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Abstract

Short-term wind speed prediction is essential for economical wind power utilization. The real-world wind

speed data is typically intermittent and fluctuating, presenting great challenges to existing shallow models. In

this paper, we present a novel deep hybrid model for multi-step wind speed prediction, namely LR-FFT-RP-

MLP/LSTM (Linear Fast Fourier Transformation Rank Pooling Multiple-Layer Perception/Long Short-Term

Memory). Our hybrid model processes the local and global input features simultaneously. We leverage Rank

Pooling (RP) for the local feature extraction to capture the temporal structure while maintaining the temporal

order. Besides, to understand the wind periodic patterns, we exploit Fast Fourier Transformation (FFT) to

extract global features and relevant frequency components in the wind speed data. The resulting local and

global features are respectively integrated with the original data and are fed into an MLP/LSTM layer for

the initial wind speed predictions. Finally, we leverage a linear regression layer to collaborate these initial

predictions to produce the final wind speed prediction. The proposed hybrid model is evaluated using real

wind speed data collected from 2010 to 2020, demonstrating superior forecasting capabilities when compared

to state-of-the-art single and hybrid models. Overall, this study presents a promising approach for improving

the accuracy of wind speed forecasting.
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Abstract—Short-term wind speed prediction is essential for
economical wind power utilization. The real-world wind speed
data is typically intermittent and fluctuating, presenting great
challenges to existing shallow models. In this paper, we present
a novel deep hybrid model for multi-step wind speed pre-
diction, namely LR-FFT-RP-MLP/LSTM (Linear Fast Fourier
Transformation Rank Pooling Multiple-Layer Perception/Long
Short-Term Memory). Our hybrid model processes the local and
global input features simultaneously. We leverage Rank Pooling
(RP) for the local feature extraction to capture the temporal
structure while maintaining the temporal order. Besides, to
understand the wind periodic patterns, we exploit Fast Fourier
Transformation (FFT) to extract global features and relevant
frequency components in the wind speed data. The resulting local
and global features are respectively integrated with the original
data and are fed into an MLP/LSTM layer for the initial wind
speed predictions. Finally, we leverage a linear regression layer
to collaborate these initial predictions to produce the final wind
speed prediction. The proposed hybrid model is evaluated using
real wind speed data collected from 2010 to 2020, demonstrating
superior forecasting capabilities when compared to state-of-the-
art single and hybrid models. Overall, this study presents a
promising approach for improving the accuracy of wind speed
forecasting.

Index Terms—Rank pooling, Fast Fourier transformation,
Multi-layer perceptron, Long short-term memory, Wind speed
prediction.

I. INTRODUCTION

With the exacerbation of global warming, the reduction of
carbon emissions has become a shared objective for all nations.
Utilizing renewable energy sources such as wind power, solar
energy, and hydropower is one of the primary means of
alleviating this issue [1]. As a practical and forward-thinking
form of green energy, wind power has made a significant
contribution in recent years [2]. For instance, the Global
Wind Energy Council (GWEC) released its 2021 global wind
report, which indicated a year-over-year (YoY) growth of over
53% in the world wind power market in 2020 [3]. Conse-
quently, in order to effectively plan economically optimized
load dispatch and efficiently utilize wind power, such as
by properly adjusting wind power supplies, short-term wind
speed prediction is critical. Furthermore, accurate predictions
of short-term wind speeds can aid in advanced scheduling of
cleaning, maintenance, and safety checks of wind turbines
during periods of low wind conditions [4]. Due to the fact
that wind speed can be affected by various factors and can

therefore be quite unstable over time, accurately predicting
wind speed remains an unresolved issue [5].

Over the past few decades, automatic wind speed prediction
methods have been widely studied, which can be broadly cat-
egorized into two types: physical process-driven methods [6]
and data-driven methods [7]. Physical process-driven methods
rely on equations that describe the physical processes related to
atmospheric changes over time [8], which simulate simplified
atmospheric changes [9]. In general, these equations can be
derived through numerical weather prediction (NWP) [10, 11],
spatial correlation methods [12], computational fluid mechan-
ics (CFD) methods [13], and the like. These methods usually
generate high prediction accuracy and can be easily interpreted
by humans. However, physical process-driven methods gener-
ally require collecting a large amount of meteorological data
on the surface and upper air to establish complex mathematical
physical models, making it time-consuming and impractical
for short-term wind prediction [14].

Alternatively, many recent studies have proposed data-
driven methods that require fewer computational resources.
Unlike physical process-driven methods, these methods learn
the underlying hypothesis from historical wind speed data
[15] without requiring a large amount of meteorological data
or prior physics knowledge for model construction. Data-
driven methods can be further categorized into linear methods,
nonlinear methods, hybrid methods [16], and so on. Stan-
dard linear methods, including Moving Average (MA) [17],
Auto-regressive (AR) [18], Auto-regressive Moving Average
(ARMA) [19], and Auto-regressive Integrated Moving Aver-
age (ARIMA) models [20]), explicitly explore the linear rela-
tionship in time series data. However, such methods may have
poor generalization capability for data with nonlinear char-
acteristics [21]. Therefore, many nonlinear models have also
been employed to address this limitation, including Gaussian
Process Regression (GPR) [22], Support Vector Regression
(SVR) [23], Quantile Regression (QR) [24], Artificial Neural
Networks (ANN) [25, 26], and Long Short-Term Memory
(LSTM) [27, 28].

Moreover, to further improve prediction performance, some
hybrid methods have also been proposed [29–31]. Hybrid
methods synthesize the advantages of single models and are
typically composed of two or more methods, such as signal
processing methods, statistical forecasting methods, and so on.
One proposed hybrid methodology combines both linear and
nonlinear modeling [32]. It is claimed that the hybrid model
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can improve forecasting accuracy achieved by either of the
models if used separately [33]. This indicates that the hybrid
approach has the potential to produce more accurate forecasts
and exhibit better robustness.

In addition to the choice of modeling methods, another
important aspect of wind speed prediction is the temporal
modeling scheme, given that it is a time series prediction
task. Brown [34] proposed a temporal model for wind speed
prediction, involving fitting autoregressive (AR) processes
of various orders to hourly wind speed data and selecting
the most suitable AR process using model selection criteria.
The resulting distribution was approximately Gaussian and
standardized to remove diurnal and seasonal nonstationarity by
fitting a separate model. Such modeling was found to be useful
in short-term operational decisions related to the integration
of wind power into multiple-source energy systems. Milligan
[35] applied ARIMA models to predict wind speed and power
output up to one or six hours in advance and found that several
alternative ARMA models performed well in forecasting over
the testing time frame, but identifying the proper model was
difficult in some cases. Torres et al. [36] used the ARMA
model to predict hourly averaged wind speed and found that
the transformation and standardization of the time series were
important for forming the appropriate model, with the ARMA
model outperforming the persistence model. Costa et al. [37]
applied Kalman filters to predict wind speed and found that
the persistence method performed better for hourly data, while
the prediction model performed best for 5-minute time steps.
However, due to the non-stationary, non-linear, and high-noise
characteristics of historical wind speed data, it remains difficult
to improve prediction accuracy using time series models [38].

This paper aims to predict future wind speed by leveraging
multi-scale temporal dependencies in meteorological data time
series. To achieve this, we propose a spectral representation
that decomposes the time series into multiple frequencies
[39, 40], each corresponding to a unique temporal scale. This
spectral representation captures the global temporal informa-
tion of the previous meteorological data, which is essential
for accurate wind speed prediction. In addition, we extend the
rank pooling algorithm [17] to specifically encode the tempo-
ral evolution of meteorological data, indicating the potential
future trend of the data. To properly encode these temporal
descriptors, we use the state-of-the-art MLP Mixture model
[41] as the regressor, which is known for its robustness and
effectiveness, as well as its simplicity and lightweight design
[42]. Our main contributions are summarized as follows:

• A deep learning time series prediction based on
MLP/LSTM is introduced to explore and exploit the
implicit information of wind speed time series for wind
speed forecasting;

• rank pooling [43] and fast Fourier transformation was
extended to transform the wind speed series dataset for
extracting high dimensional features firstly;

• Two different models including rank pooling and fast
Fourier transformation were applied to enhance the ac-
curacy of the model by linear regression;

• The performance of the proposed EnsemMLP/ EnsemL-
STM is successfully validated on 2 years data, to per-

form 1-hour ahead short-term wind speed forecasting.
Statistical tests of experimental results have demonstrated
the proposed EnsemMLP/ EnsemLSTM can achieve a
satisfactory forecasting performance.

The remainder of this paper is arranged as follows: Section
2 introduces the methodology utilized in the proposed model,
including MLP, LSTM, rank pooling, and fast Fourier trans-
formation; Section 3 introduces the flowchart of the hybrid
deep learning model for wind speed forecasting; Section 4
conducts the case study to prove the effectiveness of our
model and compares the proposed model with some other
involved models via performance evaluation indexes; Section
5 concludes the main discoveries of this study.

II. RELATED WORK

In this section, we first systematically review previous wind
speed prediction methods as well as their advantages and
disadvantages in Sec. II-A. Since our task is a time series
analysis, we also summarize current standard time series
analysis methods in Sec. II-B.

A. Wind speed prediction

The prediction of wind speed can be divided into two main
categories: physical-process-driven methods and data-driven
methods.

The physical-process-driven methods utilize mathematical
descriptions of physical phenomena in the atmosphere and
geographical conditions, such as primitive equations, momen-
tum conservation, energy conservation, mass conservation, and
water conservation equations, to predict wind speed [44].
These methods have been widely explored in the past and
can be seen as a problem of initial value [45]. Assuming the
initial atmospheric conditions are given, the equations for each
atmospheric variable can be solved by applying physical forces
over a period of time, resulting in the prediction of these
variables within a given timeframe [46]. Numerical weather
prediction (NWP) models have been widely used for large-
scale and long-term weather predictions and have relatively
stable accuracy. However, due to the high computational
complexity of NWP models, they are not well-suited for short-
term wind speed predictions. Data-driven methods are another
approach to wind speed prediction that is based on statistical
and machine learning models, which have become increasingly
popular in recent years [10].

Data-driven methods: The prediction of wind speed can be
achieved through data-driven methods that rely on statistical
inference of data, requiring less prior knowledge of physical
processes, and resulting in much lower computational costs
[47]. These methods can be classified into three types: linear,
nonlinear, and hybrid [16]. Erdem et al. [48] used autore-
gressive moving average (ARMA) and vector autoregression
(VAR) methods to predict hourly mean wind attributes one
hour ahead at two wind observation sites in North Dakota.
Their study found that the VAR models offer a higher fore-
casting accuracy in wind direction and a closer performance in
wind speed. Kavasser et al. [49] employed fractional-ARIMA
models to forecast wind speed and power production for one
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and two days on the horizon, using their ability to incorporate
long-range correlations in wind speed records. Liu et al.
[50] utilized an autoregressive moving average-generalized au-
toregressive conditional heteroscedasticity (ARMA-GARCH)
framework to model the mean and volatility of wind speed
based on historical information, finding that the volatility of
wind speed had a nonlinear and asymmetric time-varying
property. Lastly, Zuluaga et al. [51] compared three different
methods to make a Kalman filter robust to outliers in the
context of one-step-ahead wind speed prediction and found
that Robust Kalman filtering can serve as an accurate tool for
electricity providers to predict wind speed.

Compared to linear methods, nonlinear methods can capture
complex variations in wind speed using meteorological data
[52]. For instance, Zhou et al. [53] demonstrated that the
support vector machine (SVM) outperformed the persistence
model in one-step-ahead wind speed forecasting after fine-
tuning its parameters. In a study in Zaragoza [54], a multi-
layer perceptron (MLP) neural network was used to predict
wind direction and speed. Iqdour et al. [55] also used MLP
neural networks to predict actual wind speed and showed
that the identified model could be successfully used for wind
speed prediction. Mohandes et al. [56] applied SVM to wind
speed prediction and compared its performance with that of
multilayer perceptron neural networks. The prediction process
using these methods was comparable to that of classical
methods. Additionally, Vinothkumar et al. [57] employed two
machine learning models to forecast wind speed and found
that the recurrent long short-term memory (LSTM) neural
network model was more effective at predicting wind speed,
while the wavelet SVM neural model was better at structural
minimization principle and kernel function modeling, making
it a better predictor.

Nonlinear methods have shown great potential in predicting
wind speed variability based on meteorological data, especially
in capturing complex and nonlinear relationships. However,
these methods have some limitations, such as overfitting and
local optima. To overcome these limitations, hybrid methods
have been proposed that integrate various signal decomposi-
tion techniques, machine learning algorithms, and clustering
approaches. These hybrid methods have shown improved
prediction accuracy compared to single linear or nonlinear
methods [15, 58, 59]. The hybrid methods typically consist of
two stages: signal decomposition and wind speed prediction
[60]. In the signal decomposition stage, the original wind
speed time series is decomposed into several sub-sequences
using various techniques. High-frequency subseries are usually
ignored, while the remaining subseries are reconstructed to
obtain stationary time series data. In the wind speed prediction
stage, the new series data are used to predict wind speed using
machine learning models or other prediction models. In some
studies, the decomposed subseries are used as input to a single
prediction model, while in others, separate prediction models
are assigned to each subseries. Finally, the subseries are com-
posed to obtain the wind speed prediction results. This process
can lead to better performance compared to single models, as
it allows for taking advantage of individual techniques and
can capture the underlying nonlinear relationships in the wind

speed time series. Overall, hybrid methods have great potential
in wind speed prediction and can contribute to the development
of efficient and reliable wind energy systems.

In order to extract low-dimensional wind representation
from the original data and remove noise, signal decomposi-
tion is often employed. Several signal processing algorithms,
including Wavelet Analysis [21] and Fast Fourier Transfor-
mation [61], Empirical Model Decomposition (EMD) [62],
as well as other signal processing algorithms [63–65] have
been widely utilized for this purpose. Through these stages,
relevant information such as time-frequency and trends can
be effectively extracted. However, despite the benefits, these
methods also suffer from certain limitations. For instance,
wavelet-based methods are highly dependent on the decom-
position level and wavelet basis, while the methods utilizing
mode decomposition lack rigorous theoretical foundations.
Moreover, other processing techniques such as EWT, VMD,
and PSR may struggle to distinguish periodic components
from quasi-periodic components in wind speed time series
[66]. These limitations highlight the need for further research
and innovation in signal processing algorithms to address these
challenges and improve the accuracy of wind speed prediction.

The accurate selection of prediction methods is a crucial
aspect of wind speed forecasting. A diverse range of prediction
models has been implemented to predict wind speed by
incorporating hybrid methods. For instance, the Kalman filter
[67] was scrutinized to identify the optimal configuration for
wind speed and wind power forecasting. The autoregressive
moving average (ARMA) [21] method was employed to fore-
cast wind speed and direction tuples. Additionally, a novel
forecasting architecture based on AdaBoost neural networks
in combination with wavelet decomposition was proposed
to predict the wind speed in the short-term [29]. Further-
more, individual predictors such as long short-term memory
(LSTM), extreme learning machine (ELM), and Elman neural
network were selected to predict wind speed, and ELM-based
combination mechanisms were utilized to obtain the final
forecasts [30]. Hu et al. [68] utilized a differential evolutionary
algorithm-optimized LSTM to accomplish nonlinear combi-
nations and exhibit improved wind speed prediction results.
In another study, Wang et al. [31] used the backpropagation
(BP) neural network, Elman neural network, support vector
machine (SVM), and autoregressive integrated moving average
(ARIMA) to construct a hybrid model, where the BP, Elman,
and ARIMA models were considered as the prediction part,
and the SVM was treated as the ensemble part. The results
indicate that the proposed prediction method possesses high
accuracy and can effectively reflect the short-term wind speed
patterns.

B. time series temporal modelling

Time series models are commonly used in wind speed predic-
tion; however, they rely on the assumption of data stationarity
[69], which limits their prediction accuracy due to the strong
nonlinearity of wind speed. These models include Moving
Average (MA), Auto-regressive (AR) [18], Auto-regressive
Moving Average (ARMA) [19] and their variants [20]. To
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TABLE I: The statistics of the collected dataset

PRS TEM RHU PRE1h WD2mi WS2mi WD10mi WS10mi
(hPa) (°C) (%) (mm) (°) (m/s) (°) (m/s)

COUNT 87558 87558 87558 87558 87558 87558 87558 87558
MEAN 995.78 6.21 55.25 0.05 200.40 2.73 201.24 2.73

STD 9.77 15.20 22.95 0.60 107.45 1.66 107.13 1.61
MIN 964.9 -34 2 0 0 0 0 0
25% 988.1 -7.2 37 0 136 1.5 139 1.6
50% 995.5 8.2 55 0 216 2.4 217 2.4
75% 1003.4 19.4 73 0 292 3.5 292 .5
MAX 1024.4 42.1 100 40.6 360 14.9 360 13.8

Fig. 1: The correlation between each element

address the challenges of wind speed modeling, researchers
have proposed methods that consider autocorrelation, non-
Gaussian distribution and diurnal nonstationarity [34]. For
instance, one study applied the Fourier transform to extract
data information through preprocessing [61]. Another study
developed a wind speed forecasting model using Fast Fourier
Transform Filter with the Encoder-Decoder-LSTM model for
1- and 3-hour-ahead predictions [61]. In another study, Fourier
analysis was combined with a nonlinear autoregressive net-
work for wind speed prediction, using an open loop mode with
target data generated by a Fourier model for multistep-ahead
prediction [70]. Recently, the rank pooling strategy has shown
great success in summarizing short-term temporal evolution
for various time series data analyses, such as action recognition
[71], facial emotion recognition [72, 73], activity recognition
[74], and personality recognition [75].

III. DATA COLLECTION

A. Collection Protocol

In wind speed prediction studies, the temporal resolution of the
wind speed data is an important factor to consider. Typically,
wind speed data is collected at intervals of 10 minutes or 1-
hour [55]. The 10-minute interval data is commonly utilized
to forecast ultra-short-term wind speed, while the 1-hour
interval data is often used to predict short-term wind speed
[76]. Therefore, in order to investigate the performance of

prediction models in the context of short-term wind speed
forecasting, wind speed datasets with 1-hour intervals are
frequently employed. This approach ensures that the selected
models can accurately predict wind speed in a short-term
horizon, providing valuable insights into the effectiveness of
various prediction techniques.

B. Database Details

This section presents a statistical exploration of the datasets
used in this study. The surface meteorological data collected
from a wind farm located in Inner Mongolia, China from 2010
to 2020 is analyzed, as depicted in Fig. 1. The dataset consists
of 87558 samples with eight features, including pressure, tem-
perature, humidity, precipitation, 2-minute average wind direc-
tion, 2-minute average wind speed, 10-minute average wind
direction, and 10-minute average wind speed. The proposed
model is evaluated by performing one-hour-ahead 10-minute
average wind speed forecasting. The statistical characteristics
of the dataset are summarized in Table I. The range of wind
speed values spans from 0 m/s to 13.8 m/s, with an average
wind speed of 2.73 m/s and a median value of 2.4 m/s. The
small difference between the mean and median values suggests
a fairly balanced distribution of the data [50]. The hot map
shown in Fig. 2 reveals that WS10MI exhibits the strongest
correlation with WS2MI and a weak correlation with other
variables.

IV. THE PROPOSED APPROACH

The dynamic nature of the atmosphere is characterized by
a variety of parameters, including temperature, humidity, air
pressure, and wind. In order to increase the accuracy of wind
speed prediction, historical meteorological data collected by
wind farms can be leveraged to create deep learning models.
In this study, we propose a novel data-driven method that
considers multi-scale, short-term temporal information of the
atmosphere (as depicted in Fig. 3). Our approach begins
by discussing temporal modeling and subsequently explores
several algorithms that are integrated into our hybrid model,
including rank pooling, MLP, LSTM, linear regression, and
MLP-mixer.

Notably, the rank pooling and mixer algorithms have been
extensively utilized in the field of action recognition, and
our proposed method integrates these contemporary algorithms
with established methods to deliver more accurate wind speed
forecasts. Our approach leverages the rank pooling and FFT
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Fig. 2: The original wind speed dataset

Fig. 3: An artificial neural network arrangement in this study

methods to extract both recent and long-term prediction infor-
mation from the data, and linear regression is then employed
to combine these results in order to achieve the highest level
of accuracy.

A. time series Temporal Modelling

Temporal modeling is a fundamental concept in signal
processing that has been applied in diverse fields of scientific
study. This technique facilitates the extraction of temporal
information, investigation of dynamic properties, analysis of
the correlation between past observations, and prediction of
future events [38]. For a long time, the Fast Fourier Transform
(FFT) has been extensively utilized as a classical temporal
model. However, with the advent of deep learning techniques,
rank pooling has been gaining prominence in image and
behavior recognition. In this study, we adopt both the FFT
and rank pooling techniques to extract both long-term and
local information from the wind speed data.

1) Rank Pooling (wind speed trend modeling): Rank pool-
ing is a learning-to-rank setup that computes a line in input
space and projects input data onto this line, enabling pooling
based on the temporal structure while preserving the temporal

order [43, 77]. This technique has been extensively used in
action recognition in video data by summarizing the video
sequence based on the characteristics of the line. Rank pooling
is an unsupervised learning-based temporal pooling technique
that constructs a learning-to-rank model to gather relevant data
from a composite activity’s execution. New features of the
composite activity are then created using the learned model’s
parameters. Rank pooling preserves the temporal ordering
of the underlying activities and effectively functions even
when there is no apparent temporal relationship between these
sequences [74]. Recent studies have shown that rank pooling is
a successful approach in identifying actions in video data [78].
In this study, we expand on this method to predict short-term
wind speed by applying it to wind speed data and extracting
relevant temporal features for accurate forecasting.

2) Spectral Representation for Representing Multi-scale
Short-term Temporal Information: Temporal information is a
critical factor in numerous scientific domains, and its appro-
priate treatment can yield valuable insights into the behavior
of dynamic systems. The discrete Fourier transform (DFT) is a
powerful mathematical tool that can convert specific sequences
of functions into other types of representations, which can aid
in the understanding of the underlying temporal structure of
the data. The Fast Fourier Transformation (FFT) algorithm
is commonly used to compute the DFT due to its efficiency
and accuracy. Applications of FFT span across various fields,
including engineering, music, science, and mathematics, and
have demonstrated their effectiveness in data smoothing. In
the present study, we employ the FFT to transform the time
series data, as done in previous works. This transformation
facilitates the calculation of the n-dimensional, n-point discrete
Fourier transform via an efficient algorithm, which transforms
the dataset from a time series domain to a smoother frequency
domain. This transformation enables deep learning algorithms
to process the data more efficiently and effectively.

B. Prediction Model

The accuracy and effectiveness of wind speed prediction
greatly depend on the choice of the prediction model. In
this section, we present a comprehensive discussion on the
benchmarking models for wind speed prediction, as well as
the proposed model. Firstly, we provide a concise introduction
to Multilayer Perceptron (MLP), Long Short-Term Memory
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Fig. 4: One hidden layer MLP

(LSTM), and MLP-mixer, which are widely used deep learning
algorithms. Subsequently, we delve into the details of the
proposed model, which combines the power of rank pooling
and FFT methods to extract both short-term and long-term
temporal information from historical meteorological data. The
hybrid model also utilizes linear regression for integrating the
two outcomes, leading to enhanced accuracy and precision in
wind speed prediction.

1) Long Short-term Memory (LSTM): Recurrent neural
networks (RNNs) have been enhanced by the long short-
term memory (LSTM) neural network, which enables feature
learning beyond the drawback of gradient disappearance and
has become a popular approach for wind speed forecasting.
In this study, one of the prediction models employed is the
LSTM. The LSTM network includes three gates: the forget
gate, input gate, and output gate, which govern the memory
of historical information in the network. Given a predicted
wind speed time series y = (y1, y2, ...yt, ...yT ) and an input
wind speed time series x = (x1, x2, ...xt, ...xT ) consisting of
T time stamps, the LSTM calculation process is expressed as:

ft = sigmoid(Wf [ht|1, xt] + bf)

it = sigmoid(Wi[ht|1, xt] + bi)

C = tanh(Wc[ht|1, xt] + bc)

ot = sigmoid(Wo[ht|1, xt] + bo)

Ct = ft ∗ Ct|1 + it ∗ C
ht = ot ∗ softsign(Ct)

yt = sigmoid(Wy ∗ ht+ by)

(1)

where ft, it and ot represent the forget gate, input gate
and output gate [79], respectively. This calculation process is
illustrated in Fig. 5.

In this work, a three-layered neural network structure com-
prising an input layer, a concealed layer, and an output layer

is employed, as shown in Fig. 2. The input layer consists of
eight independent parameters, including pressure, temperature,
humidity, precipitation, 2-minute average wind direction, 2-
minute average wind speed, 10-minute average wind direction,
and 10-minute average wind speed, with wind speed serving
as the dependent variable for the output. Each input layer has
eight neurons, and each LSTM layer has four neurons and one
dense layer. The activation function of the output layer is the
sigmoid function, while the activation function of the LSTM
layer is the hyperbolic tangent (tanh) function. The optimizer
is Adam, the loss function is the mean squared error (MSE),
and the EarlyStopping patience is set to 1500. The selection
of these functions is determined by a process of trial and error
to obtain precise wind speed estimates.

2) Multi-layer Perceptron Method: The multilayer percep-
tron (MLP) is a popular type of neural network model for
predicting wind speed and is often selected as the approach
of choice in artificial intelligence algorithms [21]. A function
f(·) : Rm → Ro is learned through training on a dataset where
m is the number of input dimensions and o is the number
of output dimensions. It is possible to learn a non-linear
function approximator for either classification or regression
given a set of features X = x1, x2, ..., xm and a target y.
The MLP architecture consists of an input layer, one or more
hidden layers, and an output layer. Each neuron in a given
layer is fully connected to every neuron in the layer below it.
The output of an MLP that is trained using backpropagation
and an activation function in the output layer is a set of
continuous values for prediction [54], with the loss function
being the square error. Fig. 4 illustrates a single-hidden-layer
MLP with scalar output. In this study, the MLP was chosen
as one of the prediction models for wind speed, and the ideal
network design included an input layer with 8 neurons, a
hidden layer with 3 levels (100, 200, 50 neurons), and an
output layer with 8 neurons, the same as for the LSTM.
The dependent variable and independent parameters are also
identical to those of the LSTM. The activation function for
the output layer was set to the sigmoid function, while the
activation function for the hidden layers was set to the tanh
function. The optimizer was set to Adam, the loss function
was MSE, and the EarlyStopping patience was set to 1500.
To ensure accurate wind speed estimates, the choice of these
functions was based on a process of trial and error.

3) MLP-mixer Method: In recent years, the MLP-mixer
has emerged as a highly efficient and succinct framework for
information transportation across spatial characteristics. This
model exploits the power of matrix translation and MLP to
achieve global receptive fields [80], thereby eliminating the
need for the heavy attention module typically required by
neural networks. MLP-mixer [41] achieves this by projecting
tokens and transposing matrices to capture long-range depen-
dencies across image patches [81]. The channel-mixing and
token-mixing MLPs are utilized to represent the relationship
between tokens and channels. Notably, new architectures are
continually being developed to further enhance the perfor-
mance of MLP-based models [81]. In this study, the MLP-
mixer is used, which is found to be effective in generating
good experimental results using MLPs, skipping connection
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between layers, and normalizing layer [82]. The three-layered
structure utilized comprises an input layer, a hidden layer, and
an output layer, with the dependent variable and independent
parameters being identical to those used in the LSTM model.
The ideal network design features 3 channels, 224 * 2 inputs,
1000 classes, 8 blocks, 16 patch size, 512 hidden units, 256
tokens MLP, and 2048 channels MLP.

C. Proposed Hybrid Model

In this study, we present a novel hybrid model for multi-
step forecasting of wind speed that takes into account both the
short- and long-term characteristics of wind speed series. The
proposed model, named Local and Global Dynamic Represen-
tation Generation, combines the strengths of two powerful ma-
chine learning models, namely, multi-layer perceptron (MLP)
and long short-term memory (LSTM) neural networks, in order
to achieve high forecasting accuracy. The overall architecture
of the proposed hybrid model is illustrated in Fig. 2, which
comprises several key steps. Firstly, the rank pooling and fast
Fourier transform (FFT) methods are employed to extract the
distinctive features of the original wind speed data, resulting in
two input datasets. These datasets are then integrated with the
original data using two different procedures to create two input
datasets. Next, the MLP and LSTM models are iteratively
trained with the two input datasets until the loss value becomes
stable, which is an indication that the model has converged.
The initial prediction results are obtained from the trained
models, and the final target prediction results are obtained
by integrating the preliminary prediction findings using the
linear regression method. Our proposed approach provides
a novel and effective solution for the multi-step forecasting
of wind speed that accounts for both short- and long-term
characteristics of wind speed series.

1) Multi-scale Meteorological time series Local Dynamics
Modelling: This study proposes a novel approach for ex-
tracting local dynamics information from wind speed time
series data. To this end, the rank pooling technique was
used to process the original historical meteorological data in
accordance with the z-score standard. z = (x − µ)/σ,where
x is the raw score,µ is the population mean,and σ is the

population standard deviation. Specifically, the z-score was
computed for matrix X using the mean and standard deviation
for each column, with N, the length of the dimension that
the z-score works along, being used to calculate the standard
deviations.

The resulting pre-processed dataset was then divided into
groups based on the lookback time window, with retrospective
24-hour data from the predicted time being utilized to extract
features using rank pooling for each sample taken 4 (8, 12, and
16) hours ago. This process allowed for the retention of more
information in the previous meteorological data. The features
of historical meteorological data were subsequently merged
into 8*5 columns and coupled with the original meteorological
data standardized between 0-1, forming the input dataset.
Subsequently, the input dataset was used to train an MLP
model, which underwent repeated training until the LOSS
value was stable. Finally, the output of the test set was kept as
the prediction results, and the model was evaluated using the
test set data. The proposed approach can provide a reliable and
efficient method for modeling local dynamics in wind speed
time series data.

2) Multi-scale Meteorological time series Global Dynamics
Modelling: In this study, the FFT method was utilized to
extract the global characteristics of wind speed data, enabling
time series Global Dynamics Modelling. The transformation
was applied to extract the features of each dimension of the
meteorological data, preserving the global information con-
tained within the historical meteorological data. The modulus
and complex angle of each meteorological data dimension
were calculated and incorporated into 8*2 columns. Subse-
quently, the original meteorological data was combined with
the features that the FFT extracted, producing an input dataset
that was utilized to train the aforementioned MLP model
iteratively. Similarly, the repetition was halted when 1500
consecutive LOSS values were larger than or equal to the
preceding values. The output of the test set of the training
set was stored as a prediction result, and the model was tested
using the test set data. The proposed approach provides a novel
and effective means to extract global characteristics from wind
speed data and shows great potential for enhancing wind speed
prediction accuracy.

3) Local and Global Dynamic Representation Generation:
In this study, we propose a new hybrid model (Fig 3) for
wind speed prediction that combines FFT and rank pooling
to extract local and global information from the data, which
is then integrated with the original data to produce the input
dataset for the MLP model. The two MLP prediction results
are combined using linear regression. To assess the perfor-
mance of our proposed method, we compare it with seven
other wind speed prediction techniques, including LSTM,
MLP, rank pooling+LSTM, FFT+LSTM, rank pooling+MLP,
MLP-mixer, etc. The wind speed dataset used is real wind
speed data, and the performance of the prediction models
is evaluated using MAE, RMSE, and R values, which are
presented in Figures 6-8. When using the LSTM approach
as a prediction model, pre-processing of the historical weather
data is required. This involves standardizing the historical data
within a range of 0 to 1 before it can be input to the LSTM



8

model. The rank pooling and FFT methods are employed to
extract the features of the historical data, and the feature data
and standardized historical data are then combined to form the
input dataset. The output dataset generated by the two pre-
processing techniques is used to iteratively train the LSTM
model, with the repetition stopping when 1500 consecutive
LOSS values are greater than or equal to the preceding values.
The test dataset is used to evaluate the model, and the produced
output results are saved as prediction results. Finally, we also
test a new prediction method called MLP-mixer for wind
speed prediction. Our proposed hybrid model outperforms
the other compared models in terms of prediction accuracy
and robustness, highlighting the effectiveness of the proposed
method for wind speed prediction.

V. EXPERIMENTS

In this section, we evaluate the performance of the proposed
hybrid model in predicting wind speed 6 hours ahead. We
also compare the proposed model with other single or hybrid
models to demonstrate its effectiveness and superiority. To
this end, we constructed five different classification models
for short-term wind speed prediction experiments. Specifically,
we established two models for each of the five categories,
for predicting wind speed 1-6 hours ahead. The aim of this
analysis is to provide a comprehensive evaluation of the pro-
posed hybrid model and its ability to outperform other state-of-
the-art wind speed prediction models. The first classification
serves as the control group and includes the MLP and LSTM
models, with the design and parameter settings mentioned
above. The second classification includes the application of
fast Fourier transform (FFT-MLP, FFT-LSTM) to the MLP
and LSTM models, where FFT is first used to extract the
global feature information of the original meteorological data,
and then deep learning approaches are employed to obtain
the ultimate prediction results. The third classification includes
the application of rank pooling (RP-MLP, RP-LSTM) to the
MLP and LSTM models, where rank pooling is first used to
extract the local feature information of the original meteoro-
logical data, and then deep learning approaches are used to
obtain the ultimate prediction results. The fourth classification
includes the application of fast Fourier transform through
rank pooling (FFT-RP-MLP, FFT-RP-LSTM), where FFT and
rank pooling are respectively used to extract the global and
local feature information of the original meteorological data.
The two kinds of feature data are then integrated as input
data, and deep learning approaches are employed to obtain
the ultimate prediction results. The fifth classification, the
proposed approach, integrates FFT-MLP/ FFT-LSTM with RP-
MLP/ RP-LSTM models using a linear regression (LR) model,
named EnsemMLP/ EnsemLSTM. In this model, FFT and rank
pooling are respectively used to extract the global and local
feature information of the original meteorological data. The
two kinds of feature data are then integrated as input data,
and MLP/LSTM is used to obtain the preliminary prediction
results. Finally, the preliminary results are input into the
linear regression model to obtain the ultimate prediction result.
Through these classifications, we are able to compare the per-
formance of the proposed model against other single or hybrid

models and demonstrate the effectiveness and superiority of
our approach.
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Fig. 6: Percentage improvement of the mean absolute error
(MAE) relative to MLP for each comparison model

To assess the effectiveness and superiority of the proposed
hybrid model in predicting wind speed, we compared its
performance with those of several other single and hybrid
models using mean average error (MAE), root mean square
error (RMSE), and correlation coefficient (R) as evaluation
metrics. The multistep MAE and RMSE results of different
models are presented in Table II and Fig 6-8. Our findings
show that the prediction error obtained by the proposed model
is smaller than that obtained by other models. Specifically, the
proposed model achieved the smallest prediction error and the
best prediction performance among all models, as shown in
Table II and Fig 6-7. These results demonstrate the efficacy
and superiority of the proposed model in making effective
wind speed predictions and obtaining a satisfactory data-fitting
trend using real wind speed data.

To provide a more detailed analysis of the prediction results
obtained through different methods, we refer to Table II and
Fig 6-8. Based on these results, we can draw some important
conclusions as follows:

(1) For the control model, which used original meteorolog-
ical data to predict short-term wind speed, LSTM exhibited a
superior predicting ability compared to MLP in terms of MAE,
RMSE, and R for every prediction lookback window. When
the original meteorological data was pre-processed through
rank pooling, the prediction result of MLP was significantly
improved, while that of LSTM showed limited improvement.
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TABLE II: Calculation results of error indexes of different models for multi-step I

MAE RMSE R

Lookback 4 8 12 16 4 8 12 16 4 8 12 16

Forecast

MLP 1 0.865 0.849 0.798 0.690 1.153 1.132 1.074 0.950 0.763 0.766 0.786 0.808
2 1.026 1.017 0.976 0.824 1.368 1.357 1.313 1.136 0.651 0.652 0.676 0.719
3 1.170 1.148 1.109 0.940 1.556 1.532 1.494 1.299 0.537 0.546 0.570 0.626
4 1.275 1.247 1.215 1.018 1.691 1.660 1.627 1.406 0.440 0.456 0.483 0.557
5 1.333 1.307 1.280 1.072 1.767 1.736 1.709 1.482 0.378 0.393 0.417 0.503
6 1.365 1.328 1.305 1.100 1.808 1.768 1.746 1.520 0.326 0.343 0.371 0.468

LSTM 1 0.645 0.642 0.648 0.638 0.888 0.884 0.891 0.891 0.845 0.847 0.844 0.844
2 0.786 0.778 0.792 0.769 1.082 1.068 1.087 1.066 0.764 0.771 0.763 0.771
3 0.914 0.898 0.915 0.887 1.257 1.232 1.257 1.225 0.678 0.691 0.680 0.693
4 1.033 1.011 1.030 0.998 1.408 1.380 1.407 1.363 0.593 0.609 0.596 0.616
5 1.138 1.113 1.133 1.103 1.541 1.512 1.540 1.492 0.510 0.528 0.514 0.537
6 1.234 1.207 1.222 1.195 1.660 1.631 1.653 1.612 0.429 0.449 0.439 0.457

FFT-MLP 1 0.840 0.884 0.763 0.675 1.127 1.167 1.028 0.944 0.766 0.767 0.798 0.805
2 1.006 1.038 0.922 0.822 1.352 1.376 1.240 1.147 0.645 0.659 0.702 0.701
3 1.146 1.166 1.043 0.941 1.537 1.549 1.411 1.308 0.530 0.553 0.605 0.607
4 1.248 1.266 1.134 1.021 1.672 1.675 1.528 1.419 0.434 0.464 0.529 0.533
5 1.322 1.332 1.198 1.074 1.769 1.756 1.613 1.491 0.356 0.400 0.467 0.478
6 1.358 1.356 1.235 1.097 1.814 1.794 1.663 1.523 0.302 0.353 0.418 0.445

FFT-LSTM 1 0.669 0.686 0.722 0.661 0.933 0.939 0.983 0.911 0.828 0.826 0.807 0.837
2 0.810 0.816 0.851 0.792 1.116 1.116 1.152 1.084 0.741 0.742 0.722 0.760
3 0.917 0.918 0.942 0.887 1.255 1.259 1.275 1.208 0.657 0.657 0.643 0.690
4 1.001 0.997 1.017 0.957 1.360 1.363 1.367 1.294 0.579 0.582 0.573 0.636
5 1.061 1.051 1.068 1.000 1.436 1.432 1.432 1.347 0.511 0.524 0.514 0.597
6 1.101 1.089 1.102 1.032 1.490 1.483 1.477 1.390 0.454 0.473 0.467 0.562

RP-MLP 1 0.653 0.651 0.645 0.620 0.900 0.902 0.902 0.857 0.837 0.830 0.825 0.845
2 0.803 0.798 0.777 0.743 1.103 1.105 1.086 1.024 0.748 0.742 0.740 0.770
3 0.912 0.913 0.872 0.824 1.253 1.262 1.226 1.140 0.669 0.663 0.660 0.705
4 0.992 0.996 0.944 0.885 1.356 1.371 1.324 1.225 0.606 0.601 0.592 0.650
5 1.048 1.041 0.988 0.932 1.428 1.429 1.382 1.288 0.560 0.558 0.545 0.604
6 1.084 1.069 1.015 0.969 1.480 1.470 1.417 1.335 0.515 0.515 0.509 0.563

RP-LSTM 1 0.675 0.662 0.660 0.649 0.928 0.910 0.907 0.886 0.838 0.840 0.840 0.846
2 0.812 0.795 0.796 0.780 1.113 1.088 1.086 1.059 0.754 0.762 0.762 0.771
3 0.910 0.888 0.882 0.865 1.246 1.213 1.203 1.170 0.679 0.693 0.699 0.711
4 0.983 0.957 0.941 0.925 1.341 1.303 1.285 1.246 0.614 0.635 0.651 0.664
5 1.038 1.012 0.985 0.970 1.410 1.370 1.344 1.302 0.559 0.586 0.612 0.626
6 1.082 1.053 1.023 1.007 1.466 1.422 1.396 1.351 0.507 0.544 0.574 0.589

FFT-RP-MLP 1 0.654 0.640 0.653 0.629 0.911 0.882 0.913 0.863 0.820 0.830 0.823 0.839
2 0.793 0.777 0.790 0.748 1.104 1.073 1.101 1.029 0.729 0.743 0.739 0.768
3 0.909 0.888 0.900 0.843 1.266 1.229 1.256 1.163 0.641 0.658 0.660 0.703
4 0.993 0.967 0.980 0.917 1.381 1.339 1.363 1.267 0.573 0.593 0.601 0.650
5 1.049 1.019 1.039 0.972 1.460 1.414 1.438 1.341 0.519 0.546 0.554 0.607
6 1.085 1.054 1.078 1.007 1.504 1.461 1.492 1.391 0.480 0.511 0.509 0.573

FFT-RP-LSTM 1 0.643 0.647 0.652 0.669 0.889 0.893 0.901 0.923 0.845 0.843 0.841 0.832
2 0.797 0.795 0.790 0.794 1.098 1.093 1.086 1.089 0.751 0.754 0.759 0.757
3 0.909 0.899 0.891 0.888 1.244 1.233 1.223 1.210 0.666 0.674 0.681 0.689
4 0.990 0.976 0.963 0.954 1.344 1.335 1.312 1.301 0.592 0.602 0.620 0.629
5 1.051 1.031 1.010 1.003 1.418 1.404 1.372 1.360 0.527 0.545 0.574 0.586
6 1.092 1.074 1.048 1.034 1.473 1.459 1.425 1.401 0.471 0.493 0.527 0.551

LR-FFT-RP-MLP 1 0.629 0.639 0.625 0.602 0.856 0.866 0.861 0.825 0.837 0.833 0.835 0.850
2 0.768 0.767 0.752 0.728 1.040 1.040 1.028 0.993 0.748 0.747 0.754 0.773
3 0.867 0.861 0.842 0.813 1.170 1.165 1.152 1.105 0.668 0.669 0.678 0.708
4 0.936 0.926 0.908 0.874 1.257 1.248 1.237 1.186 0.602 0.606 0.615 0.653
5 0.980 0.968 0.953 0.919 1.313 1.300 1.294 1.245 0.553 0.562 0.567 0.608
6 1.015 1.002 0.987 0.955 1.359 1.345 1.335 1.288 0.508 0.518 0.527 0.570

LR-FFT-RP-LSTM 1 0.644 0.643 0.656 0.645 0.891 0.881 0.892 0.880 0.844 0.848 0.844 0.851
2 0.792 0.786 0.791 0.785 1.088 1.073 1.072 1.065 0.756 0.764 0.764 0.770
3 0.898 0.891 0.877 0.881 1.225 1.213 1.187 1.191 0.677 0.685 0.701 0.702
4 0.977 0.964 0.933 0.948 1.324 1.308 1.265 1.272 0.607 0.621 0.653 0.652
5 1.033 1.015 0.975 0.988 1.393 1.369 1.319 1.320 0.550 0.574 0.616 0.618
6 1.072 1.050 1.009 1.017 1.445 1.414 1.364 1.358 0.501 0.534 0.581 0.587
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TABLE III: Calculation results of error indexes of models based on MIXER for multi-step II

MAE RMSE R

Lookback 4 8 12 16 4 8 12 16 4 8 12 16

Forecast

MIXER 1 0.732 0.704 0.751 0.652 1.006 0.976 1.021 0.906 0.817 0.825 0.823 0.829
2 0.849 0.818 0.857 0.772 1.161 1.129 1.165 1.068 0.731 0.739 0.739 0.746
3 0.949 0.922 0.950 0.877 1.295 1.267 1.293 1.211 0.645 0.652 0.655 0.662
4 1.040 1.017 1.041 0.978 1.412 1.388 1.412 1.337 0.563 0.567 0.570 0.578
5 1.122 1.101 1.122 1.066 1.513 1.492 1.512 1.446 0.487 0.488 0.493 0.500
6 1.194 1.177 1.194 1.143 1.601 1.584 1.603 1.542 0.416 0.413 0.417 0.426

FFT-MIXER 1 0.679 0.699 0.728 0.691 0.925 0.951 0.990 0.939 0.823 0.821 0.785 0.823
2 0.809 0.826 0.832 0.818 1.101 1.126 1.133 1.112 0.738 0.738 0.709 0.743
3 0.920 0.941 0.932 0.932 1.251 1.281 1.262 1.266 0.653 0.651 0.633 0.661
4 1.023 1.048 1.026 1.033 1.381 1.417 1.383 1.400 0.570 0.567 0.553 0.580
5 1.112 1.141 1.110 1.127 1.489 1.529 1.483 1.516 0.496 0.490 0.482 0.504
6 1.189 1.219 1.180 1.207 1.585 1.630 1.578 1.619 0.425 0.417 0.409 0.432

RP-MIXER 1 0.734 0.698 0.677 0.633 1.000 0.969 0.943 0.878 0.822 0.822 0.826 0.837
2 0.853 0.816 0.795 0.757 1.162 1.128 1.101 1.043 0.734 0.737 0.744 0.755
3 0.957 0.925 0.898 0.865 1.304 1.272 1.241 1.189 0.647 0.650 0.661 0.671
4 1.052 1.026 1.001 0.970 1.424 1.399 1.369 1.322 0.565 0.564 0.576 0.585
5 1.135 1.113 1.089 1.060 1.526 1.506 1.479 1.432 0.490 0.486 0.497 0.506
6 1.208 1.189 1.168 1.141 1.616 1.603 1.577 1.532 0.419 0.409 0.421 0.429

FFT-RP-MIXER 1 0.745 0.828 0.783 0.778 0.995 1.096 1.043 1.037 0.791 0.772 0.777 0.785
2 0.862 0.945 0.899 0.886 1.155 1.256 1.201 1.184 0.718 0.699 0.701 0.719
3 0.969 1.052 1.003 0.994 1.300 1.404 1.340 1.329 0.642 0.623 0.625 0.646
4 1.066 1.154 1.097 1.093 1.429 1.544 1.466 1.462 0.568 0.543 0.549 0.571
5 1.156 1.245 1.181 1.190 1.545 1.663 1.576 1.587 0.494 0.469 0.477 0.494
6 1.243 1.326 1.259 1.276 1.648 1.766 1.676 1.697 0.425 0.401 0.407 0.421

LR-FFT-RP-MIXER 1 0.646 0.640 0.635 0.615 0.875 0.872 0.867 0.842 0.829 0.830 0.832 0.843
2 0.808 0.792 0.788 0.755 1.083 1.065 1.066 1.025 0.721 0.733 0.732 0.755
3 0.931 0.905 0.897 0.851 1.234 1.203 1.201 1.151 0.614 0.640 0.642 0.679
4 1.017 0.987 0.971 0.919 1.337 1.302 1.292 1.234 0.519 0.555 0.567 0.619
5 1.075 1.042 1.016 0.958 1.403 1.365 1.347 1.283 0.442 0.491 0.513 0.578
6 1.109 1.074 1.045 0.981 1.444 1.404 1.383 1.311 0.384 0.444 0.475 0.551

This is due to the fact that MLP has a larger proportion
of data information at the nearby time of prediction, while
LSTM contains a long-term memory algorithm. Therefore, the
different time scale features extracted through rank pooling
can compensate for the deficiencies of MLP but do little to
improve the prediction result of LSTM. When the original
meteorological data were pre-processed by FFT, there was
little improvement in the prediction result of MLP or LSTM.
In the first classification, FFT had a small contribution to
improving the prediction results for both prediction models,
whether using FFT alone to process the data or in combination
with the RP method.

(2) The LSTM model showed good prediction results for
steps 1-2, with MAE (RMSE) below 0.8m/s (1.1m/s) for dif-
ferent lookbacks (Table II). However, except for the proposed
model, the improvement of LSTM was not significant (Fig
6,7). As the number of prediction steps increased, the RMSE
of various models exhibited an ascending behavior, while R
showed a descending behavior. As the number of prediction
lookback windows increased, the RMSE of each model did
not show an obvious change trend, except for the proposed
model. As can be observed from the RMSE in steps 3-6 of
the proposed model (Fig.7), the RMSE exhibited a descending
behavior with an increase in prediction lookback windows.

(3) Comparing the second classification (FFT-MLP, FFT-
LSTM) with control models, we found that the second clas-

sification had some improvement for the control model, with
the FFT-LSTM model exhibiting significant improvement for
the prediction results of steps 4-6 of LSTM, but not for steps
1-3. FFT-MLP showed little improvement for the MLP model.
When the lookback was less than 12, the RMSE of MLP and
MLP-FFT was significantly larger than that of control models,
while the RMSE of FFT-LSTM became larger than that of
LSTM. For the MLP model, the RMSE decreased slightly
when the lookback was 4 or 12, but became larger when the
lookback was 8.

(4) A comparative analysis of the third classification model,
which includes RP-MLP and RP-LSTM models, with the
control models, clearly demonstrates the effectiveness of rank
pooling in improving the precision of multistep wind speed
prediction. The mean absolute error (MEA) and root mean
square error (RMSE) of the third classification model were
significantly lower than those of the control models. Fur-
thermore, a comparison of the RP-LSTM model with two
congeneric models, i.e., LSTM and FFT-LSTM, revealed that
the third classification model outperformed the other two
models. This demonstrates the advantages of LSTM in wind
speed prediction. In addition, comparing the RP-LSTM model
with LSTM, we found that the MEA of the latter was higher
than that of the former, while the RMSE of each lookback for
the LSTM model was slightly reduced. For the MLP model,
the RMSE of each lookback was significantly reduced, and in
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Fig. 7: Percentage improvement of the root mean square
error (RMSE) relative to MLP for each comparison model

fact, when the lookback was 12 or 16, the MLP model even
outperformed the LSTM model in terms of predictive accuracy
after RP preprocessing. These findings validate the efficacy of
rank pooling in multistep wind speed prediction and highlight
its potential for improving prediction accuracy. (5) The fourth
classification model, which includes FFT-RP-LSTM and FFT-
RP-MLP models, showed no significant improvement in the
prediction results of LSTM and MLP models after FFT and RP
pre-processing. When the lookback was 4 or 8, the prediction
results of the fourth classification model were similar to those
of the third classification model. However, when the lookback
was 12 or 16, the prediction error of the fourth classification
model increased. This indicates that while FFT and RP pre-
processing may improve prediction accuracy in some cases,
it may not always lead to significant improvements, and its
effectiveness may depend on the specific conditions of the
wind speed prediction problem. (6) The fifth classification
model, i.e., the proposed model, which includes LR-FFT-RP-
LSTM and LR-FFT-RP-MLP models, showed the greatest im-
provement in wind speed prediction compared to the previous
classification models. The LR-FFT-RP-LSTM model had the
greatest improvement when the lookback was 12, and the LR-
FFT-RP-MLP model had the greatest improvement when the
lookback was 16. Overall, the LR-FFT-RP-MLP model outper-
formed the LR-FFT-RP-LSTM model in terms of wind speed
prediction accuracy. Specifically, for the results predicted in
step 1, the MAE of the LR-FFT-RP-MLP model was reduced
from 12.8% to 27.3% compared to MLP, and the RMSE was

Lookback = 4

-10

0

10

20

30

%

Lookback = 8

-10

0

10

20

30

%

Lookback = 12

-10

0

10

20

30

%

Lookback = 16

M
LP

LS
TM

M
IX

ER
FFT-M

LP
FFT-L

STM
FFT-M

IX
ER

RP-M
LP

RP-L
STM

RP-M
IX

ER
FFT-R

P-M
LP

FFT-R
P-L

STM

FFT-R
P-M

IX
ER

LR
-F

FT-R
P-M

LP

LR
-F

FT-R
P-L

STM

LR
-F

FT-R
P-M

IX
ER

-10

0

10

20

30

%

step 1 step 2 step 3 step 4 step 5 step 6

Fig. 8: Percentage improvement of the Pearson correlation
coefficient (R) relative to MLP for each comparison model

reduced from 13.2% to 25.8% compared to MLP. For the
results predicted in step 6, the MAE of the LR-FFT-RP-MLP
model was reduced from 13.2% to 25.6% compared to MLP,
and the RMSE was reduced from 15.3% to 24.8% compared
to MLP. These results suggest that the proposed LR-FFT-
RP-MLP model is highly effective in improving wind speed
prediction accuracy, especially for long-term predictions.

(7) Finally, to further evaluate the proposed method, the
MLP-Mixer approach was used as a benchmark comparison.
Similar preprocessing steps, including rank pooling and FFT,
were applied to the MLP-Mixer method. The results, as
shown in Figures 7-8, indicate that without pre-processing, the
predicted improvement of each step is comparable to that of
MLP. Unlike LSTM, the Mixer method exhibited the greatest
improvement for steps 3-4, while the decrease in prediction
accuracy for step 6 was not as significant as LSTM. When
the lookback was set to 16, the FFT-MIXER and FFT-RP-
MIXER models exhibited worse prediction results than MLP.
When the lookback was set to 4, 8, or 12, the RP-MIXER and
FFT-RP-MIXER models had worse prediction improvements
than RP-MLP, FFT-RP-MLP, RP-LSTM, and FFT-RP-LSTM.
However, the FFT-MIXER and LR-FFT-RP-MIXER models
with FFT preprocessing had comparable prediction results
with FFT-MLP, LR-FFT-RP-MLP, FFT-LSTM, and LR-FFT-
RP-LSTM. In summary, the results demonstrate the effective-
ness of the proposed LR-FFT-RP-MLP model for multistep
wind speed prediction. The proposed method outperformed
other models in terms of MAE and RMSE for each lookback,
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especially for larger lookback values (i.e., 12 and 16). Further-
more, the comparison with the MLP-Mixer method shows that
the proposed method has a significant advantage in prediction
accuracy, especially when preprocessing steps are taken into
account. These findings suggest that the proposed LR-FFT-
RP-MLP method has the potential to be a useful tool for wind
energy forecasting applications.

VI. CONCLUSION

In this paper, we propose a novel hybrid wind speed pre-
diction model that utilizes a rank pooling and fast Fourier
transform strategy to model the temporal evolution of wind
speed. Our approach employs multilayer perceptron (MLP),
long short-memory network (LSTM), and linear regression
(LR) models as predictors. In the proposed hybrid FFT-RP-
MLP model, we use RP and FFT to extract both local and
global features from raw meteorological data, and then use
MLP and LSTM to perform preliminary wind speed predic-
tion. To evaluate the performance of our proposed model,
we conducted experiments on ten different settings, includ-
ing the MLP model, LSTM model, FFT-MLP model, FFT-
LSTM model, RP-MLP model, RP-LSTM model, FFT-RP-
MLP model, FFT-RP-LSTM model, LR-FFT-RP-MLP model,
and LR-FFT-RP-LSTM model. These models were evaluated
based on real meteorological data, and our proposed hybrid
model demonstrated strong capability in multistep wind speed
prediction. Our comparative analysis demonstrated that our
proposed hybrid model outperformed several other similar
models in terms of prediction accuracy and stability. Our
results suggest that our proposed model represents a promising
approach for wind speed prediction. This research offers a
novel perspective for the improvement of advanced multistep
wind speed prediction. In conclusion, our findings indicate that
the proposed hybrid model yields satisfactory performance in
multistep wind speed forecasting, providing evidence of the
effectiveness of our approach. This work has the potential to
contribute to the field of renewable energy by improving the
accuracy and reliability of wind speed predictions, which in
turn can aid in the efficient planning and operation of wind
energy systems.

While the proposed hybrid wind speed prediction model
demonstrated promising results, it also has some limitations.
Specifically, the feature extraction method and prediction
model used are relatively basic and the parameter settings of
the model are simplistic. Additionally, the prediction time step
is not long enough to fully capture the complexity of wind
speed temporal evolution.

Future work could explore the use of additional
preprocessing techniques or alternative neural network
architectures to further improve the accuracy of multistep
wind speed prediction. Additionally, other meteorological
parameters, such as temperature and humidity, could be
integrated into the model to improve prediction accuracy.
Finally, the proposed method could be tested on data from
other regions to assess its generalizability and potential for
wider application.

Overall, this study provides a foundation for further devel-
opment and improvement of the multistep advanced prediction
of wind speed. The data that support the findings of this study
are available from the corresponding author upon reasonable
request, which will facilitate further research in this area.
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33 (2006) 293–300.

[55] R. Iqdour, A. Zeroual, The mlp neural networks for
predicting wind speed, Marrakech, Morocco (2006).

[56] M. A. Mohandes, T. O. Halawani, S. Rehman, A. A. Hus-
sain, Support vector machines for wind speed prediction,
Renewable energy 29 (6) (2004) 939–947.

[57] T. Vinothkumar, K. Deeba, Hybrid wind speed predic-
tion model based on recurrent long short-term memory
neural network and support vector machine models, Soft
Computing 24 (2020) 5345–5355. doi:10.1007/s00500-
019-04292-w.

[58] S. Sun, H. Qiao, Y. Wei, S. Wang, A new dynamic

integrated approach for wind speed forecasting, Applied
Energy 197 (2017). doi:10.1016/j.apenergy.2017.04.008.

[59] S. Salcedo-Sanz, A. M. Perez-Bellido, E. G. Ortiz-
Garcı́a, A. Portilla-Figueras, L. Prieto, D. Paredes, Hy-
bridizing the fifth generation mesoscale model with arti-
ficial neural networks for short-term wind speed predic-
tion, Renewable Energy 34 (6) (2009) 1451–1457.

[60] S. Zhao, X. Mi, A novel hybrid model for short-term
high-speed railway passenger demand forecasting, IEEE
Access 7 (2019) 175681–175692.
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