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Abstract

The fatigue analysis of structural components is a relevant research topic in both scientific and industrial communities. Despite

major advances in understanding, fatigue damage remains a significant issue for both metallic and non-metallic components,

sometimes leading to unexpected failures of in-service parts. Among the different assessment methodologies, critical plane

methods have gained significance as they enable identification of a component’s critical location and direction of early crack

propagation. However, the standard plane scanning method for calculating critical plane factors is computationally intensive

and, for that, it is only applied when the component critical regions are already known. When critical areas are not easily

identifiable due to complex geometries, loads or constraints, a more efficient method for evaluating critical plane factors would

be required. This work presents a closed form solution for efficiently evaluating the Fatemi-Socie critical plane factor, in case of

linear-elastic material behaviour and proportional loading conditions, based on tensor invariants and coordinates transformation

laws. The proposed algorithm was tested on different test cases (i.e. hourglass, notched and welded joint geometries) under

different loading conditions (i.e. tensile, bending and torsion) and showed a significant reduction in computation time compared

to the standard plane scanning method.
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Abstract

The fatigue analysis of structural components is a relevant research topic in both scientific and industrial
communities. Despite major advances in understanding, fatigue damage remains a significant issue for
both metallic and non-metallic components, sometimes leading to unexpected failures of in-service parts.
Among the different assessment methodologies, critical plane methods have gained significance as they
enable identification of a component’s critical location and direction of early crack propagation. However,
the standard plane scanning method for calculating critical plane factors is computationally intensive and,
for that, it is only applied when the component critical regions are already known. When critical areas
are not easily identifiable due to complex geometries, loads or constraints, a more efficient method for
evaluating critical plane factors would be required. This work presents a closed form solution for efficiently
evaluating the Fatemi-Socie critical plane factor, in case of linear-elastic material behaviour and proportional
loading conditions, based on tensor invariants and coordinates transformation laws. The proposed algorithm
was tested on different test cases (i.e. hourglass, notched and welded joint geometries) under different
loading conditions (i.e. tensile, bending and torsion) and showed a significant reduction in computation
time compared to the standard plane scanning method.
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Nomenclature

α1, α2, α3 Eigenvalues

∆ε(i,i+1) Strain range tensor between the i -th and
i+1 -th load steps

σ′ Rotated stress tensor

σ Stress tensor

σ(i) Stress tensor at the i -th load step

ε′ Rotated strain tensor

ε Strain tensor

ε(i) Strain tensor at the i -th load step

n
(i),(i+1)
j j -th principal direction of the strain range

tensor

∆γ Range of shear strain

∆θ, ∆ψ Fixed angular increment

γij Shear strain

ν Poisson’s ratio

ω Angle of the principal reference frame rota-
tion

σij Normal stress
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σn,max Maximum normal stress

τij Shear stress

θ, ψ Standard scanning plane angles

εij Normal strain

a b c d Analytical formula parameters

E Young’s modulus

F Force

k Fatemi-Socie material constant

Mt Torque

Oxyz Reference coordinate system

R Rotation matrix

Ri Rotation matrix around i -axis

Sy Yield strength

tcs Computation time for the closed form solu-
tion

tps Computation time for the plane scanning
procedure

FS Fatemi-Socie critical plane factor

PI Performance index

CP Critical Plane

FEA Finite Element Analysis

FEM Finite Element Model

1. Introduction

The investigation of material’s fatigue damage is a strategic subject of major relevance in several areas
including academia and industry. Cumulative in-service fatigue loading is still one of the major causes of
unexpected failures [1], and it represents an important issue for designers. Although fatigue tests are often
represented by simplified analyses, complexities such as stress/strain gradients, variable amplitude loading,
randomness and multiaxiality can easily be encountered in real cases [2]. Especially in such circumstances,
finite element analysis (FEA) provides a valuable tool able to account for the complex features mentioned
above [3–8]. The standard way to approach fatigue analysis consists of investigating the component’s critical
regions (i.e. considering stress/strain gradients and multiaxiality), and applying the correct loading history
(i.e. accounting for variable amplitude or randomness). However, given the wide variety of geometries,
loading conditions, and damage parameters to be considered, the solution of such models can be time-
consuming during both the solution and post-processing phases.
While the complexity of geometry and boundary conditions is inherently related to the investigated problem
and therefore unavoidable, the selection of the damage parameter, on the other hand, is a designer choice.
Several methods exist to assess fatigue damage, among them two macro-categories can be identified: energy-
based methods [9–12] and stress or strain-based methods [13–21]. Among the above mentioned categories,
in the context of local damage methods, critical plan (CP) approaches gained a lot of popularity in recent
years [22–26]. Methods based on critical plane require evaluating the plane orientation which is subjected
to the most severe damage. This orientation is defined as the critical plane and is representative of the
orientation, at the material specific location, over which the crack should nucleate and initially propagate.
Especially for the implementation of such damage parameters, the use of FEM is of great use when dealing
with complex geometry and complicated loading histories. The standard way of evaluating the critical
plane factor, however, requires the calculation of the damage factor over all possible plane orientations at
each node of a FE model identifying the critical plane through a blind-search for scanning process. Each
plane orientation is identified by a set of two or three angles which are varied discretely by a fixed angular
step to cover all the three-dimensional space. The processes is carried on for each node of the FE-model,
usually throughout nested for/end loops, thus, requiring significant computational power. Yet, the wide
potential arising from such methodologies is currently limited due to their cumbersome implementation
and, if compared to other widespread damage factors (e.g., nominal stress, hot spot stress, notch stress
approach, etc.), critical plane methods are still confined to research and academia, being rarely used in the
industry. The extensive computation time causes that only the critical zone of a component (e.g., notch) can
be directly examined. However, this area may not always be identifiable a priori due to possible complex
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geometries, load histories and constraints.
The main challenge during the computational process is to set the angular increment finding the right
balance between accuracy and efficiency. Previous researches have focused on reducing the time needed for
critical plane factor calculations. Some methods use analytical or semi-analytical techniques to determine the
damage factor and the direction where it is maximized. A novel algorithm presented by Marques et al. [27]
utilizes analytical formulas to calculate only the spectral parameters related to the damage factor. Other
approaches aim to increase computational speed by only calculating the critical plane factor in specific
planes, rather than discretizing the entire space. Wentingmann et al. [28] have developed an algorithm
that increases the speed of critical plane detection by segmenting a coarse Weber half sphere with quad
elements. Similarly, Sunde et al. [29] developed an adaptive scheme that densifies a triangular mesh around
the elements where the greatest damage has been observed. Sometimes instead, the loading condition of
the specimen results in a reduced stress state that allows for a purely analytical formulation of the damage
factor [30–32].
This paper represents an extension of a previous paper by the authors (Chiocca et al. [33]), where an
analytical formulation to efficiently apply the critical plane method was developed for parameters that
require the maximization of a single factor is required (e.g. the original formulation of Fatemi-Socie, which
is based on the maximun shear strain range, Smith-Watson-Topper, Kandil–Brown–Miller , etc.). The
analytical model presented in the following refers to the more general Fatemi-Socie formulation according to
Jiang et al. [34], which is based on a combination of shear strain range and normal stress. Also in this case,
indeed, under the assumption of proportional loading and linear-elastic material, a closed form solution
is possible. The model has been developed to be applied together with finite element analyses; for this
reason the constituent mathematics is based on a discrete formulation of the time history and the stress
and strain tensors are defined for each generic loading condition. In the case of a complex load history,
the method can be iteratively applied to each successive peak-to-valley, valley-to-peak pair derived from a
specific cycle counting formulation. The first part of the paper explains the methodology in details, providing
the necessary theoretical background. In the second part of the paper, case studies are presented, including
an hourglass specimens, notched specimens and welded components under different loading conditions. A
comparison is made between the standard method of calculating CP factors (i.e. plane scanning method)
and the methodology presented in this work, in terms of solution accuracy and computational cost.

2. General background on CP factors evaluation

The present paper aims at obtaining an analytcal solution for the general formulation of the Fatemi-Socie
CP factor (FS) [18] as proposed in [34] and given by:

FS =
∆γ

2

(
1 + k

σn,max
Sy

)
(1)

In previous equation ∆γ represents the range of shear strain, σn,max the maximum (i.e. over the load
cycle/time interval) normal stress on the plane being evaluated, and Sy the material’s yield strength. The
material parameter k can be determined by comparing fatigue experimental data for uniaxial loading with
data for pure torsion as described in [35]. Although certain authors suggest that the additional parameter
k varies with the number of cycles to failure [36–39], a constant value was considered for the present study.
The FS parameter is a positive parameter, based on the fact that the shear strain range is considered in
absolute value and considering that only positive normal stresses are taken into account.
The simpler formulation of the FS parameter, which focuses on maximizing the range of shear strain only
(as originally proposed in [18, 40]) has been the subject of a previous paper by the authors [33]. In this
work a method is developed, which aims at finding a closed form solution for the maximum of the whole
FS parameter, i.e. the critical plane is defined as that particular plane, among all possible orientations at
a given location, for which the expresion given in eq. 1 reaches its maximum value.
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3. Evaluating the CP factor using standard plane scanning technique

In this section, the standard procedure for determining the CP factor through the plane scanning tech-
nique is briefly recalled. The time-varying stress σ(t) and strain ε(t) tensors can be calculated at every
node in a FE model in a general, generally global, reference system Oxyz.

σ(t) =

σxx(t) τxy(t) τxz(t)
τyx(t) σyy(t) τyz(t)
τzx(t) τzy(t) σzz(t)

 , ε(t) =

εxx(t)
γxy
2 (t) γxz

2 (t)
γyx
2 (t) εyy(t)

γyz
2 (t)

γzx
2 (t)

γzy
2 (t) εzz(t)

 (2)

Stress and strain tensors can be utilized to describe various types of loading conditions, such as multiaxial,
uniaxial, or biaxial conditions, and can also exhibit proportional or non-proportional stress components
depending on the load history. It is possible to calculate stress and strain values acting on different plane
orientations, i.e. with reference to different reference coordinate systems, by simple matrix operation RTσR,
where R represents the rotation matrix, which is usually expressed by three different angles (e.g., Euler,
Briant, Cardano). Actually, two angular coordinates, say θ and ψ, are strictly necessary to identify a plane
orientation, the third rotation simply representing a rotation about the unit vector n, which is orthogonal to
the plane. In this sense there are ∞2 possible orientation at each location to be checked. By incrementally
rotating the plane (or its unit vector) through fixed angular increments (i.e., ∆θ and ∆ψ), stress and strain
values in all directions can be approximately obtained. Once this process has been carried out, the plane
that maximizes the reference CP parameter can be identified as the critical plane. The above mentioned
procedure requires to implement nested for/end loops and this results highly inefficient from a computational
point of view, depending on the selected angular resolution. This becomes even more critical when trying
to perform this analysis for many points in the component (i.e., nodes in the FE model).

Plane rotation

∆θ

x

y

z

Loaded component

x

z
θ

n

Plane selection

y
ψ

Γ

Selected node

Figure 1: Standard procedure sequence to assess a critical plane factor by plane scanning method

For the present study a rotation sequence in a moving frame of reference was taken as a reference, the
first rotation θ around the z-axis and the second rotation ψ around the y-axis, as shown in Equation 3 and
the plane scanning method was applied through angular steps ∆θ and ∆ψ of 1°.

R = Rz(ψ)Ry(θ) =

cos(θ) cos(ψ) − sin(ψ) cos(ψ) sin(θ)
sin(ψ) cos(θ) cos(ψ) sin(θ) sin(ψ)
− sin(θ) 0 cos(θ)

 (3)

Through the rotation matrix R it is possible to retrieve the stress and strain tensors in the rotated reference
frame as presented in Equation 15.

σ′ = RTσR, ε′ = RTεR (4)

4. Closed form solution for whole Fatemi-Socie CP factor

In this section the mathematical framework of the method is outlined. As the method was developed
for a finite element modeling-related application, the load history is described by a discrete formulation of
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the time sequence, via load steps in a FE-analysis. To this regard, relationships 5 give the stress and strain
tensors at the generic i-th loading step.

σ(i) =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

(i)

, ε(i) =

εxx γxy
2

γxz
2γyx

2 εyy
γyz
2

γzx
2

γzy
2 εzz

(i)

(5)

Starting from the above tensors, the strain range tensor between the i-th and i + 1-th loading conditions
can be easily determined, as shown in Equation 6; in order to compute the strain range tensor, the starting
tensors have to be defined with respect to the same reference system, but this is fairly common within the
post-processing phase of FE-analyses.

∆ε(i,i+1) = ε(i) − ε(i+1) =

∆εxx
∆γxy

2
∆γxz

2
∆γyx

2 ∆εyy
∆γyz

2
∆γzx

2
∆γzy

2 ∆εzz


(i,i+1)

(6)

Under the hypotheses of linear elasticity and proportional loading the following considerations hold:

• the stress and strain tensors have the same principal directions, i.e. the same eigenvectors;

• the strain tensors (as well as the stress tensor), evaluated at different time steps, (i) and (i+ 1) have
the same principal directions, i.e. the same eigenvectors.

From the above considerations it follows that also the strain range tensor (as well as, for example the stress

range tensor for the Findley criterium) ∆ε(i,i+1) has the same principal directions of the strain or the stress
tensors, evaluated at the i-th and i+ 1-th time step.

On the basis of the coincidence between the principal directions of the tensors σ(i), σ(i+1), ε(i), ε(i+1)

and ∆ε(i,i+1), it is now useful to refer to the Mohr’s circular representation to further illustrate the method.
Figure 2 represents the tensor quantities which are present in the Fatemi-Socie critical plane method (see

eq. 1), namely ∆ε(i,i+1), σ(i) and σ(i+1). As a first step all the stress and strain components have to be
obtained (at a given node in the FE model) in a given, typically the global, reference frame Oxyz. Then, an

eigenvalue–eigenvector analysis is required for the strain range tensor ∆ε(i,i+1); the so obtained eigenvalues

represent the principal parameters of the strain range ∆ε
(i,i+1)
1 , ∆ε

(i,i+1)
2 and ∆ε

(i,i+1)
3 , while the eigenvectors

will define the principal directions n1
(i),(i+1), n2

(i),(i+1) and n3
(i),(i+1) of the ∆ε(i,i+1) tensor. As previously

stated, these unit vectors also represent the principal directions (i.e. eigenvectors) of the tensors σ(i) and

σ(i+1). Therefore, the three tensors ∆ε(i,i+1), σ(i) and σ(i+1) expressed in the principal reference frame

On1n2n3 are represented by their principal components (i.e. eigenvalues) (∆ε
(i,i+1)
1 , ∆ε

(i,i+1)
2 , ∆ε

(i,i+1)
3 ),

(σ
(i)
1 , σ

(i)
2 , σ

(i)
3 ) and (σ

(i+1)
1 , σ

(i+1)
2 , σ

(i+1)
3 ), with the usual convention α1 > α2 > α3, α representing the

generic eigenvalue.
Finally, on the basis of the Mohr’s circular representation, the FS parameter can be obtained as follows.

The analytical expression of ∆γ
2

(i,i+1)
, as a function of the ω angle, which represents a rotation around the

n2 principal direction (see Figure 2), is given by the following relationship 7.

∆γ(i,i+1)(ω)

2
=

(
∆ε

(i,i+1)
1 −∆ε

(i,i+1)
3

2

)
sin(2ω) (7)

Considering the normal stress acting on the plane identified by the ω angle, the maximum value among
the two conditions (i) and (i+ 1) of the load cycle have to be considered:

σ(i),(i+1)
n,max (ω) = max

{(i),(i+1)}

[(
σ1 + σ3

2

)
+

(
σ1 − σ3

2

)
cos(2ω)

](i),(i+1)

(8)
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From Fig. 2 it can be observed that the maximum normal stress can belong either to the (i)-th time
step, or the (i+ 1)-th time step, depending on the plane orientation ω.

In order to solve the following maximization problem, represented by Equation 9,

FS(ω) = max
{ω}

[
∆γ(i,i+1)(ω)

2

(
1 + k

σ
(i),(i+1)
n,max (ω)

Sy

)]
(9)

the following parameters are introduced:

a =

(
∆ε

(i,i+1)
1 −∆ε

(i,i+1)
3

2

)
b =

(
σ1+σ3

2Sy

)(i),(i+1)

c =
(
σ1−σ3

2Sy

)(i),(i+1)

d =
(√

k2 (b2 + 8c2) + 2bk + 1
)(i),(i+1)

(10)

Parameter a represents the diameter of the largest strain range circle in Figure 2; parameter b represent
the center of the largest stress circle, normalized with respect to the yield stress; parameter c represents
the diameter of the largest stress circle, normalized with respect to the yield stress; d is a combination of
previous parameters and the material constant k. It should be noted that a is referenced to the load cycle,
while b, c and d has to be evaluated for (i)-th and (i + 1)-th time step. Parameters a and c are always
positive according to the standard convention on the eigenvalues (∆ε1 ≥ ∆ε2 ≥ ∆ε3 and σ1 ≥ σ2 ≥ σ3),
while b can be either positive or negative.
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Figure 2: Graphical representation of the analytical method by Cauchy elementary cube and Mohr’s circle by means of the
tensors ∆ε(i,i+1), σ(i) and σ(i+1)

After substituting expressions 10 into relationship 9, the maximum value of FS parameter can be deter-
mined by carrying out an analytical derivative of the FS(ω) function with respect to ω, as presented in the
Equation 11.

FS(ω) = max
{ω}

[a sin(2ω) (1 + k(b+ c cos(2ω)))] (11)

The result of that analysis in terms of ωmax and FSmax are given in the following Equations 12–13:
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ωmax =


1
2 arctan

 √
2

√
k(b(d−2)+b2(−k)+4c2k)+d−1

ck√
c
√
k

d−bk−1
ck

 b ≥ − 1
k

1
2 arctan

−√2

√
− k(b(d+2)+b2k−4c2k)+d+1

ck√
c
√
k

− d+bk+1
ck

 b ≤ − 1
k

(12)

FSmax =


a(d+3bk+3)

√
k(b(d−2)+b2(−k)+4c2k)+d−1

ck

8
√

2
√
c
√
k

b ≥ − 1
k

a(d−3bk−3)

√
− k(b(d+2)+b2k−4c2k)+d+1

ck

8
√

2
√
c
√
k

b ≤ − 1
k

(13)

where, it has to be noted that the analytical expression of Equations 12–13 have to be evaluated for both (i)
and (i+ 1) load cycles and, then, the FS CP factor is selected as the solution having the maximum (always
positive) value.
As it can be observed, both ωmax and FSmax are characterised by a C0-type continuity condition at b = − 1

k .
An example of the solution for a structural steel having Sy = 355 MPa is given in Figure 3. The solution
is given for two fixed values of the material constant k = 0.1 and k = 1, which represent typical extreme
values for that parameter. The stress-strain state involved in the loading cycle is described by parameters
a, b, c given in previous eq. 10; in other words, each point on the surface represent a different fatigue load
cycle.

Figure 3a and Figure 3b report the ωmax function, while the FSmax function is shown in Figure 3c and
Figure 3d for k = 0.1 and k = 1, respectively. It can be observed how the ωmax solution can be represented
through an individual surface, being independent of the value of a, i.e. on the shear strain range.
On the other hand, the FS parameter is strongly influenced by the shear strain range, represented by
parameter a and moderately influenced by parameter b representing the normalised radius of the largest
stress circle. The influence of parameter c on the FS parameter is much lower in all the domain. The effect
of k can be clearly noticed, for b = − 1

k , in all the plots.
Once the critical plane factor FSmax has been obtained, the critical plane orientation can also be derived.
The rotation matrix to be considered is given in Equation 14 and it is obtained by multiplying the rotation
matrix Rp (i.e., representing the matrix containing the direct cosines of the principal directions), with the
rotation matrix Ry (i.e., representing the rotation matrix around y-axis of an angle ωmax).

R = RpRy(ωmax) =

 | | |
n1

(i),(i+1) n2
(i),(i+1) n3

(i),(i+1)

| | |

 cos(ωmax) 0 sin(ωmax)
0 1 0

− sin(ωmax) 0 cos(ωmax)

 (14)

In order to enable a direct graphical comparison between the analytical formulation and the plane scanning
method, the same rotation sequence of Equation 3 can be employed, as presented in the following:

R = Rz(ψ)Ry(θ) =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (15)

On the basis of Equation 3, 14 and Equation 15, it is now trivial to obtain the two angles (θ and ψ) in
analytical form as shown in Equation 16.

θ = arctan2(
√
r2
13 + r2

23, r33)

ψ = arctan2(r23, r13)
(16)
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Figure 3: Surface plots of ωmax and FSmax functions; a) ωmax for k = 0.1, b) ωmax for k = 1, c) FSmax for k = 0.1 and
a = [0.001, 0.004, 0.007, 0.01] and c) FSmax for k = 1 and a = [0.001, 0.004, 0.007, 0.01]

5. Material and method

In order to validate the analytical solution presented in prvious section, three different case studies were
selected, to represent a wide range of structural problems that may be found in practical applications. The
case studies include an hourglass specimen, a notched specimen, and a welded joint between a pipe and a
plate. The hourglass and notched specimens were subjected to tensile-compressive and torsional loading,
while the welded joint was subjected to pure bending and pure torsional loading. The technical drawing of
the hourglass specimen, based on ASTM E466 with a minimum diameter of 12 mm, is shown in Figure 4a.
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5.1. Finite element analysis
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Figure 4: Finite element models and technical drawings of the investigated case studies: (a) hourglass specimen with two-
dimensional and three-dimensional model, (b) notched specimen with two-dimensional model, three-dimensional model and
submodel, and (c) welded joint with submodel.
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The notched specimen geometry, described by a notch radius of 0.2 mm and a minimum diameter of
16 mm, is shown in Figure 4b. Figure 4c shows the welded joint geometry, which consists of a tube,
a reinforcement circular plate, and a quadrangular base plate. The seam weld of interest for this work
was the one between the tube and the base plate. The welded joint was previously studied by the same
authors examining its fatigue endurance under different loading conditions and in the presence of residual
stresses [5–7, 41–44]. For all the cases FE-analyses were conducted using the second release of Ansys© 2021
software.Static structural analyses were performed assuming small displacements; structural steel S355 was
considered as the material for all three case studies with linear elastic behaviour, E = 210 GPa and ν = 0.3.
In order to determine the FS critical plane factor, a yield strength Sy = 355 MPa and a material constant
k = 0.4 were considered.
Three-dimensional FE models were used for all loading conditions of the welded joint (Figure 4c) and in the
case of torsional loading for both the hourglass specimen (Figure 4a) and the notched specimen (Figure 4b).
In this case 3D structural brick elements with 20 nodes and quadratic shape functions were employed.
Whereas an axisymmetric assumption was employed together with 2D structural plane elements with 8
nodes and quadratic shape functions in the case of hourglass and notched specimens loaded in tension-
compression. The hourglass specimen mesh consisted of 336134 nodes and 81018 elements for the three-
dimensional geometry and 24276 nodes and 7991 elements for the two-dimensional geometry, respectively.
Submodeling technique was used to optimize the mesh in the notch region, in case of three-dimensional
notched specimen model; a number of 123170 nodes and 29234 elements for the three-dimensional model
and 351974 nodes and 84900 elements for the submodel were used, respectively. The two-dimensional notched
specimen model consists of 38897 nodes and 12888 elements. The welded joint, consisting of 96420 nodes
and 97728 elements, likewise utilizes the submodel analysis to better describe the stress and strain state in
the weld bead region. The submodel included a model slice of 54° opening angle and 155454 nodes and 35408
elements. The mesh size for all FE models was achieved after a convergence analysis. The convergence was
reached once a difference lower than 3% was attained on the maximum von Mises stress.
The proportional loading were obtained by applying forces or moments together with fixed supports on
the appropriate model surfaces. In the case of hourglass and notched specimens, the cylindrical surfaces of
Figure 4d–e were used for applying the boundary conditions, while the top tube surface and the plate holes
were used in the case of the welded joint.
The load sequences reported in Tables 1–2 were applied, consisting of two proportional loading conditions.
Each column of the table reports the combination of forces/moment applied to a specific specimen geometry
in a particular load step of the FE-simulation.

Load type
Hourglass specimen Notched specimen Welded joint

Load step n.1 Load step n.2 Load step n.1 Load step n.2 Load step n.1 Load step n.2

Case 1
F =18 kN F =74 kN F =1.6 kN F =16 kN F1 =−5.7 kN F1 =5.7 kN
Mt =0 N m Mt =0 N m Mt =0 N m Mt =0 N m F2 =−5.7 kN F2 =5.7 kN

Case 2
F =0 kN F =0 kN F =0 kN F =0 kN F1 =−15 kN F1 =15 kN

Mt =7.5 N m Mt =75 N m Mt =8 N m Mt =63 N m F2 =15 kN F2 =−15 kN

Table 1: Load steps combination used during simulations with F referring to the applied force and Mt referring to the torque
shown in Figure 4
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Load type Hourglass specimen Notched specimen Welded joint
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Table 2: Graphical overview of the main normal and shear stress components pattern over load steps

6. Results

In this section the results obtained by closed form solution of the FS CP factor are discussed in com-
parison with those obtained by the standard plane scanning method. The functions presented in section 4
provide the essential mathematical background to apply the analytical method; the CP factor solutions
resulting from the above functions furnish the results explicitly, yielding a precise solution rather than a
numerical approximation.
Figure 5 provides a graphical comparison of CP orientation and CP values between the two methods for
the three different loading cases presented in previous section, including the hourglass specimen, notched
specimen, and welded joint. The tensile loading case for the hourglass and notched specimens, as well as
the bending loading for the welded joint, are shown in Figures 5a-5c, while the torsional loading cases are
presented in Figures 5d-5f, respectively. The CP orientation identified by the new method is represented by a
white dot in all the Figures. As it can be observed the closed form solution perfectly fits with the maximum
values of the colored plots, which represent the FS(θ, ψ) values derived from the spatial plane scanning
method. Although the surfaces often exhibit periodic patterns within the angular range, the solution found
by the proposed closed form solution is unique, and the periodicity information can be obtained by consid-
ering the loading case and the symmetry of the stress tensor, as described by Cauchy’s stress tensor. The
values of parameters a, b and c are reported in Table 3 for the case-studies presented in Figure 5a–f.

Case study a b c

Hourglass – Tensile 0.0017 0.9729 0.9731
Notched – Tensile 0.0121 0.7041 0.6218
Welded joint – Bending 0.0046 0.8835 0.8296
Hourglass – Torsion 0.0018 0 0.0843
Notched – Torsion 0.0015 0 0.7415
Welded joint – Torsion 0.0043 0 0.7903

Table 3: Parameter values required to calculate the FS closed-form solution for all case studies described in Figure 5
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Figure 5: Comparison of FS solutions derived from the standard plane scanning method (FS(θ, ψ)) and that derived from the
closed-form procedure (FSmax) for (a) the hourglass specimen subjected to tensile loading, (b) the notched specimen subjected
to tensile loading, (c) the welded joint subjected to bending loading, (d) the hourglass specimen subjected to torsion loading,
(e) the notched specimen subjected to torsion loading and (f) the welded joint subjected to torsion loading.

The improvement in computing time is illustrated in Table 4. All codes were executed in the Matlab®

environment on an 11th Gen Intel(R) Core(TM) i7 with 16GB of available RAM and 4 cores. The per-
formance index PI defined in Equation 17 was used to compare the computational efficiency of the closed
form solution, to the standard plane scanning method. In Equation 17, tcs represents the computation
time required by the closed form solution, while tps represents the computation time required by the plane
scanning procedure. PI is 100% when the computation time with the analytical solution is zero, or when the
computation time required by the plane scanning method is infinite, and 0% when there is no reduction in
computing time, i.e. tcs = tps. The significant time reduction is caused by avoiding multiple plane scanning
in space while providing the exact solution. As it can be observed, significant time reduction was achieved,
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with the PI parameter consistently exceeding 99.8%.

PI =

(
1− tcs

tps

)
(17)

The computational time was significantly decreased from approximately 2 s to around 2× 10−3 s by im-
plementing a non-optimized code in Matlab®. With further optimization through the use of lower-level
programming languages, additional reductions in computational time are likely to be achievable. This huge
increment in coputation efficiency suggests the possibility the CP method also for complex geometries, when
the critical locations are not known in advance.

Computational time comparison

Load type
Hourglass specimen Notched specimen Welded joint

tcs tps PI tcs tps PI tcs tps PI

Case 1 2.15× 10−3 s 2.21 s 99.9% 2.84× 10−3 s 2.006 s 99.8% 2.47× 10−3 s 1.849 s 99.8%

Case 2 1.822× 10−3 s 2.27 s 99.9% 1.985× 10−3 s 2.282 s 99.9% 2.04× 10−3 s 2.164 s 99.9%

Table 4: Comparison of computational cost between the closed form solution and the standard plane scanning method

It is worth noting that if any of the assumptions given in section 4 is not holding, a closed form solution
cannot be obtained. Figure 6 provides a practical example in which a non-proportional loading condition
was applied to the hourglass specimen. Specifically, a first load step with F = 76 kN and Mt = 0 N m and
a second load step with F = 0 kN and Mt = 100 N m. Under these conditions a significant difference in
FSmax results can be found both in terms of FS parameter and in terms of the critical plane orientation,
as given by θ and ψ. Figure 6a represents the closed form solution compared with maximum value derived
from the standard spatial plane scanning method. For this specific case, an error of 13.4% on the modulus
of FS and a maximum error of 0.24 rad on the angular position of the plane is obtained. It may also result
interesting to notice how the maximum error in FS value is achieved in the critical region of the component,
as shown in Figure 6b. As it can be reasonably expected, this confirms how the application of the closed
form solution is not conservative when either one of the underlying hypotheses are not met.
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Figure 6: Non-proportional loading case on the hourglass specimen; (a) comparison of FS solutions derived from the plane
scanning method (FS(θ, ψ)) and the closed form solution (FSmax), (b) relative error map between the closed form solution
and the correct maximum solution of FS(θ, ψ) per each node.

7. Conclusions

Following a previous work by the authors, the purpose of the present study was to develop a closed
form solution for the FS CP factor in its more general formulation, including the shear strain range and
the maximum stress acting on the plane during the loading cycle. The method utilizes stress and strain
tensor invariants and coordinates transformation law and was implemented in a readily available Matlab®

script. The closed form solution was discussed with reference to its graphical representation for a structural
steel and similar solutions can be easily obtained for different metallic materials. Various case studies were
analysed and discussed in comparison to the standard plane scanning method, to provide a wide range
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of component geometries and loading conditions. From the performed analyses and results obtained, the
following conclusions can be drawn:

• the method can be used for uniaxial and multiaxial proportional loading conditions, under linear-elastic
material behaviour;

• the method offers a huge speed up in solution time, with respect to the standard plane scanning
method, with a reduction of computation time greater than 99.8% on a single node, for the examined
test cases, where a 1° resolution in plane orientation was selected; this reduction in computation time
could potentially make CP methods easier and more attactive to be used, even in and industrial
context;

• the proposed method provides a closed-form solution for the critical plane and, consequently, for the
damage parameter, compared to the standard plane scanning method;

• the method is easy to use and can be implemented in a variety of codes since it utilizes basic tensor
math; the extension to other CP factors likely appears to be straightforward.

Reducing computation time during the post-processing phase is crucial for evaluating damage factors, as
it enables a more detailed and complete evaluation of the studied model, even in case of complex geometries
with FE models made with large number of nodes.
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