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Abstract

Analyzing phase transitions using the inherent geometrical attributes of a system has garnered enormous interest over the past

few decades. The usual candidate often used for investigation is graphene- the most celebrated material among the family of

tri co-ordinated graphed lattices. We show in this report that other inhabitants of the family demonstrate equally admirable

structural and functional properties that at its core are controlled by their topology. Two interesting members of the family

are Cylooctatrene(COT) and COT-based polymer: poly-bi-[8]-annulenylene both in one and two dimensions that have been

investigated by polymer chemists over a period of 50 years for its possible application in batteries exploiting its conducting

properties. A single COT unit is demonstrated herein to exhibit topological solitons at sites of a broken bond similar to an

open one-dimensional Su-Schrieffer-Heeger (SSH) chain. We observe that Poly-bi-[8]-annulenylene in 1D mimics two coupled

SSH chains in the weak coupling limit thereby showing the presence of topological edge modes. In the strong coupling limit,

we investigate the different parameter values of our system for which we observe zero energy modes. Further, the application

of an external magnetic field and its effects on the band-flattening of the energy bands has also been studied. In 2D, poly-

bi-[8]-annulenylene forms a square-octagon lattice which upon breaking time-reversal symmetry goes into a topological phase

forming noise-resilient edge modes. We hope our analysis would pave the way for synthesizing such topological materials and

exploiting their properties for promising applications in optoelectronics, photovoltaics, and renewable energy sources.
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Analyzing phase transitions using the inherent geometrical attributes of a system has garnered
enormous interest over the past few decades. The usual candidate often used for investigation is
graphene- the most celebrated material among the family of tri co-ordinated graphed lattices. We
show in this report that other inhabitants of the family demonstrate equally admirable structural
and functional properties that at its core are controlled by their topology. Two interesting members
of the family are Cylooctatrene(COT) and COT-based polymer: poly-bi-[8]-annulenylene both in
one and two dimensions that have been investigated by polymer chemists over a period of 50 years
for its possible application in batteries exploiting its conducting properties. A single COT unit is
demonstrated herein to exhibit topological solitons at sites of a broken bond similar to an open
one-dimensional Su-Schrieffer-Heeger (SSH) chain. We observe that Poly-bi-[8]-annulenylene in
1D mimics two coupled SSH chains in the weak coupling limit thereby showing the presence of
topological edge modes. In the strong coupling limit, we investigate the different parameter values
of our system for which we observe zero energy modes. Further, the application of an external
magnetic field and its effects on the band-flattening of the energy bands has also been studied.
In 2D, poly-bi-[8]-annulenylene forms a square-octagon lattice which upon breaking time-reversal
symmetry goes into a topological phase forming noise-resilient edge modes. We hope our analysis
would pave the way for synthesizing such topological materials and exploiting their properties for
promising applications in optoelectronics, photovoltaics, and renewable energy sources.

INTRODUCTION

From the discovery of the quantum hall effect in the
1980s, [1, 2], the perception of phases in condensed
matter physics underwent a foundational metamorpho-
sis. Phase transition in such systems formerly studied
through the lens of Landau’s theory of symmetry break-
ing [3, 4], were subsequently analyzed using abstruse yet
mathematically elegant characterization of the inherent
geometrical attributes of the system thereby initiating
a robust bridge to topology[5]. Such inter-connections
have positively impacted many other domains of physics
including atomic physics and quantum optics[6–10], bio-
informatics [11–13], quantum field theory [14], high-
energy physics [15, 16] and astronomy [17, 18] even
though condensed matter physics indisputably contin-
ues to be the most ardent and persistent beneficiary. A
quintessential example in the latter domain which has ar-
rested enormous attention over the past several decades
are the family of organic polymers like polyacetylene[19]
which possesses albeit simple yet rich topological fea-
tures in 1D[20] rooted in the Su-Schrieffer-Heeger (SSH)
model [21, 22]. Discovery of such polymers has revo-
lutionized diverse applications like molecular electronics
[23–25], light-emitting diodes (LEDs) [26, 27], recharge-
able batteries [28–30] to name a few, owing to their fas-
cinating conducting properties usually accredited to the
implicit topology and lattice geometry.

The natural extension of the aforesaid paradigm to 2D

∗ kais@purdue.edu

began with the idea of Haldane [31] which introduces a
complex second nearest-neighbor hopping amplitude in
Graphene, which is inarguably the most widely known
honeycomb lattice belonging to the larger umbrella of
trivalent graphed lattices (i.e. lattice geometries with co-
ordination number equal to 3) as shown in Fig. 1. The
by-product of such an endeavor is the decimation of the
time-reversal symmetry(TRS) of the system thereby cul-
minating in a natural emergence of a topological phase
that is experimentally realizable.[32]. Extension of the
paradigm to structural chemistry has been the harbinger
of a plethora of unforeseen opportunities that has duly
engendered interest [33–36]. Most notably with prodi-
gious improvements in synthetic capabilities of metal-
organic and covalent-organic frameworks (MOFs/COFs)
[37–43], the dream of artificially designing such polymeric
substrates with tunable topological features is no longer
distant. Inspired by such developments, in this work,
we strive to venture beyond graphene into other mem-
bers of the family of trivalent graphs which despite hav-
ing the potential for offering tantalizing prospects have
been severely under-utilized in literature. We focus on
the Goldilocks zone of such polymers (marked in red
in Fig. 1) which have either been directly synthesized
and shown to be excellent conductors as highlighted in
a patent[44] and paper[45] or offers an easy possibility
of being naturally synthesizable or artificially designed
through a network of superconducting coplanar waveg-
uides [46]. Such lattices share similar structural cohomol-
ogy with the hexagonal lattice of graphene [47, 48] and
as we shall unravel also inherit some exotic topological
features even within the framework of tight-binding(TB)
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approximations which form the basis to interpret all their
functional attributes.

The article is structured as follows. First, we consider
a single Cycloctatetraene(COT) unit which forms the ba-
sic building block for Poly-bi-[8]-annulenylene networks,
an object of primary investigation in this work. We show
how a COT unit forms topological solitons at two ends by
envisioning it as a simple 1D SSH chain. Then We go on
to study the bandstructure of Poly-bi-[8]-annulenylene in
1D and unravel its inherent topological properties both in
the strong and weak coupling regime. In the weak regime,
we consider Poly-bi-[8]-annulenylene as two weakly cou-
pled 1D SSH chains. Following that, we further analyze
the effects of band-flattening of all the energy bands of
1D Poly-bi-[8]annulenylene in the presence of an external
magnetic field. Such band-flattening can lead to localized
electronic states with exotic correlated behavior. We also
study the 2D extension of this lattice geometry and cal-
culate its band structure both with and without break-
ing TRS in order to distinguish topologically trivial and
non-trivial phases. All analysis is conducted for both pe-
riodic(PBC) and open-boundary conditions (OBC) and
the possibility of engineering a spin network for realizing
the 2D analog is explicitly discussed.

RESULTS & DISCUSSION

Cycloctatetraene(COT) as a SSH chain

To explore the topology of COT, we begin by consider-
ing a single COT unit as a closed and periodic SSH chain.
The well-known SSH chain offers a paradigmatic exam-
ple of supporting a one-dimensional topological insulat-
ing phase. The Hamiltonian of the model is as follows[21],

HSSH =− v

N∑
i=1

c†2i−1c2i − w

N∑
i=1

c†2ic2i+1 + h.c (1)

where v, w are the alternating hopping strengths and N
denotes the number of unit cells with a single unit cell
marked in green as shown in Fig. 2(a) c†, c denote the
creation and annihilation operators describing an elec-
tron hopping in a lattice between sites designated as i and
h.c denotes hermitian conjugate. The Hamiltonian can
be diagonalized through a fourier transformation[49, 50],

HSSH = −
∑
k

ψ†
kHkψk = −

∑
k

ψ†
k(d⃗k.σ⃗)ψk (2)

where k ∗ a0 ∈ [−π, π] denotes a discrete set of points
over the Brillouin zone in reciprocal space with a0 being

the real space lattice separation. (ψ†
k, ψk) and Hk denote

Bloch vectors and Hamiltonian in the reciprocal space

respectively. The d⃗k and the energy of the bands are
expressed as,

d⃗k = (v + wcos(kx), wsin(kx), 0) (3)

ϵ± =
√
d2x + d2y = ±

√
v2 + w2 + 2vw cos(k) (4)

As shown in Fig. 3, We have the trivial insulator phase
for v > w, the metallic phase for v = w, and the
topological insulator phase for v < w. The topological
phase is further characterized by the non-zero winding
number[51](Methods for calculation of winding number)
and the appearance of edge states.

Poly-bi-[8]-annulenylene(PO[8]A) in 1D

For Poly-bi-[8]-annulenylene, the unit cell marked in
green in Fig. 4, has eight sites. The Hamiltonian of the
model is as follows,

HPO[8]A =

N∑
r=1

[−v(c†r,1cr,8 + c†r,4cr,7

+ c†r,2cr,5)− w(c†r,1cr,4 + c†r,2cr,3)

− t(c†r,1cr,2 + c†r,4cr,3)] + h.c (5)

where v, w, and t are the respective hopping strengths
between different lattice sites in a unit cell as shown in
Fig. 4(a). The subscript r, i contains i = 1..8 going over
all the eight sites in a unit cell and r going overN number
of unit cells. Following a fourier transformation, We solve
the k-space hamiltonian with the following form,

HPO[8]A = −
∑
k

ψ†
k[H(k)8×8]ψk (6)

The corresponding band structure has eight bands as
shown in Fig. 5(a). Among the eight bands, we focus
on the valence and conduction band (marked as VB and
CB) around the fermi-level(i.e. E(k) = 0 level). We fo-
cus on two cases.
Weak Coupling: When the coupling strength t << v
and t << w, one can envision the lattice of Poly-bi-[8]-
annulenylene as two weakly coupled SSH chains[52]- [53]
as in 4(b) with parameter t playing the role of linking
between two chains.
In Fig. 5, we show the band structure of the model de-

fined in Eq. 5 focusing exclusively on the energy bands
close to the fermi-level in both the trivial and topological
phase under PBC (Fig. 5(b-c)) and OBC (Fig. 5(d-e)).
In the topological phase under OBC we expect four edge
states corresponding to four edges of two weakly coupled
SSH chains. This is further corroborated through numer-
ical evidence in Fig. 5(e). Further, the resilience of these
modes against noise has been discussed in Supplemen-
tary. This observation can be generalized to N weakly
coupled SSH chains wherein 2N edge modes would be
encountered. Strong Coupling: When the coupling is
strong, the two stacked chains form dimers in several
ways. Several such cases have been shown in Fig. 6. All
such cases are constructed under OBC and show the rel-
ative displacement in the energy spectrum of the eight
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FIG. 1. (a) Graphene (b) cycloctatetraene(COT) unit (c) repeating Poly-bi-[8]-annulenylene in 1D (d) repeating Poly-
bi-[8]-annulenylene in 2D. (red box: Goldilocks zone of COT and COT based polymers)

FIG. 2. (a) 1D SSH chain (a unit cell encompassed in the
green box) (b) COT as a closed SSH chain

edge states (see Fig. 6(b),(d)) under different parameter
choices. In general for N such strongly coupled chains,
one can prepare a maximum of 8N such edge states in
the topological phase.

Magnetix flux through 1D PO[8]A

In this section, We study how the flatness of the Bloch
bands could be tuned by magnetic fluxes through the
square and octagon plaquettes of Poly-bi-annuleneylene.
In the presence of an external magnetic field, the wave
function of a charged particle going around a closed
loop acquires an Aharonov-Bohm phase shift propor-
tional to the magnetic flux through the enclosed loop[54].
In the tight-binding(TB) language, this phase gets re-
flected in the electron hopping amplitudes modified
with an acquired extra phase factor given by the Pierls

substitution[55],

Tij → Tije
±iϕ (7)

Where Tij is the hopping amplitude between sites i and
j. For convention, We take positive flux in the clockwise
direction and vice-versa.
We consider fluxes ϕ1 and ϕ2 impinging the octagon

and square plaquettes as in Fig. 7. We plot the flat-
ness ratios defined in the methods section of Valence
and Conduction bands in the (ϕ1, ϕ2) plane as shown
in Fig. 8. Flatness ratios and their plots of other bands
in the (ϕ1, ϕ2) plane are presented in the Methods sec-
tion. We observe that all energy bands display con-
siderable flatness (according to the used metric defined
in the methods section) hence can admit small Fermi-
velocity of an initialized electronic wavepacket leading to
non-trivial consequences. Recently such flat bands are
being routinely investigated in twisted bilayer graphene
[56–58] wherein Moire superlattices are formed at wave-
length scale much bigger than the atomic separation in
graphene. In these superlattices can support hybridiza-
tion of the energy bands from the two layers leads to flat
bands when the twist angle is very low similar to what
we see here. Such bands have localized electronic den-
sity and can be the hot-bed for studying many correlated
fermionic behavior as has been seen in a correlated Mott
insulator under moderate occupancy [59–62] or even a su-
perconducting phase at low occupancy [60, 63, 64]. Even
though we have described the electronic states only, the
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FIG. 3. In Fig3(a-c) we explicate the band structure of
the model described in Eq. 1 and Eq. 4. (a) The spectrum
(E(k) vs k) under periodic boundary conditions (PBC) in the
topological phase, (b) Similar to (a) but at the critical point
showing the closure of the bulk gap (c) Similar to (a) but

in the trivial phase. (d) The locus of the vector d⃗k (see Eq.
4) in the topological phase with the origin enclosed, (e) at
the critical point where the curve goes through the origin, (f)
in the trivial phase with the origin not enclosed.The energy
spectrum under open boundary conditions (OBC) (g) showing
the presence of edge modes in the topological phase (h) in
the bulk-conducting phase (i) band-insulating (topologically
trivial) phase. The inset in (g) shows the electronic density
distribution corresponding to the edge modes being localized
at the edges of the chain.

FIG. 4. Poly-bi-[8]-annulenylene(PO[8]A) moeity with the
chosen unit cell shown inside the rectangular box. v, w and t
shown are the respective hopping parameters.

coupling of the Bloch states of the flat bands with spin
can lead to many exotic spin-orbit interaction schemes
like in Dzyaloshinskii-Moriya scheme [65–67] and Ferro-
magnetic Mott state [68]. A subset of these phenomenon
has been extended to transition-metal dichalcogenides
[69, 70] too and there is no apparent reason why Poly-
bi-[8]-annulenylene lattice cannot be the next fascinating

FIG. 5. (a) bandstructure of Poly-bi-[8]-
annulenylene(PO[8]A) with v = w = 1, t = 0.1 highlighting
the behavior of two weakly-coupled SSH chains under PBC.
(b) The spectrum as in (a) but computed in the trivial
phase (v > w), (c) The spectrum as in (a) but computed
in the topological phase (v < w). All plots are generated
in the weakly coupled regime as defined by t << w and
t << v. (d)The energy spectrum under OBC showing the
absence of edge modes at zero energy in the trivial phase (e)
Similar spectrum as in (d) but showing the presence of edge
modes at zero energy in the topological phase. The inset
shows electronic density distribution of the edge modes being
localized at the four edges of a finite Poly-bi-[8]-annulenylene.
(f)four edges of a finite Poly-bi-[8]-annulenylene(PO[8]A).

test-bed. In fact it must be emphasized that unlike in
graphene bilayer where mechanical twisting of a bilayer
is necessary, herein we are able to generate flat bands
under modest conditions using just a single chain with
experimentally tailored magnetic flux profile.

Poly-bi-[8]-annulenylene in 2D

The 2D lattice of Poly-bi-[8]-annulenylene has repeated
COT units in both the x and y directions connected by
squares. This lattice geometry has squares and octagons
as its fundamental plaquettes. We investigate the lat-
tice cleaved at 450 as it reduces the lattice to a square
with only four sites per unit cell, marked in red in Fig.
9(a). The lattice vectors in Fig. 9(a) are a⃗1 = (1, 0) and
a⃗2 = (0, 1) with lattice constant taken to be unity. The
Hamiltonian in the reciprocal space is given by,

H(k) =


0 w ve−iky t
w 0 t veikx

veiky t 0 w
t ve−ikx w 0

 (8)
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FIG. 6. (a)-(d)The energy spectrum with open boundary
conditions showing the absence and presence of zero modes
in different parameter regimes. The insets in (a)-(c) showing
eight edges of a finite Poly-bi-[8]-annulenylene for N=2 unit
cells

FIG. 7. Fluxes ϕ2 through the square and ϕ1 through Oc-
tagon plaquettes along the chosen clockwise direction. green
box: unit cell of Poly-bi-[8]-annulenylene

where v, w and t are nearest-neighbor hopping ampli-
tudes as shown in Fig. 9(a). Fig. 9(b) shows the band
structure of the model defined in Eq. 8 under PBC. Since
the unit cell has four sites, there are four bands in the
said figure. The band-crossing point is (0, 0). Our pri-
mary motivation is to explore the topological properties
of the lattice and study what conditions lead to the emer-
gence of zero-energy edge modes. To this end, we adopt
the same technique as discussed in [31] which involves
raising the time-reversal invariance thereby culminating
in band-opening at (0, 0). This is akin to introducing a
complex hopping parameter for nearest-neighboring in-
teractions such that the resulting Hamiltonian has the
following form,

0 we−iϕ ve−ikye−iϕ te−iϕ

w 0 te−iϕ veikxeiϕ

veikyeiϕ teiϕ 0 we−iϕ

teiϕ ve−ikxeiϕ w 0

 (9)

FIG. 8. Color-coded plot of (a) Flatness ratio g for the
Valence band (b) Flatness ratio g for the Conduction band in
(ϕ1, ϕ2) plane for v = w = t = 1.

FIG. 9. (a) Square-Octagon lattice of Poly-bi-[8]-
annulenylene in 2D with unit cell containing 4 sites boxed.
(b) Bandstructure with v = w = t = 1 (c) Bandstructure
with v = 2, w = 1, t = 1, ϕ = π/2 as described by the new
Hamiltonian Eq. 9

where eiϕ is the complex hopping term introduced. In
Fig. 9(c) we show the resultant bandstructure of the
model defined in Eq. 9 wherein band-opening as dis-
cussed above is clearly evidentiated.
To envision the edge modes, it is sufficient to consider

quasi-OBC i.e. periodicity in x-direction and aperiodic-
ity in y-direction thus forming a cylindrical strip as ex-
plained in Methods. We show the appearance of zero
energy eigenmodes corresponding to this type of edge in
the eigenspectrum Fig. 10(b), marked in red. We observe
that such edge modes only occur in the topological phase
for particular values of the parameters of the Hamiltonian
after breaking the time-reversal symmetry of our system
with complex coupling terms thereby indicating the for-
mation of topological edge modes.

CONCLUSION

We have studied the topology of COT and its associ-
ated polymeric structure: Poly-bi-[8]-annulenelene. We
have presented ways to construct a number of topologi-
cal excitations i.e. zero-energy edge modes both in strong
as well as weak coupling regimes. By realizing the fact
that the application of an external magnetic field affects
the flatness of the bands, We have constructed system-
atic ways to tune the flatness of all the bands with uni-
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FIG. 10. (a) Spectrum of OBC along y- the direction
and PBC in the x-direction. Marked in red: Edge modes
(b)Spectrum of OBC along y- the direction and PBC in the
x-direction. Marked in red: Edge modes (c) Electron density
distribution of Edge Mode excitation (d) Electron density dis-
tribution of a Bulk Mode. (Ny denotes the number of finite
unite cells taken along the y-direction)

form fluxes through every plaquette of the lattice geome-
try of 1D Poly-bi-[8]-annulenylene. The 2D extension of
these polymers has Dirac points (similar to Graphene)
and also supports topological phases upon lifting the
time-reversal symmetry. The resilience of the incipi-
ent edge modes against noise has been discussed exten-
sively (see Appendix & ). The discussed structures not
only show promising conducting properties making them
fundamental candidates for the Li/Na-ion batteries[44]-
[45, 71] but also as we have shown in this article possess
inherent topological characteristics and flatbands in the
presence of an external magnetic field. Such insights are

crucial to understanding its conducting properties and
open the possibility of using these polymers as an alter-
native experimental ground to observe many flat-band-
related phenomena as opposed to the previously used
MOF/COF based platforms.
Another interesting avenue which may benefit from a

more careful investigation (to be undertaken shortly) is
the prospect of simulating the physical effects studied
in this article on a quantum hardware. With the re-
cent advent of engineering lattices with superconduct-
ing qubits/cold atoms, COT and COT-based polymers
could be engineered on table-top experiments and fur-
ther exploited for their rich topological properties not
only within a spinless fermionic model but can also be
realized using a spin graph phase as has been discussed
explicitly in Section XXXX of the Supplementary Infor-
mation. In fact hybrid quantum simulation of materials
and molecules and other physical systems have already
begun to gain attention with interesting possibilities be-
ing explored [72–77] including harnessing exotic corre-
lation like entanglement [78]. Taking a step further we
show in this article that an engineered spin hamiltonian
i.e. a Kitaev spin liquid(KSL) is capable of generating
the same interaction as illustrated in Eq.9 after Jordan-
Wigner transformation and majoranization. This opens
up a lot of possibility for direct experimental simulation
of the 2D-lattice on a superconducting hardware or even
a cold-atom based quantum simulator[79, 80]. In short,
we have just scratched the surface. The scope of possi-
bilities to develop Poly-bi-[8]-annulenylene (in both 1D
and 2D) as the next prospective candidate for beneficial
applications as well as for procuring fundamental theoret-
ical insight is practically endless. The authors hope that
the findings in this article will duly bring into limelight
other members of the tri-co-ordinated graphed lattices
to unravel the unforeseen and untapped chemistry these
candidates are capable of displaying.
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METHODS

Calculation of Winding Number for COT

The winding number of the COT envisioned as an
SSH chain is a topological invariant that characterizes
its topological phase in 1D. This topological invariant

described by the number of times the winding vector d⃗k
of the SSH hamiltonian winds around the origin as shown
in Figs.3(d)-(f) is given by[51],

γ =
1

2π

∫ π

−π

(d⃗k × dd⃗k
dk

) dk =

{
1, |v/w| < 1

0, |v/w| > 1
(10)

Pierls Substitution & Flatness Ratios

The pierls substitution terms in the hopping parame-
ters of the hamiltonian and the flatness ratios computed
to measure the flatness of the bloch bands are discussed
in this section. Considering uniform fluxes ϕ1 and ϕ2
through the octagon and square plaquettes as shown in
Fig. 7 the resulting modification in the hopping terms
along the octagon plaquette,

eiϕ[−v(c†r,4cr,7),−w(c
†
r,8cr,7),−v(c

†
r,1cr,8),−t(c

†
r,2cr,1),

−v(c†r,5cr,2),−w(c
†
r,6cr,5),−v(c

†
r,3cr,6),−t(c

†
r,4cr,3)]

and along the square plaquette,

eiϕ[−w(c†r,4cr,1),−t(c
†
r,3cr,4),−w(c

†
r,2cr,3),−t(c

†
r,1cr,2)]

and their hermitian-conjugate(h.c) parts.
The Flatness ratio g = Ebw/∆[81–83], where Ebw

is the bandwidth and ∆ is the bandgap is defined
for the Valence band(VB) and Conduction Bands(CB).
For all other bands, We consider the ratio h =

⟨VF ⟩−(+)
K /⟨VF ⟩V B(CB)

K where ⟨VF ⟩K denotes fermi-
velocity averaged over the entire BZ and −(+) denote
negative(positive) Energy Bloch bands of the concerned
system. The corresponding color-coded plots for the
other bands are as follows.

Tight-Binding: Finite Size Calculations

To study finite-size effects we consider quasi-OBC i.e.
open boundary condition along y keeping the periodic-
ity intact along x as shown in Fig. 12. This forms a
cylindrical strip with a finite number of cells in the y-
direction alone thus forming zig-zag edges as shown. For
instance, for Ny = 4 unit cells, the quasi-OBC hamito-
nian of PO[8]A in 2D has the form,
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FIG. 11. Color-coded plot of (a)-(c) Flatness ratio h for the
negative energy bands (d)-(f) Flatness ratio h for the positive
energy bands in (ϕ1, ϕ2) plane for v = w = t = 1.

FIG. 12. Schematic of a cylindrical strip with PBC along x
and OBC along y-directions. Ny denotes the finite number of
unit cells considered along the y-direction



0 we−iϕ 0 te−iϕ 0 0 0 0
weiϕ 0 te−iϕ veikxe−iϕ 0 0 0 0
0 teiϕ 0 we−iϕ ve−iϕ 0 0 0
teiϕ ve−ikxeiϕ 0 weiϕ 0 0 0 0
0 0 veiϕ 0 0 we−iϕ 0 te−iϕ

0 0 0 0 weiϕ 0 te−iϕ veikxe−iϕ

0 0 0 0 0 teiϕ 0 we−iϕ

0 0 0 0 teiϕ veiϕe−ikx weiϕ 0



SUPPLEMENTARY MATERIAL

KITAEV SPIN LIQUID(KSL) ON 2D
POLY-BI-[8]-ANNULENYLENE

In this section, we shall discuss a protocol to physically
realize an effective Hamiltonian in Eq. 8 with a Kitaev
spin liquid phase(KSL)[84–86] which affords an interact-
ing spin-graph with tunable interactions. We shall expli-

cate analytically as well as numerically how the hopping
parameters of the TB Hamiltonian can in turn be con-
trolled by the parameters of the spin-spin interactions of
the model. The Hamiltonian is given by,

Hkitaev = −Jx
∑

(i,j)∈x

σx
i σ

x
j−Jy

∑
(i,j)∈y

σy
i σ

y
j−Jz

∑
(i,j)∈z

σz
i σ

z
j

(11)
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The above hamiltonian in 2D lattice geometry of Poly-
bi-[8]-annulenylene is given by[84],

Hkitaev =− Jx
∑
r

(σx
r−a1,4σ

x
r,1 + σx

r,2σ
x
r−a2,3)

− Jy
∑
r

(σy
r,1σ

y
r,2 + σy

r,3σ
y
r,4

− Jz
∑
r

(σz
r,1σ

z
r,3 + σz

r,2σ
z
r,4) (12)

Where r, i denotes the position with i = 1, 2, 3, 4 covering
all sites in the unit cell and (Jx, Jy, Jz) are the bonds as
shown in Fig. 13(a). Under Jordan-Wigner Transforma-
tion and majoranization following the Kitaev’s protocol
[84], We have the Hamiltonian in k-space as,

H(k) =


0 −iJy

4 −iJx

4 e
−iky −iJz

4

i
Jy

4 0 −iJz

4 iJx

4 e
ikx

iJx

4 e
iky iJz

4 0 −iJy

4

iJz

4 −iJx

4 e
−ikx i

Jy

4 0


(13)

The Majorana band structure of the above Hamiltonian

FIG. 13. (a) Spin graph of KSL on square octagon lattice
with bonds: (Jx, Jy, Jz) (b) Phase diagram of KSL on square
octagon lattice on a fixed triangle Jx + Jy + Jz = 1. The two
insulator phases are shown in yellow and red with the yellow
region hosting the Majorana edge modes.

has two gapped phases as shown in red and yellow in the
phase diagram (see Fig. 13). For the topological phase
(i.e. the yellow region in Fig. 13, The eigenstate density

of the zero energy bands peaks at the edges of the chain
and behaves as a Majorana edge state similar to that
as shown in Fig. 10(d). These two phases are indeed
distinguished by a Z2 invariant[87].

EDGE STATE RESILLIENCE

In this section, We study the resilience of zero energy
modes against the effects of the disorder[88]. The dis-
order is introduced in the control parameters (i.e. the
hopping amplitudes) as follows,

Tij → Tij + δT ϵ (14)
Where Tij is a hopping amplitude in a clean Hamiltonian
between sites i and j. δT is the strength of the disorder
and ϵ is a random number sampled between −1 and 1.
We study two cases, 1) Resilience against a fixed δT 2)
Resilience against varying strengths of disorder δT .

Poly-bi-[8]-annulenylene(PO[8]A) in 1D

Fixed strength: In this case, We study the resilience of
the zero energy modes with the disorder type of fixed dis-
order strength but a varying random number in the indi-
vidual parameters of the Hamiltonian (Eq. 5) v, w and t
respectively, analyzing the effects on both one parameter
at a time Figs. 14(a)-(d) and all the three simultaneously
as in Fig. 14(e). Varying strength: In this case, The dis-
order strength is varied along with a sampled random
number in the individual parameters of the Hamiltonian
(Eq. 5). Figures 14(e)-(h) show the propagation of the
zero energy modes under the above-mentioned disorder
type.

Poly-bi-[8]-annulenylene(PO[8]A) in 2D

For 2D lattice, The resilience of edge state electron
density has been reported in Figs. 15(a)-(d) for a fixed
disorder strength and Figs. 15(e)-(h) for varying disorder
strength in different parameters of the Hamiltonian given
by Eq. 12
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FIG. 14. (a)-(d) Resilience of zero modes with fixed Gaussian disorder strength (e)-(h) Resilience of zero modes with varying
strength of Gaussian disorder strength

FIG. 15. (a)-(d) Resilience of edge state electron density with varying strength of Gaussian disorder (e)-(h) Resilience of edge
state electron density with fixed Gaussian disorder strength


