thermal extremes. In Summer, measures of partial
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dependence show that sage-grouse used areas closer to trees when maximum temperature was high, especially
when it was greater than ˜25 °C. (Figure 5). Though sage-grouse rely on sagebrush, our results indicate that
they did not select large or contiguous patches of sagebrush during high summer heat in Buckskin (Figure 6).
Sage-grouse likewise tended to avoid the coldest temperatures during Winter, but during these temperatures,
they were more likely to be nearer to trees. In particular, when Winter minimum temperature was less than
-16 °C, sage-grouse were likely to be less than 50 m from trees (Figure 7). In contrast, sage-grouse in Steptoe
were more likely to avoid treed areas during extreme heat trees—when Summer maximum temperature was
above 30 °C, selection was most likely > 1500 m from trees (Figure 8). Instead, at those higher temperatures
Steptoe sage-grouse were likely to select areas of moderate to high sagebrush patch CAI, though that trend
was weaker than selection for trees in Buckskin (Figure 9). Further, sage-grouse in Buckskin did not show
strong selection for areas near trees during the highest or lowest temperatures of Autumn and Spring, when
those high and low temperatures were less extreme than Summer and Winter (Figure 11).

There was also an effect of topography interacting with temperature on bird locations. In Buckskin, sage-
grouse selected areas of greater topographic heterogeneity during Summer heat (Figure 12a). When maximum
temperature was above 30 °C, selection was most likely at moderate to high values of heterogeneity (THI400
> 4800). The effect of topographic heterogeneity was less clear in Steptoe during Summer, where sage-
grouse selected moderately rugged terrain but with less difference in selection across the ranges in maximum
temperature and heterogeneity, with the highest selection rate where THI400 was 7000 – 12000 (Figure 12b).
More rugged terrain exists in both study areas than is represented in the GPS location dataset, especially
in Steptoe, but fell outside of the home ranges used to define “available” for this 3rd order selection process.

DISCUSSION

Temperature differences in study areas

The temperature data we recorded revealed differences in our Buckskin (Utah) and Steptoe (Nevada) study
areas that were not clear using the coarser-scale PRISM data. PRISM data suggested that the two were
nearly identical in average temperature and that Steptoe was drier. We did not measure precipitation,
but measurements collected from temperature data loggers suggested that Buckskin was slightly warmer
than Steptoe on average across the entire year. This suggests that while data like PRISM is critical for
understanding many broad-scale patterns, including for sage-grouse, it is also essential to understand how
temperature varies and drives ecological phenomena at biologically relevant scales. For a study of third-
order habitat selection where individual home ranges may not cover more than a few pixels of PRISM data,
there may be variation in temperature at finer scales that drives individuals’ choices that would be missed
by coarser-scale data. For example, if simply considering PRISM data, Steptoe may have appeared to be
the less suitable of the two areas, though we did not build RF models of selection using PRISM data for
comparison.

Furthermore, temperatures in both study areas during the study period (June 2018 – November 2020) were
higher than the period currently used to define climatic norms (1990 – 2020). The difference was small
but given the differences we found in habitat selection between study areas, it may be enough to reach a
threshold in thermal stress beyond which sage-grouse select habitat differently. Ongoing climate change is
likely to drive shifts in sagebrush distribution and ecosystem composition (Schlaepfer et al. 2012b, Evers et
al. 2013, Kleinhesselink and Adler 2018, Snyder et al. 2019), and species in Great Basin lowlands are likely to
face extirpation without adequate thermal refuge (Warren et al. 2014). As that process continues, it will be
increasingly important to identify potential environmental thresholds, how sensitive species like sage-grouse
are likely to respond, the habitat that may provide refuge in times and places that exceed these thresholds,
and how managers can plan for and mitigate negative impacts.
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Response to temperature

Our results suggest that sage-grouse select habitat in response to temperature and that thermal extremes may
be limiting. However, we also found that sage-grouse use land cover—and to a lesser extent, topography—as
shelter from those extremes. When temperatures were highest, sage-grouse were more likely to select habitat
in either more contiguous sagebrush or nearer to trees. In the warmer study area, Buckskin, sage-grouse
selected habitat nearer to trees while in Steptoe they selected sagebrush cover. To our knowledge, this is the
first time that any study has documented how sage-grouse habitat selection varies in response to temperature,
though other research has detected wildlife responding to temperature at similarly fine scales (Varner and
Dearing 2014), including Galliformes (Hovick et al. 2014, Londe et al. 2021). Where temperature at fine
scales can be decoupled from larger patterns and provide suitable thermal refugia, it is critical to identify the
characteristics of the landscape that foster suitable microhabitat (Rodhouse et al. 2010, Varner and Dearing
2014). Some of the clearest evidence of the influence of temperature in this study is through measures of
variable importance and model performance. In each of the eight models that included temperature, all
three temperature covariates were among the five most important variables. Further, including temperature
consistently improved model performance compared to models without temperature covariates, especially
in Buckskin in Summer. While it is clear that climate informs sage-grouse distributions and populations
(Blomberg et al. 2012, Coates et al. 2016b, 2018, Acevedo 2021) and climate change is likely to negatively
impact sagebrush cover in the southern Great Basin (Kleinhesselink and Adler 2018), it is important to
explore potential mechanisms of individual habitat selection that drive those larger scale patterns as we have
in this study.

In examining two-way partial dependence plots in combination with measures of variable importance and
model performance, the impact of temperature on selection and where sage-grouse and characteristics of
thermal refugia are clear. Combined, our results indicate that sage-grouse respond to temperature, but
that other variables play a strong role in selection. If they did not, there would be no interaction between
temperature and other variables, and at extreme temperatures there would always be low selection. On the
contrary, sage-grouse are likely forced to make decisions that balance resource acquisition and the potentially
competing risks of predation and thermal stress, similar to the tradeoffs faced by greater prairie chickens
(Tympanuchus cupido [Londe et al. 2021]). For example, sage-grouse may be exposing themselves to greater
risk of predation by spending time near the cool shade of trees, balanced against the risk of hyperthermia
in sagebrush patches during high temperatures, which may explain some past findings of apparent high risk
selection by sage-grouse (Cutting et al. 2019). Our data clearly support this, especially in Buckskin. In Spring
and Autumn, when thermal extremes were less common, sage-grouse in Buckskin showed less selection for
areas near trees than during the higher maximum temperature in Summer. While metrics of vegetation
cover and activity such as Normalized Difference Vegetation Index (NDVI) are important for sage-grouse
(Dinkins et al. 2017, Stoner et al. 2020), the grouse in this study generally selected areas with moderate
temperatures and avoided extremes where possible, suggesting that temperature also drives selection. In
Steptoe and Buckskin, most of the mesic habitat, which sage-grouse tend to select during late brood rearing
(summer), is not treed riparian areas like in some areas of sage-grouse distribution, and there is likely little
direct correlation between tree cover and mesic resources. Were sage-grouse primarily selecting based on
NDVI and mesic resources, then we would not have detected sage-grouse selection for areas close to trees
during higher temperatures, as those areas are not rich in mesic resources. Instead, sage-grouse would have
continued to avoid trees because they could exploit the resources of mesic areas without incurring the risk
of predation near trees. Furthermore, the fact that sage-grouse in our two study areas did not select for
the same land cover in response to thermal extremes suggests that vegetation activity (e.g., NDVI) is not
their only limitation, and there is cryptic fragmentation of suitable sagebrush habitat in Buckskin, while in
Steptoe the contiguous sagebrush provides enough thermal cover that sage-grouse there are not forced to
shelter near trees.

Similarly, several previous studies have found negative effects of terrain ruggedness on sage-grouse (Doherty
et al. 2008, 2010b, Knick et al. 2013, Dinkins et al. 2017). Those have largely examined larger-scale processes
such as population size or lek persistence and captured a broader spatial sample of the “available” landscape.
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On the other hand, other studies focused on individual habitat selection have found that in some conditions,
sage-grouse select more rugged terrain than expected, especially in marginal habitat (Dinkins et al. 2014,
Beers and Frey 2022a). Like those, this study found that sage-grouse in some cases select more rugged terrain
than expected. This may be in part because some of the more heterogeneous topography in these study areas
tended to be near valley edges, where sage-grouse appeared to use taller and denser land cover (trees and
dense sagebrush) for thermal refuge. However, the fact that measures of topographic heterogeneity were
often among the most important variables in the RF models shows that the terrain itself also featured in
sage-grouse selection. It may be that moderately rugged terrain fosters snow deposition, accumulation, and
retention in winter and spring (Winstral et al. 2002, Jost et al. 2007). In cold extremes, sage-grouse could use
that snow as thermal cover. That retained snow may then allow the persistence of more mesic microhabitat
during summer. Our study was focused at smaller scales and did not sample from a large enough area
to include the mountainous terrain surrounding the study areas that might have been defined as available
habitat in a 2nd or 1st order selection process, which may have allowed me to detect the effects of topography
on habitat selection at fine scales.

It is important to note that in our models we did not use known temperature data at the exact location
of each sage-grouse GPS detection. We also did not estimate temperature at each of those points based on
interpolating temperature between the nearest data loggers. Instead, we used modeled outputs that represent
detected trends of temperature within each study area and season, hypothesizing that sage-grouse selection
trends will correspond to those of temperature. This may mean that these temperature data lack precision
in their interpolation and there would be a benefit to implementing a temperature interpolation method
that allows us to model the impacts on individual sage-grouse movements. In the case of both summer heat
and winter cold, when sage-grouse make selections to avoid thermal stress, they are likely to experience even
more extreme temperatures than we detected. We intentionally positioned data loggers to avoid direct sun
exposure and removed data points where the logger nonetheless received direct sunlight. Yet, sage-grouse
experience heating from direct sunlight and must make decisions to avoid it if stressed, seeking shade from
land cover or otherwise moving to a cooler area, such as by changing elevation or habitat type. Similarly,
in both sites there were some data loggers that appeared to have been covered in snow for periods of the
winter given their small diel range in light intensity detected compared to that of other loggers. Because the
data loggers were therefore insulated, these data likely do not capture all of the coldest events, and modeled
Winter minimum temperature may be higher than what occurred. However, the loggers also likely reflect the
temperatures that sage-grouse experience, as they are known to burrow into snow for shelter during extreme
winter events (Beck 1977, Back et al. 1987).

Conservation implications

Our findings may point toward a mechanism limiting the extent of the sage-grouse distribution on their
warm range margin—inadequate refuge from thermal stress and a cryptic fragmentation that inadequacy
creates. In both Buckskin and Steptoe, there are large areas of contiguous sagebrush. In Buckskin, those
areas are mostly at lower elevations within Buckskin Valley and the cooler, high elevation available habitat
is dominated by trees: pinyon pine, juniper, Gambel oak, mountain mahogany, and some aspen. In Steptoe,
there are much larger patches of contiguous sagebrush in both the valley bottom and in a few patches at mid
to upper elevations that have more area far from dense tree cover. While Steptoe grouse avoided tree cover
during high summer temperatures, generally selecting habitat more than 1800 m from trees, in Buckskin
there is little area that is more than 800 m from tree cover. Therefore, Steptoe sage-grouse have more habitat
in which to escape from thermal stress without incurring greater predation risk, while in the Buckskin site
they more often choose to shelter in riskier habitat. While sage-grouse in some areas of Steptoe likely also
face that tradeoff, that valley is much larger and there is more area where sage-grouse do not have to choose
between thermal stress and predation risk. Buckskin may therefore act as a portent for what may occur in
Steptoe given continued warming, sagebrush loss, and conifer encroachment.

Sage-grouse have been observed using trees in the past or using areas with tree cover great enough to reduce
survival (Baruch-Mordo et al. 2013, Coates et al. 2017, Beers and Frey 2022a), but the reason for that risky
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choice has been unclear. A potential explanation suggested by our results is that in areas where temperature
is limiting, especially in summer heat and fragmented habitat, sage-grouse may be impelled to incur the risk
of predation to avoid thermal stress.

In contrast with the long-term climate data from PRISM, our data indicated that Utah’s Buckskin Valley
is marginally warmer than Nevada’s Steptoe Valley. In combination with the fact that our results suggest
that sage-grouse respond to extreme operative temperatures in habitat selection, this underscores the fact
that temperature varies at multiple scales, and that it is potentially hazardous to infer fine-scale processes
in either temperature or wildlife response to it based on larger patterns (Gillingham et al. 2012, Gollan et
al. 2015). Instead, studies should evaluate potential predictor variables at more biologically relevant scales.
Though preference at fine scales for moderate temperatures has been demonstrated for other potentially
threatened species and environments (Scherrer and Korner 2011, Varner and Dearing 2014), including for
greater prairie chicken (Hovick et al. 2014, Londe et al. 2021), it has not been demonstrated for greater sage-
grouse. Sage-grouse in the southern great basin are likely to face a future with a more xeric environment
and declining sagebrush cover (Tredennick et al. 2016, Kleinhesselink and Adler 2018). Because sagebrush
is sensitive to climate (Schlaepfer et al. 2014, Tredennick et al. 2016, Renwick et al. 2018), as a sagebrush
obligate, sage-grouse will be negatively impacted by its range retracting along the southern range margin.
Their range limit, therefore, may be defined by a combination of sagebrush cover, exposure to extreme heat,
and the extent of trees.

As the climate continues to change, it will be important to identify or even foster potential microrefugia
for sage-grouse. Hotter summers and less sagebrush cover will likely make their current southern range
margin even less tenable through thermal stress and loss of forage. Compounded by increased threat of avian
predation due to ongoing pinyon-juniper encroachment and potential ecological traps (Coates et al. 2017,
Pratt and Beck 2021), sage-grouse will face greater threats in the future where thermal stress drives them to
make risky habitat selection. Even on their fragmented southern range margin, there may be some suitable
microrefugia or holdouts as climate changes if there are large enough areas of contiguous sagebrush and some
decoupling from regional climate at local scales (Dobrowski 2011, Hannah et al. 2014). Yet that is only if
the limiting climatic factors for sage-grouse decouple from regional trends in the landscapes they occupy
and if ecosystem managers take steps to foster suitable microhabitats (Hylander et al. 2015, Selwood et al.
2019). That may mean adopting a comprehensive, pragmatic approach to identify potential microrefugia
(Ashcroft et al. 2012), evaluate ecosystem resistance and resilience (Chambers et al. 2007, Ricca et al. 2018),
and assess local to regional scale factors to determine what actions are appropriate in different areas of
sage-grouse habitat (Doherty et al. 2016, Lynch et al. 2021). For sage-grouse, that may mean creating some
areas of mesic resources to offer thermal refuge during extreme heat (Donnelly et al. 2018). Ironically, it may
also entail leaving some tree cover where sage-grouse will be exposed to thermal stress and do not have other
adequate cover. Conifer removal efforts should prioritize areas where sage-grouse are likely to experience
thermal stress and do not have shelter from avian predators. In particular, sage-grouse would likely be most
vulnerable during thermal extremes in flatter, more open terrain with less intact sagebrush patches where
they are less able to hide from avian predators (Dinkins et al. 2017). For that purpose, lone trees would
likely remain dangerous and provide little shelter, but small clusters of dense trees could be useful.

Conclusion

In this study we identified when temperature impact sage-grouse habitat selection and described their re-
sponse to mitigate thermal stress. Though this has been a focus of study for other species of conservation
concern, this is the first study to address temperature effects on sage-grouse habitat selection at a fine scale.
We found that extreme temperatures may be limiting, but that sage-grouse response to those temperatures
likely depend on what refuge habitat is available. In the larger study area with greater extents of contiguous
sagebrush, marginally cooler temperatures, and more patches of sagebrush at higher elevations, sage-grouse
tended to select those patches during high summer temperatures. In the smaller study area with less appa-
rent refuge, sage-grouse used areas close to trees when temperatures were most extreme. Selection depends
on the local environment and always involves tradeoffs—in this case it appears there may be some threshold
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in the combination of thermal exposure and sagebrush availability beyond which sage-grouse are more likely
to risk exposure to avian predators. This suggests thermal stress contributing to cryptic fragmentation as a
mechanism limiting greater sage-grouse in areas of their southern range margin and shows that ecosystem
management in the Great Basin must account for regional and local factors of climate and sagebrush loss
and fragmentation to protect the sagebrush and its imperiled species into the future.
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FIGURES AND TABLES

Table 1. Mean temperatures (degC) in each study area and season and the p-value for a t-test evaluating
the differences in temperatures between study areas.

Season Steptoe mean Buckskin mean p-value

All 1.85 3.50 <0.0001
Autumn 1.83 3.48 <0.0001
Winter -11.32 -10.02 <0.0001
Spring -2.39 -1.77 <0.0001
Summer 13.92 15.81 <0.0001

Table 2. Model performance for each Study Area – Season combination, including and excluding temperature
covariates, measured by true skill statistic (TSS), Cohen’s kappa, sensitivity, correlation in used-habitat
calibration (UHC), and the mean of those metrics. Mean performance difference shows the mean difference
in model performance for a Study Area – Season model when including temperature covariates compared to
excluding them.

Study Area Season Temperature covariates TSS Kappa Sensitivity UHC correlation Mean Performance Mean Performance Difference

Steptoe Autumn Yes 0.6988 0.6825 0.8544 0.9516 0.7968 0.0636
Steptoe Autumn No 0.5792 0.5492 0.8190 0.9853 0.7332
Steptoe Winter Yes 0.7125 0.7024 0.7854 0.9423 0.7857 0.0518
Steptoe Winter No 0.6271 0.6049 0.7387 0.9648 0.7339
Steptoe Spring Yes 0.6389 0.6289 0.8594 0.9606 0.7720 0.0539
Steptoe Spring No 0.5640 0.5312 0.8248 0.9523 0.7181
Steptoe Summer Yes 0.7017 0.7298 0.8429 0.9501 0.8061 0.0599
Steptoe Summer No 0.6221 0.6321 0.7861 0.9446 0.7462
Buckskin Autumn Yes 0.7053 0.7284 0.9012 0.9659 0.8252 0.0143
Buckskin Autumn No 0.6937 0.8089 0.7820 0.9590 0.8109
Buckskin Winter Yes 0.7269 0.8080 0.8213 0.9559 0.8280 0.0038
Buckskin Winter No 0.7239 0.7822 0.8579 0.9327 0.8242
Buckskin Spring Yes 0.8358 0.6759 0.9318 0.9154 0.8397 0.0250
Buckskin Spring No 0.8160 0.7109 0.8349 0.8970 0.8147
Buckskin Summer Yes 0.9224 0.9123 0.9550 0.9713 0.9403 0.0844
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Study Area Season Temperature covariates TSS Kappa Sensitivity UHC correlation Mean Performance Mean Performance Difference

Buckskin Summer No 0.8269 0.8349 0.8215 0.9401 0.8559

Table Top five most important variables for each Study Area – Season combination model with and without
temperature covariates, measured by the mean decrease in Gini index (node impurity). The possible variables
included temperature minimum, maximum, and difference (Tmin, Tmax, Tdiff); topographic position index
(TPI) and topographic heterogeneity index (THI) at scales of 50 m, 200 m, and 400 m; sagebrush patch core
area index (CAI) and contiguity (CONTIG); distance to tree cover (TREEDIST); and density of tree cover
(TREEDEN) within 400 m and 800 m.

Study Area Season Temperature covariates Top five important variables

Steptoe Autumn Yes Tmin, Tmax, Tdiff, TREEDIST, CONTIG
Steptoe Winter Yes Tmin, Tdiff, TREEDEN800, Tmax, THI400
Steptoe Spring Yes Tmax, Tdiff, TREEDIST, Tmin, THI400, THI200
Steptoe Summer Yes Tmin, Tdiff, TREEDIST, CONTIG, THI400
Steptoe Autumn No TREEDIST, THI400, THI200, TREEDEN800, CONTIG
Steptoe Winter No TREEDEN800, THI400, TREEDEN400, TREEDIST, THI200
Steptoe Spring No TREEDIST, THI400, THI200, TPI400, TREEDEN800
Steptoe Summer No TREEDIST, THI400, CONTIG, TREEDEN800, THI200
Buckskin Autumn Yes CONTIG, TREEDEN800, Tmin, TREEDEN400, TREEDIST
Buckskin Winter Yes Tmin, Tdiff, TREEDEN800, Tmax, THI400
Buckskin Spring Yes CONTIG, TREEDEN800, TREEDIST, Tmin, Tdiff

Buckskin Summer Yes Tmin, Tmax, Tdiff, TREEDIST, CONTIG
Buckskin Autumn No CONTIG, TREEDEN800, TREEDEN400, TREEDIST, THI400
Buckskin Winter No TREEDEN800, CONTIG, TREEDEN400, TREEDIST, THI400
Buckskin Spring No CONTIG, TREEDEN800, TREEDIST, TREEDEN400, THI400
Buckskin Summer No CONTIG, TREEDEN400, TREEDEN400, TREEDIST, THI400
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Figure 1. Study area locations in the western United States—Steptoe Valley, Nevada and Buckskin Valley,
Utah—marked in dark blue with a minimum convex polygon around sage-grouse GPS data points collected
there June 2019 – November 2020.

Figure 2. Marginal effect of average daily maximum temperature on sage-grouse habitat selection in Buckskin
Valley, Utah across seasons, measured by partial dependence. Partial dependence measures the marginal
effect of one covariate on the response variable when the effects all other covariates are held at their mean
value. A higher partial dependence indicates a higher probability of selection.

Figure 3. Marginal effect of average daily maximum temperature on sage-grouse habitat selection in Steptoe
Valley, Nevada across seasons, measured by partial dependence. Partial dependence measures the marginal
effect of one covariate on the response variable when the effects all other covariates are held at their mean
value. A higher partial dependence indicates a higher probability of selection.

.

a)
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b)

Figure 4. Marginal effect of average daily minimum temperature on sage-grouse habitat selection in a)
Buckskin Valley, Utah andb) Steptoe Valley, Nevada across seasons, measured by partial dependence. Partial
dependence measures the marginal effect of one covariate on the response variable when the effects all other
covariates are held at their mean value. A higher partial dependence indicates a higher probability of
selection.
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Figure 5. Marginal effects (partial dependence: PD) of average daily maximum temperature and distance
to tree cover on sage-grouse habitat selection during summer in Buckskin Valley, Utah.

a)

b)
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Figure 6. Marginal effects (partial dependence: PD) of average daily maximum temperature and a) sagebrush
patch contiguity index (CONTIG) and b) sagebrush patch core area index (CAI) on sage-grouse habitat
selection during summer in Buckskin Valley, Utah.

Figure 7. Marginal effects (partial dependence: PD) of average daily minimum temperature and distance to
tree cover on sage-grouse habitat selection during winter in Buckskin Valley, Utah.
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Figure 8. Marginal effects (partial dependence: PD) of average daily maximum temperature and distance
to tree cover on sage-grouse habitat selection during summer in Steptoe Valley, Nevada.

Figure 9. Marginal effects (partial dependence: PD) of average daily maximum temperature and sagebrush
patch core area index (CAI) on sage-grouse habitat selection during summer in Steptoe Valley, Nevada.

a)
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b)

Figure 10. Marginal effects (partial dependence: PD) of average daily maximum temperature and a) sage-
brush patch contiguity index (CONTIG) and b) sagebrush patch core area index (CAI) on sage-grouse
habitat selection during summer in Buckskin Valley, Utah.

a)
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b)

Figure 11. Marginal effects (partial dependence: PD) of average daily maximum temperature and distance
to trees on sage-grouse habitat selection in Buckskin Valley, Utah during a) autumn andb) spring.

a)
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b)

Figure 12. Marginal effects (partial dependence: PD) of average daily maximum temperature and topo-
graphic heterogeneity in a 400 m window on sage-grouse habitat selection during summer in a) Buckskin
Valley, Utah and b) Steptoe Valley, Nevada.
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