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Abstract

Our knowledge of the factors influencing the distribution of soil organisms is limited to specific taxonomic groups. Consequently,
our understanding of the drivers shaping the entire soil food web is constrained. To address this gap, we conducted an extensive
soil biodiversity monitoring program in the French Alps, using environmental DNA to obtain multi-taxon data from 418 soil
samples. The spatial structure of resulting soil food webs varied significantly between and within habitats. From forests to
grasslands, we observed a shift in the abundance of trophic groups from fungal to bacterial feeding channels, reflecting different
ecosystem functioning. Furthermore, forest food webs were more strongly spatially structured which could only partly be
explained by abiotic conditions. Grassland food webs were more strongly driven by plant community composition and soil
characteristics. Our findings provide valuable insights into how climate and land use changes may differentially affect soil food

webs in mountains.

Introduction

Soil biodiversity encompasses a complex network of interactions among functionally and trophically diverse
organisms, playing a vital role in supporting ecosystem functions and services such as carbon sequestration,
organic matter decomposition, and enhancing plant performance and resistance to pests and stress (Bardgett
& van der Putten 2014; Delgado-Baquerizo et al. 2020). Over the past decades, our understanding of the
spatial distribution of soil taxa has improved, particularly for specific groups like bacteria (Fierer & Jackson
2006; Delgado-Baquerizo et al. 2018) and fungi (Tedersooet al. 2014; Davison et al. 2015). However, our
current knowledge primarily relies on a few specific taxa, while the broader ecological processes shaping the
whole soil communities and their organisation into interaction networks remain poorly understood. This
knowledge gap stem from challenges associated with capturing the intricate spatial heterogeneity inherent to
the soil environment (Ettema & Wardle 2002), and the methodological complexities of sampling and analysing
the vast diversity of the soil biota (Geisen et al.2019). These limitations have hindered the application of
existing theoretical frameworks on soil biota (Thakur et al. 2020). Advancing research in this direction
promises to unravel the ecological processes that structure soil biodiversity and to predict the impacts of
global change on terrestrial ecosystems (Soliveres et al. 2016; Eisenhauer et al. 2021).

Gaining insights into the organization of soil communities necessitates studying spatial, environmental, and



biotic drivers and this poses challenges (Decaéns 2010; Miinkemidiller et al. 2020; Eisenhaueret al. 2022). First,
capturing the full complexity of soil systems requires accounting for their inherent spatial heterogeneity from
landscape to local scales (Ettema & Wardle 2002; Thakur et al. 2020). At the landscape scale, dominant
habitat types, such as grasslands or forests, are crucial for soil taxonomic and functional composition (Fiore-
Donno et al. 2020; Arribas et al. 2021; Sepp et al. 2021). Consequently, the heterogeneity between habitats
within a landscape can give rise to mosaic patterns of soil communities. Moreover, the spatial connectivity
of habitats and the varying dispersal capacities of soil organisms can influence the local composition and
structure of soil communities (Arribas et al.2021). But even at the local scale of a few meters, variable abiotic
conditions, including microclimate and soil physico-chemical properties, along with stochastic processes, can
lead to pronounced differences in soil communities (Ramirez et al. 2014; O'Brien et al.2016; Zinger et al.
2019). The structure of the vegetation within an habitat or its taxonomy or functional composition can also
affect the abundance and diversity of different soil taxa or trophic groups (Noguerales et al. 2021; Calderén-
Sanou et al. 2022; Ganault et al. 2022). Effectively disentangling the effects of spatial, environmental and
biotic processes necessitates a sampling design that encompasses multiple spatial scales, ranging from the
heterogeneity between habitats to small-scale soil variations.

Second, comprehensive sampling and cross-taxa analysis are required to capture the high diversity
in soils. Recent advancements in monitoring techniques, such as environmental DNA metabarcoding
(eDNA)(Taberletet al. 2012), offer cost-effective means to obtain extensive data on soil biota at large
spatial extent (Taberlet et al. 2018; Geisen et al. 2019). To more concisely present the different taxa they
can be classified into trophic groups that share similar resources or prey (Eltonian niche; Elton 1927), e.g.,
fungivorous nematodes or photoautotrophic bacteria (Louca et al. 2016; Potapov et al. 2022). To better
comprehend the complex interactions, we can construct food webs that consider multiple trophic groups
(nodes) and their linkages across trophic levels (links) (Thompson et al.2012; Gravel et al. 2019). However,
constructing food webs from large eDNA datasets is not without challenges. It entails handling and clas-
sifying thousands of sequences into trophic groups, and subsequently linking these groups based on known
interactions. Obstacles include the resolution limitations of DNA markers for species-level assignment, the
incompleteness of sequence reference databases, inconsistent terminology in trophic ecology across soil taxa
(Hedde et al. 2022), and the sparse trophic information available for soil organisms in literature and repos-
itories (but see Potapov et al. 2022). Nevertheless, the application of artificial intelligence tools now offers
the potential for automating classification tasks (Compson et al. 2018; Le Guillarme & Thuiller 2023).

Third, if we are to understand soil biodiversity, not as a group of independent taxa, but rather as food webs,
we need the appropriate methods and frameworks to investigate how ecological processes act on soil trophic
groups and their interactions. The mono-trophic community assembly framework (Keddy 1992; Thuiller et
al. 2013) can be extended to food webs using the metaweb concept (Dunne 2006). At the regional scale, the
metaweb represents the potential food web encompassing all species (or trophic groups) from the regional
pool and their potential interactions (Fig.1c). At the local scale, realised local food webs emerge as subsets of
the metaweb due to ecological filtering of species (Bauer et al. 2022). This filtering process can be influenced
by spatial filters like landscape barriers, limiting dispersal (Peay et al. 2010), abiotic factors filtering out
species lacking physiological adaptations (Maass et al. 2015; Glassman et al. 2017), and biotic interactions
such as mutualisms, herbivory and predation (Valyi et al. 2016). By using the metaweb concept, we can
evaluate the effects of ecological filters not only on the taxonomic composition of the local community but
also on its network structure (i.e., composition of interactions). Important biotic interactions in the soil are
via plant-soil feedbacks, where the taxonomic or functional composition of plant communities influences soil
food webs and vice-versa (Kardol & De Long 2018; Kardol et al.2018). Moreover, trophic interactions within
the food web can elucidate its local structure and composition (Thakur & Geisen 2019). We anticipate that
interactions between taxa or groups within the food web should result in co-variation across environmental
and spatial gradients. For instance, environments characterized by decomposer communities dominated by
bacteria (rather than fungi) should promote the dominance of bacteria consumers and related higher-level
consumers within the food web (Moore & de Ruiter 1991), see e.g. Martinez-Almoynaet al. 2022. Null
models can be used to test the significance of such co-variation in the assembly of ecological communities



(Carusoet al. 2022).

Here, we analysed the spatial variation in soil food web structure, encompassing trophic group and interac-
tion composition. We used data from all over the French Alps including lowland forests and high-altitude
grassland ecosystems. To represent their spatial heterogeneity, we employed a stratified and nested sam-
pling design, consisting of 24 elevational gradients with multiple plots at varying altitudes (Fig. la). We
measured soil biodiversity in 418 soil samples, using environmental DNA (eDNA). Using an ontology-based
data integration pipeline, combining multiple databases with existing knowledge on the trophic habits of soil
organisms (Le Guillarme et al. 2023; Le Guillarme & Thuiller 2023), we constructed a metaweb comprising
55 soil trophic groups with 383 potential trophic interactions (Fig.1b). Finally, we applied the metaweb
framework to characterise the importance of ecological filters on soil food webs (Fig.1c), using a combination
of network diversity indices based on Hill numbers (Ohlmann et al.2019) and associated null models. We
quantified local variations in soil food web structure both between and within habitats, addressing three spe-
cific questions: (Q1) Do different habitats differ in soil food webs?, (Q2) Do trophic interactions contribute
to variations in group abundances between habitats?, and, (Q3) How do abiotic conditions, spatial factors,
and plant communities shape soil food webs within habitats?

Material and Methods
Study site

The data come from the Orchamp long-term biodiversity observatory (www.orchamp.osug.fr, Appendix 1).
It encompasses 24 elevation gradients (at the time of this study) across the French Alps sampled between
2016 and 2020 (Fig.1a). These gradients represent diverse climatic, vegetation and soil conditions. Each
gradient consists of four to nine 30 x 30 m permanent plots, spaced approximately 200 m apart in altitude.
We thus worked with 127 plots ranging from 280 m and 2780 m above sea level.

Habitat type (forest, grassland, shrubland) was determined on-site. Plant species abundances were estimated
at the peak of the vegetation along a linear transect traversing each plot, using the pin-point method
(Jonasson 1988). Soil sampling was performed at the end of the summer season in three subplots (2 x 2 m)
located along a separate 4 m wide transect within each plot. In each subplot, we collected ten soil cores, 5 cm
in diameter and ~15 c¢m in depth (excluding litter), pooled together to a biological sample. Some elevational
gradients (37 plots) were sampled twice (i.e., in different years).

Soil biota sampling

Soil biodiversity was measured using environmental DNA (eDNA) metabarcoding from the soil samples. In
the field, we extracted eDNA from a 15 g aliquot following Taberlet et al. (2012, 2018). The remaining soil
was sieved at 2 mm and used to measure soil physico-chemical properties (Table 1).

We employed six DNA markers, including two universal markers (euka02 for eukaryote, bact01 for bacteria)
and four clade-specific markers (fung02 for fungi, inse01 for insect, olig01 for oligochaeta, and coll02 for
collembola) (Taberlet et al. 2018). Details regarding the markers and molecular analyses are detailed in
Appendix 2. A standardised bioinformatic pipeline was applied to curate the retrieved sequences from
contaminants and errors (Calderon-Sanou et al. 2020), using the OBITools software (Boyer et al. 2016) and
the ‘metabaR’ R package (R Core Team 2020; Zinger et al. 2021). Sequences were clustered into Molecular
Operational Taxonomic Unit (MOTU) with SUMACLUST (Mercier et al. 2013) using a clustering threshold
of 97% for Euka02, Fung01 and Bacte01, 85% for Coll01, 88% for Olig01 and 95% for Inse01, following
the recommendations in Bonin et al. (2023). Taxonomic annotations were performed on MOTUs with the
SILVAngs pipeline (Quast et al. 2013) (SILVA version 138.1) for ribosomal universal markers. For clade
specific markers, we used the ecotag program from the OBITools, and marker-specific databases built with
the ecoPCR program (Ficetola et al. 2010), from the EMBL database version 136. Metazoan taxa not
registered in the European region were removed from the data (<1% of total reads) using the GBIFfilter
tool (https://github.com/nleguillarme/gbif-filter-python).

Food web construction



Trophic groups and classes: We assigned the retrieved taxonomically annotated MOTUs to 10 trophic
classes including autotrophs, decomposers, detritivores, phytophages or phytoparasites, plant mutualists,
bacterivores, fungivores, omnivores, predators and zooparasites. We then refined those trophic classes by
subdividing them into 55 trophic groups in total. These were defined by separating phylogenetic distant
groups that could have a different set of prey/predators (e.g., bacterivorous mites vs. bacterivorous ne-
matodes) and groups differing in their resources acquisition strategy (e.g., different types of mycorrhiza
and saprotrophs). The taxonomic rank used to delimitate phylogenetic distant groups comprised Bacteria,
Fungi, Protista, the different phyla within Metazoa, and the different classes or orders within Arthropoda
and Annelida. (Appendix 2).

To facilitate the assignment of the taxonomically annotated MOTUs to trophic classes, we first built a
knowledge graph integrating information about the trophic interactions and feeding habits of soil-associated
consumers from multiple data sources using the ontology-based data integration pipeline described in Le
Guillarme & Thuiller (2023). This trophic knowledge graph uses the NCBITaxon ontology and the Soil Food
Web Ontology (SFWO)(Le Guillarme et al. 2023) as global schemas for reconciling taxonomic and semantic
heterogeneities between the data sources. It provides a unified access to multisource trophic information
across taxonomic groups and trophic levels. The list of data sources and details on the assignment criteria
can be found in Appendix 2.

Building the metaweb: A metaweb is a potential network containing all trophic groups and their potential
interactions (Dunne 2006). We added three basal resources to construct our metaweb: light (or chemical
energy), plants, and organic matter. Trophic links were then added between groups based on their main
feeding preferences. Therefore, plant mutualists and phytoparasites were linked with the plant resource,
detritivores and decomposers were linked with the organic matter resource and autotrophs were associated
with the light resource. Bacterivores were linked with all trophic groups containing bacteria, and fungivores
with all trophic groups containing fungi. The trophic interactions of omnivores, predators and zooparasites,
were determined through a literature review of dietary preferences of taxa representing over 90% of the read
abundance of the group (Appendix 2).

Local food webs: From the metaweb, the composition and structure of the local soil food webs were deduced
based on locally present trophic groups, i.e., local webs are subgraphs of the metaweb. This assumes that
co-occurring groups interact locally as defined in the metaweb. We approximated local relative abundance
of each trophic group using a double-transformation, where first, total read counts were transformed into
proportions within the sample, and second, the resulting proportions were standardised by the largest pro-
portion observed across samples for each trophic group (‘éeDNA index’ in Kellyet al. 2019). The relative
abundance of each trophic group varied thus between 0 (absent) to 1 (largest observed proportion), allow-
ing to have a comparable measure across trophic groups. Abundance values of the basal resources (light,
plant, organic matter) were set to non-null (0.001) to not affect diversity measurements. For trophic class
abundance estimates, we summed group relative abundances.

Network analyses

With the aim of analysing spatial variation in soil food web structure, we used beta diversity metrics that
account for compositional changes in the food web across samples. We used a set of network diversity indices
based on the generalisation of Hill numbers proposed by (Ohlmannet al. 2019) These indices allow to quantify
diversity in trophic groups and trophic interactions, varying the weight of the relative abundance of groups
and links. Here, we focussed on Shannon diversity (q=1, see Calderon-Sanou et al. 2020) but also replicated
the analyses using species richness (q=0) and Simpson diversity (q=2) to assess the extent to which the
observed changes are compositional versus structural. Since interactions in the metaweb are binary (either
presence or absent), we approximated the abundance of interactions as the product of the relative abundances
of the interacting groups. These diversity indices can be further decomposed into alpha, gamma, and ss-
diversity (ssT), and be used to calculate the pairwise dissimilarities for both groups (sspP) and links (sspL).
ss-diversity (ssT) quantifies the effective number of different communities, based on shared groups (ssTP) or
interactions (ssTL), ranging from 1 (indicating identical group or interaction abundance distribution) to the



total number of communities, when networks do not share any common group or interaction. The diversity
metrics were computed using the R package ’econetwork’ (Mieleet al. 2021).

To quantify changes in the spatial structure of soil food webs across habitats, we calculated pairwise dissim-
ilarity measures for both groups (sspP) and interactions (sspL) among all pairs of local food webs. Subse-
quently, we used UMAP, a non-linear dimension reduction algorithm, to visualize the local food webs in a
two-dimensional space based on their group and interaction dissimilarities (McInnes et al.2020). Given the
strong structural differences observed in local soil food webs between forests and grasslands (Fig.2, S3), and
the high variability in food web composition in shrublands due their intermediate state along the elevational
gradient, our analysis focused exclusively on grasslands and forests for further comparison. We compared the
relative abundances of trophic groups and classes between forests and grasslands with a Wilcoxon test and
used the ‘group-TL-tsne’ network layout from the R package metanetwork (Ohlmann et al.2023) together
with edge bundling provided by edgebundle R package (Schoch 2022) to represent the difference network
between average food webs in forests vs. grasslands.

We tested the imprint of trophic interactions on community assembly with null models. Firstly, we con-
structed an average soil food web for each habitat by using the average relative abundances of trophic groups
per habitat. We then calculated the ss-diversity (ssT) for both group and link interactions between the two
habitats. Next, we built the null model. Since group and interaction diversities are strongly correlated,
we aimed at keeping group diversity constant in the null model while modifying interaction diversity. This
was achieved by permuting the node labels within the metaweb. Consequently, group ss-diversity remains
unchanged as this diversity index is invariant to label permutation. However, interaction ss-diversity was
affected since it relies on the product of relative abundances of interacting groups. If dominant interacting
groups differ between the two habitats, the observed interaction ss-diversity would be higher than expected
under a random distribution of group abundances. To evaluate the significance of our findings, we conducted
3000 permutations and compared the observed diversities with the corresponding null distribution.

Finally, to quantify the relative importance of environmental and spatial distances in explaining food web
dissimilarity within habitats (i.e., grasslands and forests), we used Generalised Dissimilarity Models (GDM)
(Ferrier et al. 2007). We built two GDM per habitat using trophic group turnover (sspP) and interaction
turnover (sspL) as response variables, with the R package gdm (Fitzpatrick et al.2022). For the environmental
predictors we selected a set of weakly correlated variables (Pearson’s r < 0.5, Fig.S6) representing climatic,
soil and vegetation conditions that could influence soil organisms (Table 1). The spatial coordinates of the
samples and all the selected environmental variables were used as predictors. The environmental distance
between samples was directly calculated by the gdm package, but for plant composition, we used our own
dissimilarity indices to represent changes in vegetation composition from both a taxonomic and functional
point of view (Table 1). Plant taxonomic dissimilarity between plots was calculated using thebeta.pair
function from the R package ‘betapart’ (Baselgaet al. 2022). To estimate plant functional dissimilarity
we retrieved trait values for species of which cumulative abundances represented at least 90% of the plot
coverage. Missing values (<15% of the total data) were estimated using the imputation method offered
by the R package ‘mice’ (van Buuren & Groothuis-Oudshoorn 2011). Plant functional dissimilarity was
estimated using the beta.fd.multidim function from the R package ‘mFD’ (Magneville et al. 2021). In the
analysis, soil samples from the same subplot collected in different years (i.e., 95 of the 418 samples) were
treated as separate samples as they differed in environmental conditions, except for climate and NDVI that
were averaged across a period of 10 years. Their spatial dependency was considered through the spatial
coordinates of the plot.

Results

The metaweb constructed for the French-Alps region using the taxa identified in 418 soil samples consisted
of 55 trophic groups, three basal resources and a total of 383 potential interactions (Fig. S1). On average,
local food webs were composed of 41 +- 4 trophic groups (and resources), with 206 +- 37 interactions. All
10 trophic classes were present in all local food webs, with a single exception where no group from the
fungivore class was detected. The mean dissimilarity between local soil food webs was primarily influenced



by changes in the dominance of trophic groups, rather than by changes in the presence or absence of groups
(as indicated by increasing dissimilarity when increasing parameter q, which represents the weight of trophic
group abundance and interaction, Fig.S2).

Overall, we found that food web composition varied across the environmental range covered in this study. The
habitat type, particularly when comparing grassland and forest habitats, strongly structured the food web
composition, both in terms of trophic group and interaction composition (Q1) (Fig.2, Fig.S3). The influence
of habitat type on interaction composition was more pronounced compared to trophic group composition
(Table S1). When examining shrubland areas, which represent ongoing shifts from grassland to forest, we
found highly variable food web structures (Fig. 2). These structures exhibited similarities to both forest
and grassland food webs, potentially due to the spatial proximity of shrubland sampling sites to forests or
grasslands, or the specific stage of succession in the shrubland areas. By contrasting the average food webs
of forests and grasslands, we identified compositional differences in the abundance of trophic groups and
classes between the two habitats (Fig.3). Forest soil food webs were enriched in ectomycorrhizal fungi, litter
and wood saprotrophic fungi, macro-detritivores like earthworms and diplopods at basal level, fungivores
(particularly eudaphic collembola and protura), soil top predators including predatory mites, centipedes,
predatory coleoptera and pseudoscorpions, as well as zooparasites. In contrast, grassland soil food webs had
a higher proportion of decomposers and detritivores, particularly soil saprotrophic fungi, enchytraeids and
coprophagous coleoptera (e.g., dung beetles), arbuscular mycorrhizal fungi and root endophytes, and most
groups of plant phytoparasites and autotrophs. Grasslands also exhibited a higher proportion of bacterivores
and omnivores compared to forests, notably bacterivorous nematodes, rotifers and epigeic collembola, at
higher trophic levels. We further examined the ss-diversity of interactions between habitats and compared
it to null expectations derived from randomising trophic group abundances while preserving trophic group
diversity and network structure (see methods). The observed ss-diversity was significantly higher than
expected by chance (Fig.4), indicating that trophic groups enriched in each habitat were not randomly
distributed in the food webs, but instead formed pairs of trophically linked groups. This suggests that
differences in trophic group abundance between habitats (Fig.3) are influenced by the structure of trophic
links within the food web (Q2).

The composition of forest and grassland food webs was influenced by distinct ecological filters (Q3). In
both habitats, predictors associated with these filters accounted for approximately 10% of the variance
in soil food web dissimilarity (Fig.5, Fig.S4). In forests, spatial and environmental predictors played a
more important role, particularly soil C/N ratio (related to organic matter degradability), pH, and frozen
degree days (FDD) as indicators of abiotic stress (Fig.5a). Dissimilarities in trophic groups and interactions
were more pronounced between sites separated by large spatial distances and remained consistent along the
gradients of FDD and pH (Fig.5b). Changes in soil C/N ratio primarily influenced interaction dissimilarity,
particularly at higher values of the C/N ratio gradient (>20).

In contrast, grassland soil food webs were predominantly driven by plant taxonomic and functional com-
position, as well as soil C/N ratio (Fig.5a). Soil C/N ratio and plant taxonomic/functional composition
better explained interaction dissimilarity (Fig.5¢), while plant taxonomic composition was more effective in
predicting trophic group dissimilarity. Dissimilarities in trophic groups and interactions remained relatively
constant along the plant dissimilarity gradient but were more pronounced in the lower part of the FDD
gradient (> 40 cumulative degrees) and the upper part of the C/N ratio gradient (>15).

Discussion

Our study employed high-resolution data spanning contrasted habitats and extensive environmental gradients
to quantify the variability of soil food web structure. This approach revealed new insights into how the
environment, space and biotic interactions shape soil food web assembly. We observed significant differences
in dominant trophic groups between habitats, that was associated with the structure of the trophic links
in the food web (i.e., the abundance of trophically linked groups co-vary across habitats). Furthermore,
we uncovered notable discrepancies in the relative importance of the ecological filters between forests and
grasslands.



Habitat filtering in soil food webs

As anticipated, habitat filtering strongly influenced soil food web structure (Crotty et al. 2014; Arribas et
al. 2021; Seppet al. 2021). Differences in abiotic conditions and resource availability between habitats could
explain the observed differences in the proportions of trophic groups. Grassland soils exhibit lower acidity,
higher P and N availability and a lower C/N ratio (Joimelet al. 2016, Fig.S5), and have a higher below-ground
plant biomass, which is more easily decomposed, leading to significant inputs of readily decomposable organic
matter into the soil (Mason & Zanner 2005; Hedénec et al. 2022). These factors likely enhanced resource
availability for detritus-based trophic groups, resulting in the higher dominance of copiotroph decomposers
(e.g., saprophytic fungi and bacteria), micro- or meso- detritivores (i.e., Enchytraeidae) and microbivores in
grasslands. In contrast, plant detritus in forests, which is more challenging to decompose, serves as a direct
resource for litter and wood saprotrophic fungi and provide a habitat for macro-detritivores, which feed on
plant litter and associated fungi (David & Handa 2010; Zuo et al. 2014). Light availability in grasslands
may favour the presence of photoautotrophic bacteria that use light as their primary resource, and facilitate
interactions, such as arbuscular mycorrhiza (Konvalinkovad & Jansa 2016). Moreover, grasslands had a higher
proportion of phytoparasites, likely due to the higher biomass of fine roots in this habitat (Jackson et al. 1997;
Hedénec et al. 2022), which are more easy to colonise by symbionts, while forests had a higher proportion of
zooparasites, benefiting from a greater abundance of potential hosts, predominantly arthropods, molluscs or
earthworms, for the taxa belonging to our zooparasite groups. These findings align with our results showing
that trophic interactions within the soil food web contributed to explain food web dissimilarities between
habitats (Fig. 4) and are consistent with previous studies examining changes in the trophic composition
of protists (de Araujo et al. 2018; Fiore-Donno et al. 2020) and nematodes (Zhao & Neher 2014) across
habitats. The distinct identities of soil antagonists in the soil food webs from grassland to forests warrant
further investigation as they could provide insights for land management strategies in mountain ecosystems
(Wall et al.2015).

Impact of ecological filters within habitats

Our study design aimed to investigate the impact of ecological processes on soil food web structure across
altitudinal gradients and diverse environmental conditions. Although the GDM explained a relatively low
percentage of variance when quantifying changes in the structure of local food webs (Fig. 5a), it’s important
to note that typical deviance explained for models of compositional dissimilarity ranges from 20% to 50%, and
this percentage can decrease with an increasing number of sites, which was relatively high in our study (Ferrier
et al.2007; Mokany et al. 2022). Furthermore, the resolution of our soil food webs using trophic groups instead
of species led to low average dissimilarities (0.27 and 0.48 in forests, and 0.30 and 0.53 in grasslands for groups
and interactions respectively), reducing model predictability (Mokany et al. 2022). Importantly, we found
that trophic link structure significantly influenced changes in trophic groups abundance composition (Fig.4).
However, current models cannot account for this factor, and incorporating network structure in diversity
models may enhance predictability but requires further implementation (Poggiato et al. 2022).

Spatial processes, environmental filtering, and changes in plant community composition explained variation
in food web structure within habitats. In forests, spatial distance played a significant role, explaining a
substantial portion of trophic group (31%) and interaction dissimilarity (58%), even when accounting for
confounding environmental changes. Limited dispersal opportunities in closed forest habitats, particularly for
organisms dispersed through wind (anemochory), might influence soil food web structure in mountain forests.
Conversely, open grassland habitats subject to strong winds (Tackenberg & Stocklin 2008) and high levels
of herbivory, both domestic and wild, can facilitate the dispersal of soil organisms. Furthermore, mountain
massifs and large distances between forested areas (up to 250 km) can impact meso and macro fauna,
susceptible to ecological drift due to their limited dispersal capacity or smaller population sizes (Arribas
et al.2021; Kang et al. 2022). This is in line with our results showing that food web dissimilarity increased
with greater spatial distances (Fig.5b). Yet, the spatial distance used in the model may not fully capture the
complexity of spatial, and further investigation using experimental setups to clarify spatial connectivity and
dispersal limitation effects is required.



Environmental filtering played a significant role in both habitats, primarily influenced by soil edaphic proper-
ties. In the French Alps, the soil C/N ratio emerged as the most influential abiotic factor in shaping soil food
web composition. It reflects organic matter decomposability and resource availability, as discussed above,
impacting decomposer groups, their consumers, and the entire feeding channel Conversely, variables related
to total energy or resources, such as the NDVI and SOM, had a smaller impact on soil food web dissimilarity.
While this contrasts with previous studies emphasizing the role of these variables in diversity patterns of soil
groups in mountains (Zinger et al.2011; Calderén-Sanou et al. 2022), it highlights the emergence of different
ecological drivers at different levels of biodiversity organization. In our study, resource quality, particularly
litter quality, seemed to dominate food web composition rather than quantity. Additionally, environmental
factors associated with harsh conditions, such as pH and frozen degree days, known drivers of soil taxonomic
diversity and composition (Fierer & Jackson 2006; Decaens 2010), also played a major role in shaping soil
food webs.

Plant-soil interactions likely play a crucial role in shaping grasslands food webs in the French Alps. Al-
though we did not directly measure these interactions, the taxonomic and/or functional composition of plant
communities had a major impact on soil food web structure. Mountain grasslands exhibit high variability
in plant species richness and the presence of functionally important taxa such as Fabaceae, Brassicaceae or
Poaceae across different altitudes and massifs. Changes in plant diversity can influence the composition of
soil food webs (Eisenhaueret al. 2013) , and altering plant identity can affect different soil taxa (Zinger et al.
2011). Interestingly, taxonomic dissimilarity had a larger effect than plant functional dissimilarity, possibly
because above-ground traits used in our study may have a lesser role in plant-soil interactions compared to
root traits (Kardol & De Long 2018; Wilschut et al. 2019). Surprisingly, in forests, plant composition had
a minor impact on food web structure. Soil variables like pH and C/N ratio may better capture variations
in forest type (e.g., broadleaf vs coniferous forests), directly influencing soil food webs.

Conclusion and perspectives

This study enhances our understanding of how ecological processes operate in below-ground communities
and networks, thereby extending our knowledge of ecological communities as a whole. Furthermore, our
research offers valuable insights into the impacts of global change on soil biodiversity and terrestrial ecosys-
tem functioning, particularly in vulnerable mountainous systems experiencing climate change and land-use
modifications. Land management decisions, such as forestry, agriculture, and tourism, can alter local land-
use and habitats, necessitating consideration of their effects on soil food webs and ecosystem functioning.
However, further investigations are needed to explore the underlying mechanisms driving spatial changes in
food web structure. Additionally, studying the recovery and resilience of soil food webs to land-use changes
is essential, considering the dynamic nature of ecosystems in the face of a constantly changing climate. These
future studies will enhance our understanding of soil food webs and their responses to environmental changes,
aiding informed land management decisions and sustainable practices.

Table 1. Environmental variables used in this study.

Environmental Temporal
variable Abbr. Description range Resolution Source
Climate Growing GDD Annual sum Average Plot SAFRAN-

degree days of across SURFEX/ISBA-
degree-days 2009-2019 Crocus-
over a 0°C MEPRA
soil reanalysis
temperature (Vernay et

al. 2021)



Environmental

variable Abbr.

Description

Temporal
range

Resolution

Source

Soil

Vegetation

Annual AP
precipitation

Frost degree FDD
days

Soil pH pH

Soil Organic SOM
Matter

Soil C/N C/N

Plant
taxonomic
dissimilarity

The sum of
all the
monthly
precipitation
estimates
Annual sum
of average
daily degrees
below zero
in soil tem-
perature.
Summarizes
the duration
and
intensity of
ground
freezing
events.
Top-soil
wahter pH

Soil organic
matter
content
Soil carbon
to nitrogen
ration in
organic
matter
Jaccard
pairwise
dissimilarity
index
between
subplots.

Same year
than the
sample was
collected
(2016-2020)

Same year
than the
sample was
collected
(2016-2020)

Sample

Sample

Sample

Plot

Measured in
the lab

Botanical
surveys



Environmental Temporal
variable Abbr. Description range Resolution Source
Plant Jaccard-like Plot Botanical
functional functional surveys and
dissimilarity index. Traits: our own trait
specific leaf measurement
area (SLA), values for
leaf C/N, root species
depth (ordered (median values
variable), across
vegetative individuals).
plant height, Root depth
and woodyness was , extracted
index from (Landolt
(categorical et al. 2010).
variable
ranging from
herbaceous to
woody).
Normalized NDVI Estimated Average Plot MODIS
Difference from the across (Moderate
Vegetation surface 2010-2020 Resolution
Index spectral Imaging
reflectance Spectrora-
at a diometer),
resolution of available
250 m. Raw online:
NDVI times https://lpdaac.us
series were cts/mod09q1v00¢
pre-
processed
following
(Choler
2015), and
we kept the
mean yearly
sum of
NDVI

greater than
0.2
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Figure 1. Study design to investigate soil food web structure in the French Alps (a) Study sites
across the French Alps were selected using a stratified sampling design across elevations and nested design
with subplots within gradients. The collected 418 soil samples were distributed across nested spatial distances
ranging from 8 m to 250 km. (b) eDNA and bioinformatic analysis were used to assign detected organisms
to taxonomic and functional information. (c) The metaweb framework was used to quantify spatial changes
in the structure of soil food webs across the study area and examine their associations with environmental
and spatial factors.
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Figure 2. 2-D plane representing the dissimilarity between soil food webs based on the composition
of trophic groups and trophic interactions with a colour scale representing the habitat type. Each dot is a
local food web from a single sub-plot. Dots that are close to each other in the 2D plane have similar trophic
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Figure 3. Differences in trophic group and class abundances between soil food webs in forests
and grasslands . Colours indicate the significance of Wilcoxon tests calculated for the difference in abun-
dances of each group between habitats (p<0.05) while node sizes are proportional to significant abundance
differences. A Wilcoxon test was also applied to compare differences in trophic class abundances (dashed
circles) between habitats. Abundance of trophic classes correspond to the sum of trophic groups relative
abundances.
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Figure 4. Null distribution of the 8-diversity of interactions (8TL) at fixed trophic group
diversity. The values of the histogram show the 3TL between the average food webs of forest and grassland
computed using 3000 permutations of trophic group abundances at fixed network structure, leading to
various 8TL values while keeping trophic group 8-diversity constant. The vertical line shows the observed
BTL across habitats. The value of 3TL varies from one when the average food web of forest and grassland
have identical interaction abundances distribution, to two, when the food webs do not share any common
group or interaction.
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Figure 5. Main predictors of soil food web dissimilarity within forest and grassland habitats.
The relative importance of each predictor was estimated using Generalised Dissimilarity Models (a). It is
measured as the sum of the coefficients of the three I-splines of the focus predictor and represents the total
amount of change along the predictor gradient. Partial curves for three of the most important predictors
of food web dissimilarity in forest (b) and grassland (c). Each panel shows the food web dissimilarity as a
function of an environmental predictor when holding all other variables to their mean. The slope at any point
on the curve indicates the rate of food web dissimilarity at that position along the environmental gradient
(x-axis), while the total height reached by the function indicates the total amount of food web dissimilarity
due to that environmental predictor. SOM: Soil Organic Matter, FDD: Frost Degree Days, GDD: Growing
Degree Days, AP: Annual Precipitation, NDVI: Normalized Difference Vegetation Index.
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