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Abstract

Fanconi anemia (FA) is a rare disease (incidence of 1:300,000) primarily based on the inheritance of
pathogenic variants in genes of the FA/BRCA (breast cancer) pathway. These variants ultimately reduce
the functionality of different proteins involved in the repair of DNA interstrand crosslinks and DNA double-
strand breaks. At birth, individuals with FA might present with typical malformations, particularly radial
axis and renal malformations, as well as other physical abnormalities like skin pigmentation anomalies. Dur-
ing the first decade of life, FA mostly causes bone marrow failure due to reduced capacity and loss of the
hematopoietic stem and progenitor cells. This often makes hematopoietic stem cell transplantation necessary,
but this therapy increases the already intrinsic risk of developing squamous cell carcinoma (SCC) in early
adult age. Due to the underlying genetic defect in FA, classical chemo-radiation-based treatment protocols
cannot be applied. Therefore, detecting and treating the multi-step tumorigenesis process of SCC in an early
stage, or even its progenitors, is the best option for prolonging the life of adult FA individuals. However,
the small number of FA individuals makes classical evidence-based medicine approaches based on results
from randomized clinical trials impossible. As an alternative, we introduce here the concept of multi-level
dynamical modelling using large, longitudinally collected genome, proteome- and transcriptome-wide data
sets from a small number of FA individuals. This mechanistic modelling approach is based on the “hallmarks
of cancer in FA”, which we derive from our unique database of the clinical history of over 750 FA individu-
als. Multi-omic data from healthy and diseased tissue samples of FA individuals are to be used for training
constituent models of a multi-level tumorigenesis model, which will then be used to make experimentally
testable predictions. In this way, mechanistic models facilitate not only a descriptive but also a functional
understanding of SCC in FA. This approach will provide the basis for detecting signatures of SCCs at early
stages and their precursors so they can be efficiently treated or even prevented, leading to a better prognosis
and quality of life for the FA individual.
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Introduction

Rare diseases are disorders that affect less than one case in 2000 people, i.e., only a small percentage of
the population. However, there are more than 6000 known rare diseases, affecting over 300 million people
worldwide (1, 2). In 80% of the cases, the origin of a rare disease is one or multiple disadvantageous inherited
variations of the genome (3). These are present in all cell types of the affected individual. Nevertheless, most
rare diseases, which are not already prenatally lethal, are rather tissue specific. Pediatricians are more likely
confronted with rare diseases than healthcare specialists from other disciplines, as those diseases frequently
present symptoms early in life. Rare diseases are often referred to as “orphan diseases”, since in comparison
to common non-communicable diseases, such as cardiovascular diseases and type 2 diabetes, there is less
research and development of therapies for them. Fanconi anemia (FA) belongs to a small group of rare
diseases that are investigated more intensively than most others (4). This is also the result of significant
contributions from patient organizations in the United States, Germany and many other countries (5).

In general, evidence-based medicine aims to make optimal medical decisions by integrating the experience
of a clinician with data from the individual patient and available scientific information on the respective
disease (6). The latter information often derives from randomized clinical trials involving large numbers of
cases and controls. Those trials are the source for the construction of statistical models, i.e., to quantify
mathematical relationships between non-random variables measured from the study participants (Fig. 1,
left). For common diseases, there is no problem identifying a sufficiently large number of cases to achieve
acceptable statistical power of the applied statistical model, e.g., reflected by the p-value. However, this
approach cannot be used for rare diseases due to the small number of cases. An alternative approach
is to study a few individuals in very high detail by collecting longitudinal samples for many biological
parameters (7) (Fig. 1, right). For example, multi-omic analyses provide many thousands of data points
per individual, such as genome-wide DNA methylation, histone modifications and gene expression. These
data, together with mechanistic information on biochemical and regulatory pathways from public databases,
such as KEGG (Kyoto Encyclopedia of Genes and Genomes) (8), Wikipathways (9) and SPOKE (Scalable
Precision Medicine Open Knowledge Engine) (10), can then be used to construct multi-level dynamical
computational models (11, 12). These models can act as virtual platforms for identifying novel therapeutic
targets and designing treatment and preventative protocols to improve individual patient outcomes. In this
Perspective article, we introduce the concept of mechanistic modelling as a clinical decision support tool in
FA, using the example of the multi-step tumorigenesis of squamous cell carcinoma (SCC) in FA individuals.
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Figure 1: Evidence-based medicine versus network analysis. Number of participants of a clinical
study versus the number of variables measured for each individual. In classical evidence-based medicine,
many cases and controls are studied for a small number of variables (top left), whereas network analysis,
can build upon fewer patients, for which many variables are measured longitudinally (bottom right). The
latter benefits from using mechanistic modelling for analyzing data, while evidence-based medicine largely
relies on statistical modelling. Big data systems medicine (top right) fuses both approaches by integrating
large number of data points derived from several patients into predictive mechanistic models.

Fanconi anemia: a master example of a rare disease

FA is a rare disease (1 case in 300,000 persons) that was first described nearly 100 years ago by Guido
Fanconi (13). The clinical characteristics of FA are: (i) congenital malformations including absent ra-
dius, thumb hypoplasia, disturbed skin pigmentation, as well as inner organ abnormalities most frequently
found in the renal and cardiac system as well as disturbed skin pigmentation (14), (ii) progressive bone
marrow failure already at childhood age (15, 16), and (iii) dramatically increased risk of developing can-
cers, such as acute myeloid leukemia (17) and SCC, especially of the head and neck, in early adulthood
(18). FA individuals have defects in the molecular machinery of detection and repair of interstrand
crosslinks (ICLs) and DNA double-strand breaks (DSBs), which are mostly due to the biallelic inheri-
tance of recessive pathogenic variants in a subset of at least 20 FANC genes (FANCA, FANCC, FANCD1
(BRACA2 ), FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ (BRIP1 ), FANCL, FANCM, FANCN
(PALB2 ), FANCO (RAD51C ), FANCP (SLX4 ), FANC (ERCC4 ), FANCS (BRCA1 ), FANCT (UBE2T ),
FANCU (XRCC2 ), FANCV (MAD2L2 ), FANCW (RFWD3 )) (19). Moreover, variants in the FANCB gene
are inherited in an autosomal recessive X-linked manner, whereas the FANCR (RAD51 ) shows an autoso-
mal dominant inheritance pattern and can also be spontaneously mutated (19-21). FANC genes encode for
proteins that maintain genomic integrity during DNA replication, i.e., their inactivation leads to accumula-
tion of DSBs and genomic instability (22). However, patients with identical variants, such as siblings, often
show significant differences in their clinical presentation, i.e., there are more factors than the mutated FANC
genes contributing to the disease (16, 23).
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To date, hematopoietic stem cell transplantation is the only curative treatment option for the hematological
complications of FA (24) and the main reason for improved life expectancy of young FA individuals (25).
In addition, treatment with supra-pharmacological doses of testosterone analogs, such as Oxymetholone,
Danazol, and others can stabilize declining blood counts and even improve them (26-29). Non-transplanted
and, in particular, transplanted FA individuals have a several 100-fold increased risk for developing SCC,
especially of their oral mucosa but also in their pharynx, larynx, esophagus, anus, and vulva (17), even
without the main risk factors like alcohol and tobacco exposure. For adult FA individuals, developing SCC
is the most life-threatening complication. Due to their dysregulated DNA repair machinery, FA patients
cannot tolerate standard chemo-radiation therapies and treatment side effects are difficult to predict (30,
31). This makes non-surgical systemic therapeutical options very limited. Therefore, detecting SCC at an
early stage and eliminating it surgically is effectively, at present, the best way to prolong the lives of FA
individuals (32). Ultimately, prevention of disease progression should be the goal but is still far away from
the clinical routine.

Based on its clinical and cellular phenotype, FA can also serve as a cellular model for the study of general
molecular functions and physiological aspects, like aging, as well as other non-communicable diseases occur-
ring in the general population. In that respect, the study of FA has had a major impact on the molecular
understanding of breast/ovarian cancer (33). Moreover, FANC genes are frequently mutated or dysregulated
in sporadic cancers (34), as well as in childhood cancers (35). Nevertheless, the enormous and quite specific
cancer risk of SCC for FA individuals is poorly understood from a mechanistic standpoint.

Hallmarks of cancers arising in FA individuals

During tumorigenesis, the cells of all types of solid cancers arising in adults undergo a multi-step process
from a healthy, non-transformed cell to low-grade and high-grade dysplasia, carcinoma in situ , and invasive
cancer (36) (Fig. 2A). The early stages of this process are reversible, but when a “point of no return” is
reached, an aggressive carcinoma forms, which via the spreading of metastases will eventually lead to patient
mortality. In cancer patients in the general population, this multi-step tumorigenesis process takes decades,
but in FA individuals it can take only months to a few years.

Transformed cells acquire a conserved set of cancer hallmarks During tumorigenesis, including self-sufficiency
in growth signals, insensitivity to antigrowth signals, and tissue invasion and metastasis (37). These are
altered functional capabilities, the accumulation of which allows malignant cells to survive, proliferate,
and disseminate. The hallmarks are outcomes of specific cell fate-controlling regulatory pathways, which
in turn are affected by cancer driver gene mutations (38). Environmental factors, like lifestyle decisions
on diet, physical activity, and smoking, modulate these pathways. In addition, germline mutations may
accelerate tumorigenesis like in the Li-Fraumeni syndrome (36). In contrast, 100% of all cancers arising in
FA individuals (here termed “FA cancers”) are based on heredity of a defective FA/BRCA pathway of DNA
repair. Therefore, genome instability & mutation prominently affects other physiological processes, which
can result in the emergence of additional hallmarks, such as polymorphic microbiomes, tumor-promoting
inflammation, deregulating cellular metabolism, activating invasion & metastasis, senescent cells, avoiding
immune destruction, and non-mutational epigenetic reprogramming. These eight hallmarks of FA cancers
(Fig. 2B) summarize clinical, cellular and molecular observations in the field (39) (Box 1). They overlap
largely with the latest version of 14 hallmarks of cancer (40). However, while in the general population the
order in which the cancer hallmarks are established, as well as the underlying mechanisms, varies significantly,
in FA cancers the hallmark “genome instability & mutation” always emerges first. For example, we illustrate
five real cases of tumorigenesis in FA individuals (Fig. 2C, Box 1). Note that these also demonstrate that
in FA cancers there is variability in the order of appearance of subsequent hallmarks.
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Figure 2: Hallmarks of cancer in FA. Depiction of the multi-step tumorigenesis process (A). Eight major
hallmarks describe the onset and progression of cancer in FA individuals (B). In FA, genome instability is
the first hallmark to emerge, which influences other hallmarks (arrows). The medical histories of five FA
individuals are illustrated as examples such hallmark sequences (C).

Modelling FA cancer development

Cancer progression is a dynamical process ranging from early, mostly clinically asymptomatic, to late stages
that are difficult to reverse. Each stage is characterized by a particular configuration (emergent behavior) of
the tissue, such as infiltration of immune cells, the microbiome, cell cycle speed and the grade of cell dysplasia
(Fig. 3A). Disease onset and aggravation emerge from the dynamic interplay between hallmarks of SCC in
FA (Fig. 2B). The hallmarks are connected mechanistically by complex, multi-level regulatory networks that
under homeostatic conditions maintain a healthy phenotype (Fig. 3B). At the cellular level, the stratified
epithelium underlying the epithelial barrier function interplays with the oral microbiome and the infiltration

5
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of immune cells, which together shape the micro-environment of tumor cells. At the sub-cellular level, genetic
factors such as mutations in FANC genes, copy number variations and epigenetic reprogramming, together
with micro-environmental perturbations, such as chronic inflammation and exposure to pathogens or a
disturbed microbiome, can lead to altered cell fate decisions. These factors can be intrinsically disturbed,e.g
., by aldehydes, but also influenced by lifestyle decisions, such as physical exercise, antibiotic treatment,
immunosuppressants or chemotherapy. The complex interplay between these processes makes prevention
but also optimal treatment protocols and individual patient assessments extremely challenging without a
dynamical computational framework as an aid.

Based on the hallmarks of FA SCC and known underlying cellular and subcellular regulatory networks, we
developed a blueprint for modelling SCC development in FA individuals (Fig. 3C). Biological processes
comprising the blueprint include: (i) microbial interactions in the oral cavity (pink inset), (ii) circulating
immune cells and immune response (orange inset), (iii) metabolites affected by food intake or endogenously
generated within a cell (yellow inset), (iv) DNA damage sensing and repair (red inset), (v) epigenetic repro-
gramming (green inset), (vi) Stratified epithelial dynamics (brown inset), and (vii) loss of epithelial function
through EMT (epithelial-mesenchymal transition) (dark blue inset). Together, these tissue-level processes
are sensed and integrated by the cells and their inner regulatory networks (black inset), resulting in (viii)
stress response and (xi) cell cycle progression or senescence, (x) leading finally to cell fate decisions, includ-
ing survival, proliferation, cell death/apoptosis. The blueprint amounts to a preliminary wiring diagram
connecting these processes and will act as a template for an executable computational model the dynamical
multi-level dynamical network underlying the tumorigenesis in FA individuals.

Figure 3: Blueprint for mechanistic modelling of SCC in FA. Disease onset and aggravation emerges
as a gradual loss of epithelial tissue function (A). The hallmarks of FA are connected mechanistically through
complex multi-level regulatory networks that, under homeostatic conditions, maintain a healthy phenotype
(B). The blueprint for modeling SCC development in FA individuals is based on the hallmarks of FA as
well as cellular and subcellular regulatory networks. At the cellular level, it includes interplays between the
epithelial barrier function, the oral microbiome and the immune responses. Together, these factors shape a
microenvironment that is sensed at the sub-cellular level by regulatory networks shaping cell fate decisions.
These are targeted by epigenetic and genetic processes including mutations and genomic instability (C).

6
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Principles of mechanistic modelling

The construction, calibration and validation of mechanistic mathematical models require a constant dialogue
between the mathematical/computational implementation and analysis of the model, with the experimental
and clinical data. As a first step, all available relevant empirical data describing the biological phenomenon
are gathered from the literature together with in-house measurements from clinical, animal and in vitro
studies. These data can be complemented using publicly available databases, such as String-DB (41), KEGG
(8) and the Human Cell Atlas (42). In principle, all types of data, from low- to high-throughput, single-
timepoint to dynamic and mean-field to single-patient-single-cell resolution, can be used (Fig. 4A).

After cleaning, filtering and pre-processing the data using standard statistical and bioinformatic methods
(43, 44), regulatory networks at the cellular- and tissue-level scales are assembled from the data and visually
represented using the Systems Biology Markup Language (SBML) (45). The networks are translated into
mechanistic mathematical models using a chosen modeling formalism that depends on the scale and resolution
of the data. Multi-scale mathematical models can be modularly constructed and assembled using a variety
of formalisms from nonlinear dynamical systems (46), including Boolean networks for genetic regulatory
networks, systems of nonlinear ordinary differential equations (ODEs) for signaling networks and interactions
between cell types in the tissue, compartmental differential equations or agent-based models to explicitly
model spatial coupling between different cell types, stochastic differential equations to simulate population-
level distributions of cell markers and delay-differential equations for multi-level regulatory loops that control
tissue homeostasis. In general, when constructing a model for a specific disease affecting a particular tissue
(e.g., FA-related SCC in the oral mucosa), a good starting point is to identify mathematical models previously
proposed and experimentally validated, which can then be extended and adapted to reproduce specific
experimental and clinical observations. For example, mathematical models of loss of epithelial homeostasis,
originally developed for atopic diseases (47), could be extended to include SCC in FA-specific hallmarks. The
quantitative models are then calibrated with a training set of experimental data, using global parametric
optimization algorithms (48-50). This allows one to adapt the mathematical models to specific experimental
conditions, as well as to integrate scattered experimental data into a formal and coherent framework that
articulates all the individual regulatory players that are typically described in isolation, to understand how
they give rise to different clinical manifestations. Finally, model validation is achieved by ensuring that
the model can reproduce an additional set of empirical data (the validation set) that was not used for the
calibration (Fig. 4B).

Next, the calibrated and validated models are analyzed extensively. For this, the nominal conditions, i.e., the
calibrated model, are perturbed, e.g., by systematically altering the magnitude of the individual regulatory
interactions (changing parameter values), or by structurally altering the different regulatory interactions
(changing the equations). The output of the model, e.g., the “phenotype”, is then collected. Examples of such
perturbations-to-response mappings are robustness analysis, sensitivity analysis and bifurcation analysis. A
robustness analysis tells us which fraction of variations results in a given phenotype (51). Sensitivity analysis
weights each individual interaction (parameter) in terms of its contribution to the change in the model
output (52). In bifurcation analysis, the model output is assessed as one (or more) parameters are gradually
changed (53). Abrupt health-to-disease transitions mathematically correspond to qualitative changes in the
model, and they occur typically at bifurcations. The value(s) of the parameter(s) at which such a bifurcation
occurs, known as a bifurcation (set), is particularly interesting because it represents the critical threshold
of a perturbation that can be tolerated by the regulatory structure. Furthermore, the appearance of these
bifurcation sets can often be anticipated by early warning signals, such as an increased variance in recovery
times of the system (54). Thus, early warning signals of bifurcating systems can be used to improve early
detection strategies for abrupt disease transitions (Fig. 4C).

Finally, once the mathematical model has been exhaustively calibrated, validated and analyzed, it can be
used for designing and optimizing personalized treatment strategies that consider the specific disease stage
and patient characteristics (55). For this, one starts by identifying the potential targets of the intervention
strategy, e.g., growth hormone receptor inhibitors that reduce excessive proliferation of malignant cells, and

7
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modifying the model accordingly. Next, analysis of the extended model, i.e., the system without treatments
plus the dynamics of the treatments, can be performed (Fig. 4C). For example, one can use bifurcation
analysis to systematically explore how a given treatment affects the overall virtual population of patients
(e.g., considering the natural variations that occur in a population due to polymorphisms) by looking at
how the bifurcation sets shift under a specific treatment, such as cetuximab (an epidermal growth factor
receptor inhibitor). With a similar line of reasoning, it is possible to use bifurcation analysis to explore
how different treatment combinations affect the phenotype of a given patient. Here, again, it is particularly
relevant to look for bifurcation sets that separate the qualitatively different clinical phenotypes because these
curves correspond to all the minimal treatment combinations that can effectively trigger a disease-to-health
transition (56). Besides bifurcation analysis, other techniques, such as model predictive control (57), can
also be applied to maximize treatment efficiency while minimizing duration, dosing, and negative side effects
(Fig. 4D ). In all stages of this modelling pipeline, model predictions must be verified by comparing them
to empirical data.
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Figure 4: Principles of mechanistic modelling. The preconditions for performing mechanistic modelling
of diseases, such as SCC in FA individuals, are clinical data derived directly from patients and experimental
data obtained either in vitro from patient samples or in vivo. Additional data can be obtained from public
databases and repositories (A). A mathematical model of regulatory networks is constructed after filtering
and processing of the data on the level of either cells or whole tissues. The model is formalized using non-
linear dynamical systems, which are calibrated and validated with the data (B). Next, the model is analyzed
for robustness sensitivity, and ability to reflect abrupt phenotypic changes in response to perturbations, and
resulting model predictions, e.g., the map between a risk factor and the disease severity, are compared with
real-world data (C). The mathematical model can be used to systematically explore different types of treat-
ment options for the SCC of an FA individual. Once validated, the most effective predicted treatments may
then be applied to patients (D).

As a simple but illustrative example of the model construction process, we present a small biochemical
model of the first few steps of ICL detection and repair by the FA/BRCA pathway (58, 59). During DNA
replication, the presence of an ICL causes the replication fork to stall. This stressed fork is detected by
the protein FANCM, which binds to the branched DNA structure caused by replication fork arrest and
recruits the FA “core complex” to the damage site (Fig. 5A). The FA core complex is composed of three
protein subcomplexes, each of which is composed of three proteins (Fig. 5B): AG20 is a complex of the
proteins FANCA, FANCG, and FAAP20 (FA core complex associated protein 20); BL100 is a complex of
FANCB, FANCL, and FAAP100; and CEF is a complex of FANCC, FANCE, and FANCF. For simplicity,
we have chosen to represent in the model each of these subcomplexes as distinct molecular species that
reversibly bind to each other to form the FA core complex. The complete computational model includes
these subcomplex binding reactions, the binding of FANCM to the ICL, and binding of the FA core complex

9
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to ICL-bound FANCM (Fig. 5C). By defining parameter values for the rates of each of these individual
reactions, the model becomes executable, i.e., the populations (or concentrations) of the constituent species
can be simulated over time (Fig. 5D). In this way, hypotheses regarding the effects of mutations (changing
parameter values) and/or adding external perturbagens (e.g., drugs) can be explored in silico.

Figure 5: Illustrative example of mechanistic modeling in FA. Schematic of the first two steps of
ICL detection and repair, involving binding of the protein FANCM to the DNA, followed by recruitment of
the FA core complex (A). For demonstration purposes, we have chosen to model the protein subcomplexes
AG20, BL100, and CEF as independent species that reversibly bind to form the FA core complex. Note
that this choice of model resolution is at the modeler’s discretion, i.e., alternatively, each protein (FANCA,
FANCG, FAAP20, etc.) comprising the subcomplexes could have been modeled as independent species (B).
Eight reversible biochemical interactions (16 reactions total) can describe the ICL detection and FA core
complex recruitment process (C). In silico time courses for different molecular species can be obtained by
setting values of the binding/unbinding rate constants (all set to 1 in this case) and numerically integrating
the resultant set of coupled ODEs (D). ‘FANCM free’: unbound FANCM; ‘FANCM ICL’: FANCM bound
to the DNA around the ICL; ‘FA complex’: FA core complex composed of AG20, BL100, and CEF that is
not bound to FANCM; ‘FAcpx M ICL’: FA core complex bound to FANCM, which is bound to the ICL.

10
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Experimental data for FA model development and validation: Ex-
ample of multi-omic analysis of a SCC lesion from one FA individual

The tumorigenesis process (Fig. 6A) results in a heterogenous composition of tumors, i.e., each tumor
contains cells in various stages of the transformation process to aggressively metastasizing cells. Importantly,
tumors are not only composed of malignant proliferating cells, but also by multiple cell types, thus making the
tumor mass a complex ecosystem that includes immune cells of multiple types (B cells, T cells, macrophages,
etc.), tumor-associated fibroblasts, endothelial cells (60) and even microbes, including bacteria and fungi
(61). At the same time, a tumor is not only composed of cells, but also by extracellular matrix and secreted
factors that can signal messages among cells (60). If malignant tumors from individuals with FA are to be
characterized and this information used for accurate model building, all these factors must be accounted
for. In this respect, high throughput multi-omics technologies can leverage the components of the tumor
of interest, generating data in multiple modalities that need to be integrated and potentially exploited for
discovering novel biomarkers and therapeutic targets for individuals with FA.

Of note, classical DNA sequencing, RNA sequencing (RNA-seq), and protein detection technologies are not
able to deconvolute and deconstruct the above-mentioned complex composition of a given tumor, since they
use the bulk content of the tumor or tissue and are, therefore, constrained to detect the mean expression of
molecules, or the presence of a predominant DNA sequence, thus losing information of minor cell populations
or incipient emergent cellular clones (62). However, we are witnessing the appearance, development, and
refinement of multiple technologies with the capacity to resolve the cellular heterogeneity of tumors. Among
these technologies, one of the most popular is single-cell RNA-seq (scRNAseq) , which has given rise to
a growing number of datasets from liquid and solid tumors (after tumor dissociation), as well as healthy
tissue, leading to a compendium of single-cell-resolution gene expression atlases of multiple tissues and organs
(63). Although scRNAseq is a technology that has revolutionized the resolution at which we analyze cell
populations and tissues, it still lacks a critical component, i.e., preservation of tissue architecture in its
original context (62).

In the context of FA cancer, we are interested in the implementation of technologies that, in a multi-
omics fashion, will generate single-cell-resolution data but will prevent tissue disaggregation and, therefore,
maintain tissue architecture. The latter implies the preservation of cellular neighborhoods and cell-cell
interactions, which are lost when the tissue is disaggregated. These technologies are known as spatial omics
and include spatial transcriptomics, spatial proteomics, and spatial genomics, which combine molecular
characterization with spatial resolution (64). The aim of these spatial resolution technologies is to assign
omics information to spatial locations in the tissues, reaching cellular and subcellular resolution. Spatial
genomics assigns DNA sequencing information, including copy-number variants and somatic mutations;
spatial transcriptomics provides information on the number of transcripts of a certain gene per region; and
spatial proteomics provides relative amounts of protein concentrations (64). The data obtained by these
multi-omics technologies are highly dimensional in nature and require potent computational tools for their
analysis. Although intense research is underway for improving all spatial omics technologies, the most
developed are spatial transcriptomics and spatial proteomics. These technologies will allow for the detection
and quantification of cell populations of interest, the discovery of new cell populations, the comparison of
the abundance of cell populations across the carcinogenic progression and the quantitative and qualitative
description of infiltrating immune cells (65, 66). These technologies have the capacity to compensate for the
lack of resolution of bulk sequencing analyses, which has hampered the detection of premalignant clones at
early stages in FA (67).

Here, we use as an example a hypopharynx cancer from a 41-year-old woman with FA. The hematoxylin- and
eosin-stained tumor sample shows multistage carcinogenesis, ranging from low-grade dysplasia (yellow) to
high-grade dysplasia (orange) and invasive carcinoma (red) (Fig. 6B). This type of formalin-fixed paraffin-
embedded (FFPE) sample can be used for exploration and information retrieval using one or multiple of
the multi-omics technologies discussed here (see also Box 2). If, for example, tissue-cyclic immunofluores-
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cence (t-CycIF) is used, multiple sequential pictures of the tissue stained with fluorescent antibodies will
be acquired and stitched. The composite image that is generated must first be segmented using artificial
intelligence-based programs, such as ASHLAR (66), which recognize every cell nucleus and apply single-cell-
level segmentation of the tumor (Fig. 6C, upper left panel). For every cell, we can feature-extract the
expression of every marker of interest and proceed to non-supervised machine learning-based algorithms, such
as uniform manifold approximation and projection (UMAP) (Fig. 6C, upper right panel), which generate
clusters of cells based on the similarity of their expressed markers. This allows the separate visualization of
cell populations (68), such as cancer and immune tumor-infiltrating cells. After feature extraction, we can
explore the expression of markers of interest in every tumor population or across the tumor progression, for
example the proportion of proliferating cells (Fig. 6C, lower left panel), the relative expression of p53
(Fig. 6C, lower right panel) or other markers of interest.
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Figure 6: An SCC lesion from an FA patient analyzed by tCycIF imaging. The location within
the oral cavity and stage of a hypopharynx tumor from a 41-year-old woman with FA is indicated (A). The
hematoxylin- and eosin-stained tumor sample shows multistage carcinogenesis, ranging from low-grade dys-
plasia (yellow) via high-grade dysplasia (orange) to invasive carcinoma (red) (B). Multi-omic analysis of the
tumor includes tissue transcriptomics, genomics, proteomics, and metagenomics for detection of pathogens
inhabiting the tumor. Machine learning-based methods are applied in combination with single-cell level
segmentation of the tumors and delineation of tumor neighborhoods (C). In this inset of invasive carcinoma,
every circle represents an individual tumor cell, and its color indicates its stage within the multi-step tu-
morigenesis process. The data produced from tumor multi-omics can be processed using non-supervised
machine learning algorithms, such as UMAP, for detection of commonalities and divergencies in the tumor
sections from multiple patients, and information on markers expression can be extracted from every cell so
as to generate graphs for comparing markers expression across the carcinogenic progression.
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Toward ‘digital twins’ of FA individuals

Studies on SCC prevention in FA are limited by the small number of individuals with the condition, who
are spread around the world. In addition to regular histopathological diagnosis of oral cancer development
and cytology-based screening methods (32), reliable molecular markers are limited. Moreover, the scarcity of
genotype-phenotype associations in FA makes it highly likely that each patient will respond in an individual
way to drug treatments and/or lifestyle changes. Since robust predictive in vitro and in vivo FA models are
lacking, drug screening and testing cannot be generalized for all FA individuals. For example, in vitro analysis
of radiation sensitivity of fibroblasts from FA individuals does not correlate with the clinical response of the
same patient to radiotherapy (69, 70) and the amount of chromosomal breaks found in lymphocyte cultures
does not correlate with the severity of the disease, e.g., bone marrow function of the individuum. These
issues motivate the effort to create multi-level, dynamical computational models of FA that can aid clinicians
in tailoring therapies to each specific FA patient. Models of this type have been termed “medical digital
twins” (71, 72).

Although a consensus definition of a medical digital twin does not yet exist, the concept of a digital twin
is common in engineering disciplines (73). Often referred to as “industrial digital twins,” these models
are computational replicas of complex devices or processes, such as jet engines or wind turbines, that are
used to diagnose technical problems and guide interventions. Industrial digital twins are typically composed
of multiple, interconnected computational models of the constituent components of an engineered system.
Critically, this integrated “template” model of the base processes of the engineered system in question is
subsequently tuned, or “calibrated,” to a specific instance of that system, e.g., a particular jet engine, using
performance data collected from sensors in real time. It is this “twinning” process, involving consistent
feedback from real-time data streams, that differentiates a multi-level, computational model of a dynamical
system from a true digital twin (74). Construction of digital twins for medical and clinical applications has
been receiving increased interest lately (71, 72). However, biological systems are far more complex than
engineered systems, making their practical implementation much more challenging. Nevertheless, there have
been successful applications of medical digital twins for the treatment of type 1 diabetes (75) and pediatric
cardiac patients (76). Furthermore, it is important to note that medical digital twins differ from alternative
approaches gaining popularity in biomedical sciences, such as statistical and machine-learning models (77),
in that they are based on a mechanistic understanding of the underlying biological system. As such, they
are not constrained by the confines of the experimental data on which they are constructed, which in FA is
sparse.

The utility of a FA medical digital twin will be to aid clinicians in determining best courses of action for
individual patients in both the prevention and treatment of malignant tumors. The template model for an
FA medical digital twin will comprise the biological processes mentioned previously, including microbiome
interactions, DNA damage sensing and repair, EMT, cell cycle progression, and cell death, among others
(Fig. 3). Calibrating the template model to individual FA patients will be challenging and require collecting
spatially resolved, single-cell resolution multi-omics data, epigenome profiling, and metagenomics of the
oral microbiome, from patients at regular intervals,e.g., every three months in accordance with clinical care
guidelines for FA individuals with potentially premalignant lesions in the epithelial tissue. Additional patient
data, such as blood draws, genetic screens, and oral swabs, together with standard data from electronic health
records, can also be integrated into the calibration data stream. Once the model is personalized in this way,
it will be possible to test, in silico, numerous preventive and/or therapeutic options before applying them
clinically to FA patients. Furthermore, medical digital twins should be flexible and extensible, able to grow
in precision and predictive power as new knowledge is accrued and experimental data sets are generated. In
this way, the FA digital twin will develop together with the patient and their clinician, ultimately forecasting,
with high accuracy and precision, responses to novel personalized interventions and therapies.
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Conclusions

For FA cancers, especially oral SCC, the use of multi-level dynamic mechanistic modelling provides a new
perspective on early-stage diagnosis and decision support for the treatment of this rare disease. Such an
approach is critical, since classical statistical models, using case studies and controls, cannot be applied due to
the dearth of large patient groups. As such, we aim to build accurate computational models of tumorigenesis
in a limited but representative number of FA patients. These mechanistic models will utilize pre-existing
public knowledge on biochemical and regulatory pathways together with our knowledge of the life and disease
course of more than 750 FA individuals, which will be essential for distinguishing the tumorigenesis process
of FA cancer from that of regular cancer. In this way, our mechanistic models of FA cancer will take specific
characteristics of this rare disease into account. Using longitudinal information about the lifestyles of FA
individuals over years, together with multi-omics data at the genomic, transcriptomic, and proteomic levels,
will lead to the construction of individual-specific models, or digital twins, that can be used to develop
personalized treatment options. This approach has the potential to revolutionize the way FA individuals are
treated clinically.
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Box 1: Real-world FA patient examples

Patient 1: Diagnosed with FA at age 4 due to bone marrow failure and was transplanted with the bone
marrow of his sister. Clinically, no signs for graft versus host disease (GvHD) had been observed but severe
viral reactivation complicated the clinical course. He was treated both with anti-viral and immunosuppressive
medication. Patient started to drink alcohol at a social occasion at age 18. A visible lesion developed at age
22 at the gingiva and was biopsied revealing moderate dysplasia. Since then, the patient stopped drinking.

Patient 2: Diagnosed with FA at age 6. Additionally, he was a carrier of an inherited mutation in the
APC (APC regulator of WNT signaling pathway) gene. At age 8, the patient needed hematopoietic stem
cell transplantation due to bone marrow failure. Unfortunately, he developed severe GvHD. At age 16, he
was diagnosed with oral candida infection in a lesion at the gingiva. Due to persistence of the lesion, it was
biopsied and the diagnosis of SCC was made. After local excision with clear margins, the patient developed
three months later a local soft tissue metastasis. Further treatment including radiation and CD274 blockage
were not able to save the patient and he deceased at age 19.

Patient 3: Diagnosed with FA at age 6 due to bone marrow failure. She was treated with anabolic steroids
after a period of transfusions and severe infection. The treatment brought the blood counts up but due to
the development of clonal hematopoiesis with pre-leukemia, she was transplanted at age 16. At age 21, an
oral lesion at the tongue developed and the diagnosis of a candida infection was made. However, after initial
treatment, the lesion came back showing signs of inflammation. Due to persistence of the patient, a biopsy
was done at age 23 and a severe dysplasia was diagnosed.

Patient 4: Started social drinking and smoking at least one pack a day at age of 16. At age 20, a small
lesion at the right side of the tongue was noticed by the patient. Clinical diagnosis of a local inflammation
was made and the patient was treated over two months with immune suppression. Because there was no
clinical benefit from the treatment, the patient stopped the medication on their own. Due to growing of the
lesion and development of pain, eventually a biopsy was performed, confirming the diagnosis of T1 stage
SCC at age 21. Due to the unusual age at presentation, investigations revealed the underlying FA diagnosis.
Patient was treated with local excision.

Patient 5: Diagnosed with FA at age 8 and directly transplanted. Mild GvHD was clinically present. At
age 28, an oral lesion at the gingiva developed. An infection with candida was diagnosed but the patient did
not get any further treatment. At age 29, the lesion was biopsied due to increase in size. Histologically, a
high-grade dysplasia and an invasive candida infection were seen.
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Box 2: Multi-omic analysis methods

Tissue spatial transcriptomics

Tissue spatial transcriptomics allows the characterization of gene expression profiles keeping the tissue’s
spatial architecture intact. Multiple techniques have been developed for spatial transcriptomics, mainly
based on in situ hybridization, in situ capturing, in situ sequencing or microdissection (78).

Fluorescent in situ hybridization (FISH)-based methods exploit the hybridization of fluorescent-labeled RNA-
targeting probes with pre-defined transcripts of interest, followed by imaging, visualization, and quantificati-
on, which however is limited to the simultaneous detection of a small number of transcripts. Higher efficiency
in mRNA detection has been reached with the usage of array-based in situ capturing methods. These arrays
have attached barcoded oligonucleotides that capture, through complementarity, the mRNAs present in the
sample. Capture is followed by reverse transcription to cDNA and NGS, allowing the detection of more than
10,000 targets (79, 80). The widely used Visium technology is an example of this approach (Visium spatial
gene expression, 10X Genomics) (81).

Recent technologies allow to explore the transcriptome of specific regions of interest in FFPE samples through
microdissection. The GeoMx Digital Spatial Profiler by Nanostring allows in situ capture of mRNAs using
fluorescent-tagged RNA probes, which are linked to UV-photocleavable DNA oligonucleotides of known
sequence. The fluorescent-tagged RNA probes are also known as imaging reagents since they will generate
a fluorescent image that allows tissue visualization of regions where a specific mRNA is expressed. Once
the investigator selects their regions of interest, these areas are exposed to UV light that cleaves the DNA
tags in a region-specific manner. This releases indexing oligos that are collected via microcapillary aspiration
and dispensed into a microplate and subject to Nanostring mediated counting, or NGS (82). The RNA
from FFPE fixed samples very commonly suffers degradation. However, Visium and GeoMx technologies can
retrieve good amounts of information from these tissue samples.

Tissue spatial proteomics

The most popular methods of tissue spatial proteomics have the advantage that FFPE samples can be used
and, therefore, precious pathological archives can be studied. Strategies for exploring spatial proteomics are
based on (i) immunofluorescence, (ii) imaging mass cytometry by time of flight and (iii) sequencing (79). Tis-
sue cyclic immunofluorescence (tCycIF) is an immunofluorescence-based strategy. tCycIF uses FFPE tumor
and tissue specimens mounted on glass slides that undergo staining cycles. In every cycle, the specimens are
stained with fluorochrome-conjugated antibodies and imaged, followed by chemical inactivation of fluoro-
chromes after each round of immunofluorescence (83). Conventional wide-field, confocal or super-resolution
microscopes can be used for image acquisition. After multiple rounds of imaging, a final high-dimensional
representation of all the images is assembled into a unique image using computational strategies. The fi-
nal high-dimension image can be segmented into all individual cells composing the tissue to give single-cell
resolution. Neighborhood analysis can also be performed to quantify cell-cell interactions. Of note, tCycIF
does not require proprietary reagents, is robust and is a more economical option compared to other spatial
proteomics strategies.

CyTOF is a mass spectrometry-based method. In this technology, cellular proteins are detected using an-
tibodies that are conjugated to isotopes from the lanthanide series of rare metals. The sample is imaged
using the Hyperion Imaging SystemTM, where these metal-tagged antibodies are laser ablated from regions
of interest in the tissue and each ionized metal tag is detected based on differences in their mass instead
of the wavelength emitted by a fluorochrome. This technology eliminates the autofluorescence inherent to
biological specimens, since the rare metal tags with which the antibodies are conjugated are not present in
cells. Also, compensation or background elimination is not needed, since there is no overlap among the signal
produced by the ionized metals. In this technology, FFPE samples can be stained with an entire panel of
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multiple antibodies in a single scanning round without the need for multiple staining and washing cycles.
The image is analyzed using a proprietary software package (84).

Finally, GeoMx Digital Spatial Profiler by Nanostring can be adapted for detection of proteins instead of
transcripts (described above). In this setting, the FFPE tissues are immunostained with UV-photocleavable
oligonucleotide-labeled antibodies. The spatial location of proteins is again achieved by exposure of the region
of interest to UV light that photocleaves the oligos, followed by retrieval of the oligos and sequencing. This
provides an average count of oligonucleotides in every region of interest (82, 85).

Tissue spatial genomics

Technologies for spatial resolution of the genome that can preserve tissue architecture are less well developed.
Nonetheless, using spatially resolved DNA sequencing will finally deliver information on the process of clonal
evolution of solid tumors and provide a timeframe for when a specific mutation appeared. FFPE samples
are especially problematic since DNA is very commonly degraded in these specimens (86).

Slide-DNA-seq is one new technology that works with cryosectioned intact tissues. Slide-DNA-seq uses cover
slip arrays coated with 10 μm DNA-barcoded polystyrene beads, each containing a unique DNA barcode
corresponding to its spatial location in the cover slip. This is meant to provide spatial indexing. Then,
a 10-μm-thick fresh-frozen tissue section is placed onto the barcoded bead array, treated with HCl for
histones removal and treated with the transposase Tn5 to generate DNA fragments that will be flanked
with sequencing Illumina adapters. The barcodes are photocleaved from the beads and the resulting DNA
sequencing library is amplified by PCR (86, 87).
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