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Abstract

URLSs are fundamental elements of web applications. By applying vector algorithms, we built a fast standard-compliant C++
implementation. Our parser uses three times fewer instructions than competing parsers following WHATWG URL standard
(e.g., Servo’s rust-url) and up to eight times fewer instructions than the popular curl parser. The Node.js environment adopted
our C++ library. In our tests on realistic data, a recent Node.js version (20.0) with our parser is four to five times faster than

the last version with the legacy URL parser.
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1 | INTRODUCTION

A Uniform Resource Locator (URL) is a unique identifier that defines a resource on the web. A typical URL might
provide a protocol, a domain and a path. We offer several URL examples in Table 1.

Berners-Lee et al. (2005) defined the URL syntax was defined in the Request for Comments (RFC) 3986 [1].
However, the standard evolved organically through various implementations over the years. To address the grow-
ing difference between existing standards and practice—most notably in web browsers—the Web Hypertext Appli-
cation Technology Working Group proposed the WHATWG URL Standard in 2012 [? ]. Most of the popular web
browsers (e.g., from Apple, Mozilla or Google) abide by the WHATWG URL standard. Unfortunately, many standard
libraries still fail to follow the WHATWG URL standard: we verified that support is missing in the Java standard li-
brary (java.net.URL), in the Go standard library (net/url) and in Python’s ur11ib library. Furthermore, popular URL
parsers often differ in how they interpret URL strings [2, 3].

URL parsing consists in taking an input string and identifying the various components while normalizing them as
needed. For example, the input string http: ///RIFIRE . 7E/ . /a/ . . /b/ . /c should be normalized to the string

https://xn-6qqa088eba.xn-3ds/b/c
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where https: represent the protocol, xn-6qqa088eba. xn-3ds is the host, and /b/c is the path. We may also need to
parse a URL string relative to another string. For example, given the base string http://example.org/foo/bar, the
relative string http:/example.com/ leads to the final URL http://example.org/example.com/. We should also be
able to modify the various components of a URL (protocol, host, username, etc.). To illustrate the complexity, our C++
software library implementing the WHATWG URL standard—and little else—has approximately 20000 lines of code.

The WHATWG URL standard follows the robustness principle (Postel’s law): be conservative in what you send, be
liberal in what you accept. Parsing URLs using the WHATWG URL standard can be more challenging than using the
earlier standard (RFC 3986). For example, consider the string https://\tlemire.me/en/ where \t is the tabulation
character. The WHATWG URL standard requires us to ignore the tabulation characters. A conventional URL parser
following RFC 3986 (e.g., curl!) would reject such a string.

There are many components that impact the performance of a web application but URL parsing is practically
always required. URL parsing is relatively expensive. Parsing a single URL may take 4 us on average in a system like
Node.js. In our tests, the popular curl library can parse about half a million URLs per second, yet a fast C++ number
parser—converting ASCII number strings to binary floating-point numbers—can process more than 50 million numbers
per second [4]. Thus we can parse almost 100 floating-point numbers in the time it takes curl to parse a single URL.

We think that popular systems such as Node.js should be able to parse several million URLs per second on modern
systems without sacrificing correctness or safety. We present our work on the efficient implementation of the current
WHATWG specification. Our implementation is freely available.2 We provide benchmarks and comparisons with
other fast and popular URL parsers in C, C++, and Rust, whether they follow RFC 3986 [1] (curl and Boost.URL) or
WHATWG URL (Servo rust-url). We review various strategies that are efficient when parsing strings.

Our work has been integrated into the popular Node.js JavaScript runtime environment over several versions,
concluding with a final integration in Node.js version 20. We are therefore able to run JavaScript benchmarks before
the inclusion of our fast parser (e.g., Node.js version 18) and after its complete integration (e.g., Node.js version 20).
Though many factors contribute to improved performance, we estimate that the large performance gains in URL

parsing are mostly the result of our work.

2 | RELATED WORK

Much of the academic research regarding URLs relates to security issues. For example, Ajmani et al. [2] as well as
Reynolds et al. [3] test a wide range of popular URL parsers: they find many differences and discuss the security
implications of these differences. In our work, we sought to provide complete and rigorous support to the WHATWG
URL specification.

To our knowledge, there is no related work on the production of high-performance URL parsers. However, there
is related work regarding the high-performance parsing of web formats. Park et al. [5] show that we can improve the
performance of web applications by parsing JavaScript concurrently. XML parsing has received much attention: e.g.,
Van Engelen proposes fast XML parsing with deterministic finite state automata [6], Kostoulas et al. achieve higher
XML parsing speed by avoiding unnecessary data copying and transformation [7], Cameron et al. show that we can
parse XML faster using SIMD instructions [8]. There is also much work regarding JSON parsing: e.g., Langdale and

Lemire show that we can parse gigabytes of JSON per second using branchless routines and vectorization [9]. Binary

1Curl stands for command line tool and library for transferring data with URLs and it is sometimes capitalized as cURL though the official documentation and
website use a lowercase name: curl.
2https://www.github. com/ada-url/ada
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TABLE 1 URL examples.

Long URLs http://nodejs.org:89/docs/latest/api/foo/bar/qua/13949281/0£28b/
/5d49/b3020/url . html#test?payloadl=true&payload2=false&test=1&
benchmark=3&f00=38.38.011.293&bar=1234834910480&test=19299&3992&key=
£5c65e1e98fe07e648249ad41e1cfdb0

Short URLs https://nodejs.org/en/blog/

IDN http:/ /K& VR 15 7£

File file:///foo/bar/test/node.js

Websocket ws://localhost:9229/£46db715-70df -43ad-a359-7£9949£39868
Authentication https://user:pass@example.com/path?search=1

JavaScript javascript:alert("nodeisawesome") ;

Percent Encoding https://%E4),BD%A0/foo

Pathname with dots  https://example.org/./a/../b/./c

data is commonly published online using segments of base64 code: we can greatly accelerate the coding and decoding
of these segments [10, 11].

3 | PARSING URL STRINGS

A URL string consists of many substrings. We refer to these substrings as components. Once normalized, URL strings
are ASCII but a parser may receive a Unicode string.

A URL string typically begins with a protocol (or scheme) string: e.g., the string http in http://google.com. The
WHATWG URL specification recognizes special protocols that are subject to different constraints: ftp, file, http,
https, ws, and wss. The protocol string is terminated by the colon character (‘:’).

The protocol might be followed by a host. In such cases, the protocol-terminating colon character is followed
by two slash characters ‘//’. A host might be preceded by credentials. Credentials in a URL define the username
with an optional password split with the ‘:’ character. E.g., postgresql://username:password@localhost:5432. To
have credentials, a URL string must not have the protocol file and it must have a non-empty host. A host begins
with a hostname string, optionally followed by the colon character (‘:') and a port number string. Thus, given the
URL string data://example.com: 8080/pathname?search, the host is example.com:8080 whereas the hostname is
example.com. URL strings with a special protocol must contain a host, whereas it is optional for other types of URL
strings. Host names may be domain names, IPv4, or IPvé6 addresses.

e Fornon-ASCIl domain names, we must follow RFC 2390 [12] which involves converting Unicode to punycode [13]
and checking that various rules are satisfied.

e The IPv4 address is a 32-bit unsigned integer that identifies a network address. The WHATWG URL specification
considers both 192.168.1.1 and 192.0x00A80001 as valid and equivalent IPv4 addresses. The normalized URL
string is made of four decimal integers (192.168.1.1).

e The IPvé6 address is a 128-bit unsigned integer that identifies a network address. It is represented as a list of

eight 16-bit unsigned integers, also known as IPvé pieces. We surround IPvé6 addresses by square brackets: e.g.,


http://nodejs.org:89/docs/latest/api/foo/bar/qua/13949281/0f28b//5d49/b3020/url.html#test?payload1=true&payload2=false&test=1&benchmark=3&foo=38.38.011.293&bar=1234834910480&test=19299&3992&key=f5c65e1e98fe07e648249ad41e1cfdb0
http://nodejs.org:89/docs/latest/api/foo/bar/qua/13949281/0f28b//5d49/b3020/url.html#test?payload1=true&payload2=false&test=1&benchmark=3&foo=38.38.011.293&bar=1234834910480&test=19299&3992&key=f5c65e1e98fe07e648249ad41e1cfdb0
http://nodejs.org:89/docs/latest/api/foo/bar/qua/13949281/0f28b//5d49/b3020/url.html#test?payload1=true&payload2=false&test=1&benchmark=3&foo=38.38.011.293&bar=1234834910480&test=19299&3992&key=f5c65e1e98fe07e648249ad41e1cfdb0
http://nodejs.org:89/docs/latest/api/foo/bar/qua/13949281/0f28b//5d49/b3020/url.html#test?payload1=true&payload2=false&test=1&benchmark=3&foo=38.38.011.293&bar=1234834910480&test=19299&3992&key=f5c65e1e98fe07e648249ad41e1cfdb0
https://nodejs.org/en/blog/
file:///foo/bar/test/node.js
ws://localhost:9229/f46db715-70df-43ad-a359-7f9949f39868
https://user:pass@example.com/path?search=1
javascript:alert("node is awesome");
https://%E4%BD%A0/foo
https://example.org/./a/../b/./c
postgresql://username:password@localhost:5432
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http://[c141:ffff:0: ffff :fFfff:ffLFFEFFFEFF].

e Port numbers are represented by 16-bit integers with a maximum value of 65536. Special protocol have default
ports: e.g., the http protocol has default port 80. Default ports are omitted in the normalized string. The file
protocol cannot have a port. It is also disallowed to have port without a hostname.

Itis possible for a URL to have no host (and thus no credentials), in which case the protocol string is not followed by
twoslashes‘//": e.g.,non-spec:/.//p. The standard distinguishes between an empty host (e.g., protocol:///mypath)
and a missing host (e.g., protocol: /mypath).

A URL string may contain a pathname after the protocol and (optional) host. If there is no host then the pathname is
opaque: e.g., the URL mailto: john@doe. com has the opaque pathname john@doe.com. Otherwise a URL pathname
starts with ‘/’. If the host is empty, there might be a sequence of three slash characters: e.g. file:///file.txt.
The pathname is always optional. If the pathname contains non-ASCII characters, they are percent encoded: treating
the characters as UTF-8 bytes, we replace non-ASCII characters with a sequence of 4’ characters followed by two-
character hexadecimal codes. For example, the character é is replaced by the sequence %C3%A9.

We may then have a search component (also called a query). A URL search component is represented by either
null or an ASCII string and starts with the character ‘?". It is usual for the search component to content a sequence
of key-value pairs separated by the ampersand character ‘¢’ and linked by the equal sign ‘=": ?a=b&c=d. The search
component is percent-encoded as needed. Similarly, we may have a hash component (also called a fragment). The
URL hash is the URL part that starts with the ‘4’ character. It may also be percent-encoded.

4 | FAST PARSING

The WHATWG URL standard is specified as an algorithm following a state-machine. See Fig. 1. URL parsing begins in
the Scheme Start state. The algorithm consumes one character at a time, and changes state according to state-specific
rules. In certain scenarios, the URL state machine reverses the iteration and goes back, resulting in re-iterating the
same character more than once.

We wrote our parser in C++ by initially following the finite-state design. However, the byte-by-byte processing
implied by the standard is a poor choice for performance. Thus we adapted the design so that once we enter a state,
we fully consume the relevant component of the URL string, as much as possible.

The standard also suggests that each component is parsed into a separate string instance. Though we optionally
support this design, our default is to parse into a single string which constitutes the normalized string at the end of the
parsing. We call the result an url_aggregator because the components are aggregated during parsing into a single
buffer. Having a single buffer has several performance benefits:

e At the beginning of the parsing, we allocate a buffer that has the size of the input string, rounded up to the next
power of two. Usually there is no need for further memory allocation or copying. By allocating less memory, we
reduce the probability of incurring expensive cache misses.

e When querying for string components, or for the normalized string, there is no need to generate and allocate a
new string instance. We may simply return an immutable view on the underlying buffer. It is made convenient
by the introduction of the string_view class in C++17 but it is also convenient in other programming languages:

Rust has string slices (str), Java has CharSequence, C# has ReadOnlySpan<char> and so forth.

We expect that most components consumed from input URL strings do not need to be modified and they may be
copied as is. We optimized our code for this scenario by integrating tests leading to fast paths. For example, we must

remove tabulation and newline characters from input strings, since they are ignored during the processing. However,
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FIGURE 1 URL Parser State Machine

most input strings do not contain tabulation and newline characters. Thus we use a fast scanning function to verify that
there are no such characters. Common processors (Intel, AMD, ARM, POWER) support single-instruction-multiple-
data (SIMD) instructions. SIMD instructions operate on several words at once unlike regular instructions. Though
different processors support different SIMD instruction sets, there is some common ground. The 64-bit processors
from Intel and AMD (x64) are required to support SSE2 instructions while 64-bit ARM processors (Apple, Qualcomm,
etc.) support NEON instructions. We can use these instructions through intrinsic functions in C and C++: these special
functions often provide functionality similar to a given instruction (e.g., a NEON addition), without using assembly.
Fig. 2 illustrates one function scan for characters under x64 processors, using SSE2 intrinsic function. We have also
the equivalent function in NEON, as well as a fallback function for other processors. We detect the target family of
processors at compile time. Effectively, the routine compares each input character with the newline and tabulation
characters. When at one such character is found, we use a slow path where a temporary buffer is allocated. We write
a version of the input string to the temporary buffer while omitting the newline and tabulation characters. We find in
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bool has_tabs_or_newline(std::string_view user_input) {
size_t i = 0;
const __m128i maskil
const __ml128i mask2
const __mi128i mask3
__m128i running{0};
for (; i + 15 < user_input.size(); i += 16) {
__m128i word = _mm_loadu_si128((const __m128i*) (user_input.data() + i));
running = _mm_or_si128(
_mm_or_sil28(running, _mm_or_si128(_mm_cmpeq_epi8(word, maskl),
_mm_cmpeq_epi8(word, mask2))),
_mm_cmpeq_epi8(word, mask3));

_mm_setl_epi8(’\r’);
_mm_setl_epi8(’\n’);
_mm_setl_epi8(’\t’);

}
if (i < user_input.size()) {
uint8_t buffer[16]1{};
memcpy (buffer, user_input.data() + i, user_input.size() - i);
__m128i word = _mm_loadu_si128((const __mi128ix)buffer);
running = _mm_or_si128(
_mm_or_sil128(running, _mm_or_si128(_mm_cmpeq_epi8(word, maskl),
_mm_cmpeq_epi8(word, mask2))),
_mm_cmpeq_epi8(word, mask3));
}
return _mm_movemask_epi8(running) != 0;

}

FIGURE 2 Scan for tabulation and newline characters using SSE2 intrinsic functions. The ARM NEON version is
similar.

std::string_view is_special_list[] = {"http", " ",
Vlhttpsll’ HWS"’ Ilftpll s IIwSSII s "file”, " H};
enum type {
HTTP = 0, NOT_SPECIAL = 1, HTTPS = 2, WS = 3,
FTP = 4, WSS = 5, FILE = 6 };
type get_scheme_type(std::string_view scheme) {
if (scheme.empty()) { return NOT_SPECIAL; }
int hash_value = (2 * scheme.size() + (unsigned) (scheme[0])) & 7;
std::string_view target = is_special_list[hash_value];
if ((target[0] == scheme[0]) && (target.substr(l) == scheme.substr(1))) {
return type(hash_value);
} else { return NOT_SPECIAL; }

FIGURE 3 Analysis of the protocol string

practice that it is rarely needed.

Most of the strings begin with a protocol string (e.g., file or https). We must recognize a limited set of special
protocols specified by the WHATWG URL standard. We identify that first occurrence of the colon character ‘:’ and
seek to recognize quickly the protocol. We expect most protocol strings to be special in practice: it is uncommon for
protocols not to be one of http, https, ws, wss, ftp or file. We designed a perfect hash function [14] (see Fig. 3).
Based solely on the length of the protocol string and the first character, we can distinguish any one of the special
protocols. The perfect hash function returns an integer value between 0 and 6 inclusively. At several steps during the
processing, the standard requires us to check the protocol. If we merely store a string value representing the protocol,
then we may need to do a string-to-string comparison each time. Instead, for example, we can verify whether we
have file protocol by comparing the protocol type with the integer value 6: an integer-to-integer comparison may

result in a single instructions once compiled unlike a string comparison.

Most URL strings have a host string that must be processed. In the majority of cases, the host string requires no
further processing: it is a lower-case ASCII string. We use the function of Fig. 4 to identify problematic characteristics.

Effectively, it is a stream of table lookups with bitwise OR operations. Though we could use SIMD instructions for
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static uint8_t is_forbidden_domain_code_point_table_or_upper[] = {

1, 1,1, ¢, ¢, ¢, 1,1, 1,1,1,1, 1,1, 1, 1, 1, 1, 1, 1,1, 1,1, 1,
1, 1,1,1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,
6, o, 0, 0, 0, 0, 0, 0, 0, 0,1, 0,1,0,1,1,1,2, 2,2, 2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,0,
¢, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, 0, O,
o, 0, 0,0,1,0,0,1,1,1,1,1,1,1,1, 1,1, 1,1, 1,1, 1,1, 1,
1, 1,1, ¢, ¢, 2,1, 1,1,1,1,1, 1,1, 1,1, 1, 1, 1, 1,1, 1,1, 1,
1, 1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1, 1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1};

bool contains_forbidden_domain_code_point_or_upper(
const char* input, size_t length) noexcept {
uint8_t accumulator{};
for (size_t i = 0; i < length; i++) {
accumulator |=
is_forbidden_domain_code_point_table_or_upper [uint8_t (input[il)];
}

return accumulator;

FIGURE 4 Function to detect forbidden of upper-case characters in host string

this purpose, the hostnames are relatively short. When the host string contains non-ASCII lower-case characters, we
fall back on a relatively extensive normalization process which may include punycode encoding [12, 13]. About half
of our C++ source code (or 10000 lines) is dedicated to this normalization: thankfully it is rarely needed in practice.
We also include a fast routine to detect IPvé when the host string begins with the bracket ‘[. We also check for IPv4
by scanning for digits and the dot character ‘.’. As soon as an IPv6 or IPv4 address is found, we normalize it using a
specialized routine.

We must then process the rest of the URL string, including the path, the search, and the hash substrings. These
components may sometimes require percent-encoding. To avoid unnecessary percent-encoding, we search through
each substring for the first character that might require percent encoding, when none is found, we can skip percent
encoding entirely. Otherwise, we proceed with percent encoding from that character. We classify characters needing
percent encoding using fast table lookups.

A challenge with path processing is that while most path strings require little to no work, some of them require
potentially expensive processing. The fastest case is when there is no character needing percent encoding, no percent
character, no backslash, and no dot character. In this fastest case, we may copy the path string as is. The second
fastest case is when we can do without percent-encoding and there are no backslash nor percent characters. In
this second case, we may still need to do some processing (e.g., convert /././ to /), but it is still relatively simple.
These two cases amount to the majority of path strings found in realistic scenarios. Finally, we fall back on the
complete case where there might be backslashes and character encoding. The general case includes cases such as
http://www.google.com/path/%2e./ which must be normalized to http://www.google.com/ (maybe surprisingly)
because %2e. is equivalent to ‘. ." which instructions us to shorten the path. To quickly classify the path strings, we
use the algorithm of Fig. 5 which identifies the type of characters present:

e The first bit is set whenever there is a forbidden character that needs percent-encoding.
e The second bit is set whenever the backslash character is present.
e The third bit is set whenever a dot character is present.

e The fourth bit is set whenever the percent character is present.

We call the result of the function a path signature. We could use SIMD instructions for the computation of the path

signature—it would be beneficial for long paths—but our signature routine is already efficient.
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static uint8_t path_signature_table[256] = {
1, 1,1, 1, ¢, ¢, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1,1, 1,1, 1,
1,1,1,1,1,1,1,1,1,0,1,1,0,8,0,0,0,0,0,0,0,0, 4,0,
o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, 1, O, 1, 1, 0O, O, O, O, O, O, O, O,
o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, 2, 0, O, O,
i, 0, 0,0,0,0,0,0,0,0,00000000,0,0,0,0,0,0,
0,0,0,1,0,1,0,1,1,1,1,1,1, 1,1, 1,1, 1,1, 1,1, 1, 1,1,
1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1};
uint8_t path_signature(std::string_view input) {
uint8_t accumulator{};
for (size_t i = 0; i < input.size(); i++) {
accumulator |= path_signature_table[uint8_t(input[i])];
}
return accumulator;
}
FIGURE 5 Path-signature function
https://user:pass@example.com:1234/foo/bar?baz#quux
hash_start

search_start
pathname_start
port

host_end
host_start
username_end
protocol_end

FIGURE 6 Component indexes

As we parse the input strings, we store the components (e.g., protocol, hostname) on a single buffer that becomes
our normalized string. To record the location of the components, we use a convention similar to other parsers (e.g.,
Servo rust-url): counting the normalized string length, we only need nine integers to characterize a parsed URL. See
Fig. 6. In our actual implementation compiled with GCC 12 under Linux, we use 80 bytes per URL (not counting
the dynamic memory allocation), of which 32 bytes are used by the std: : string instance that we use as our buffer.
Though our memory usage could be further optimized, it is clear that storing multiple std: : string instances would

use much more memory.

4.1 | JavaScript Integration

In a system like Node.js, calling C++ from JavaScript can be relatively expensive. Indeed, creating a new JavaScript
string instance from C++ data can be a costly operation. With our design where we have a single normalized string,
we just need to additionally pass some integer offsets to indicate the position of the components in the string. We
also provide JavaScript with the protocol type as an integer, which allows (for example) to check that we have a file
URL with a single integer comparison. Components such as protocol, hostname, pathname, search, hash, etc. are
computed as needed as substrings of the normalized string from within JavaScript. In effect, we reduce as much as

possible the need to copy strings between C++ and JavaScript, relying instead on integer values.
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5 | BENCHMARKS

For C++ benchmarking, we use the release 2.4.1 for the Ada library. Our implementation is safe and correct in the
sense that it has undergone thorough testing, including extensive tests with random inputs (fuzzing).
To directly compare our C++ implementation, we use the following competitors:

e A high-quality WHATWG URL C++ library published as open-source software by Misevi¢ius.3 We use a code
snapshot from January 26 2023.

e We use the Boost.URL C++ library version 1.81.0.

e We use the rust-url library (version 0.1.0) from the Servo web browser engine?, building it with Rust 1.65. The
Firefox browser relies on the rust-url library.

e We also use curl 7.81.0.

Both curl and Boost.URL follow the RFC 3986 standard [1] so direct comparisons must be done with care. We believe
that the WHATWG URL standard is more demanding: we expect that all RFC 3986 URLs are valid WHATWG URLs.

We considered adding URL parsers from major browsers (Chrome, Safari, etc.), but we were not able to use them
as standalone components. Some of the browsers rely on customized memory allocators and other specialized code
that is difficult to remove or isolate. We found other URL parsers, but we believe that the standalone parsers we
have selected are representative of the state-of-the-art: all of them are well maintained, reasonably fast, and well
documented.

Our benchmark code consumes the URLs taken from large datasets: we ask each parser to normalize the strings.
We use Google Benchmarks to derive accurate timings. We also add additional code to capture CPU performance
counters (cycles and instructions retired).

We gathered a collection of realistic URLs for benchmarking purposes and we make them freely available.>

e The wikipedia 100k dataset contains 100000 URLs from a snapshot of all Wikipedia articles as URLs (collected
March 6th, 2023).

e The top 100 dataset contains 100031 URLs found in a crawl of the top 100 most popular websites on the Internet.
It contains some invalid URLs: 26 URLs according to the WHATWG URL specification are invalid. The curl parser
finds 130 invalid URLs whereas the Boost.URL parser identifies 201 invalid URLs. We make freely available the
JavaScript software we used to construct this dataset.® Fig. 7 presents two histograms regarding this dataset.
The first histogram shows that the size of the host in bytes ranges roughly between 10 and 30 bytes, with some
outliers. The total size of URL string ranges between a few bytes and hundreds of bytes. Most URLs use between
50 and 100 bytes.

e The Linux files dataset contains all files from a Linux system as URLs (169 312 URLs).

e The userbait dataset contains 11430 URLs from a phishing benchmark.”

In some experiments, we also include another dataset: the kasztp dataset is made of 48 009 URLs from a URL shortener
benchmark.®

When they are not ASCII, all URLs are processed as UTF-8 strings. The conversion from UTF-16 inputs to UTF-
8 would be take little computation [15]. We assume that all inputs are valid Unicode, validation would be similarly

3https ://github.com/rmisev/url_whatwg
“https://servo.org

5https ://github.com/ada-url/url-various-datasets
Shttps://github.com/ada-url/url-dataset

7h1:1:ps ://github.com/userbait/phishing_sites_detector
8h1:1:ps ://github.com/kasztp/URL_Shortener
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FIGURE 7 Histograms for the top 100 URL dataset (100031 URLs)

TABLE 2 Systems

Processor Frequency Microarchitecture Memory Compiler
AMD EPYC 7262 3.4GHz Zen 2 (x64,2019) DDR4 (3200 MT/s) GCC 11
Apple M2 3.0GHz Avalanche (aarch64, 2022) LPDDRS5 (6400 MT/s)  Apple/LLVM 14

require little computation [16].

We also benchmark URL parsing within JavaScript runtime environments. We used Node.js which can run JavaScript
on servers using the Google v8 JavaScript engine. It contains additional code written in C++ and JavaScript. Apart
from the popular Node.js runtime environment, we selected two similar environments. Deno resembles Node.js in
that it also relies on the v8 JavaScript engine; it is written in Rust instead of C++. Bun is another JavaScript envi-
ronment but it replaces Google v8 with the WebKit's JavaScript engine (upon which Apple Safari is based). Bun is
also written in part with C++ and Zig. We use deno (version 1.32.5), bun (version bun 0.5.9), and Node.js (versions
18.16.0 and 20.1.0). All systems run the same scripts, parsing the URLs from the top 100 dataset. We make our script
available.?

We run our benchmarks on the two systems presented in Table 2. The AMD server runs Ubuntu 22.04 whereas
the Apple processor is on a standard MacBook Air (2022). We monitor the effective frequency and find that the
MacBook Air remains at 3.0 GHz whereas the AMD servers maintain 3.4 GHz. We find little variation in the effective
frequency between tests (within 1 %). Our benchmark should not be interpreted as an assessment of the performance
of ARM versus x64, or of AMD versus Apple. We use different hardware systems, released at different times, to arrive
at a more robust comparison of the software.

Fig. 8 gives the number of millions of URLs processed per second for different datasets and different software
libraries. Our parser (Ada) dominates, being often twice as fast as other parsers. It is consistently faster than 3 mil-
lion URLs per second on the AMD system, and faster than 5 million URLs per second on the Apple system. On the
Linux files dataset, the WHATWG URL C++ parser has excellent performance on the AMD system, exceeding 2.5 mil-

9h1:1:ps ://github.com/ada-url/js_url_benchmark
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FIGURE 8 Millions of URLs processed per second in C++ benchmarks

lion URLs per second. The curl parser is the slowest in our tests: its performance is approximately 0.5 million URLs
per second on the AMD system, and nearly 1 million URLs per second on the Apple system.

Similarly, Fig. 9 gives the number of millions of URLs processed per second for different datasets and different
JavaScript systems. Node.js 20, with our Ada URL parser has the best performance. However, bun also provides excel-
lent performance, especially on the line files dataset where it comes close to Node.js 20. Roughly speaking, compared
to the C++ benchmarks (Fig. 8), the speeds are about half: Node.js 20 is consistently faster than 1.5 million URLs
per second on the AMD system, and faster than 2.5 million URLs per second on the Apple system. It suggests that
about half of the processing is tied to the JavaScript system, some of it spent in C++, and the rest in JavaScript. The
most important difference is between Node.js 20 and Node.js 18 (which lacked Ada): Node.js 20 is four times faster
on the Apple system and five times faster on the AMD system. We believe that it is essentially attributable to the
replacement of the legacy URL parser by Ada. Node.js went from having the worst performance on URL parsing to
the best performance compared to bun and deno.

Table 3 presents the collected performance counters while running the C++ benchmark, while Table 4 has the
performance counters for the Apple system. Ada requires consistently fewer instructions than the other parsers. For
example, on the top 100 dataset, it required 2200 instructions per URL (AMD) and 2400 instructions per URL (Apple)
compared to 18000 and 19 000 for curl: Ada required eight times fewer instructions.

6 | CONCLUSION

We developed and released a new URL parser that provides full compliance with the WHATWG URL specification. It
replaced the legacy Node.js parser, multiplying the performance of URL parsing in Node.js. We believe that our good
results can be explained in large part by the following strategies: (1) reduce the number of memory allocations to a
minimum, using a single buffer if possible, (2) implement fast functions to check for common fast paths, (3) replace
strings with simpler types such as integers whenever possible. Our work suggests that there is still much room for
performance improvements in the software used to build web applications.

Future work could consider more advanced techniques. For example, we could design single-instruction-multiple-
data (SIMD) algorithms able to benefit from the powerful new instruction sets (e.g., AVX-512, SVE2). We expect that
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TABLE 3 Performance counters for Rome system

(a) wikipedia 100k (b) top 100
name instr./URL cycles/URL instr./cycle name instr./URL cycles/URL instr./cycle
ada 2000 910 22 ada 2200 1000 2.2
WHATWG URL 4800 1800 2.7 WHATWG URL 6700 2500 2.7
Boost.URL 6200 2600 24 Boost.URL 7200 3000 24
rust-url 6600 2600 2.5 rust-url 9500 4000 24
curl 14000 5500 2.5 curl 18000 7100 25

(c) Linux files (d) userbait
name instr./URL cycles/URL instr./cycle name instr./URL cycles/URL instr./cycle
ada 2000 890 22 ada 2100 1100 2.0
WHATWG URL 3700 1200 29 WHATWG URL 5600 2500 2.3
Boost.URL 7600 3100 24 Boost.URL 6500 3000 2.2
rust-url 7400 3200 2.3 rust-url 9400 4300 2.2
curl 11000 4100 2.6 curl 15000 6300 24

TABLE 4 Performance counters for Apple M2 system

(a) wikipedia 100k (b) top 100
name instr./URL  cycles/URL instr./cycle name instr./URL  cycles/URL instr./cycle
ada 2000 440 4.6 ada 2400 550 4.5
WHATWG URL 5900 1100 5.3 WHATWG URL 8200 1600 5.1
Boost.URL 3600 740 4.9 Boost.URL 4500 1000 4.5
rust-url 7200 1300 5.5 rust-url 10000 2000 5.0
curl 15000 3200 4.5 curl 19000 4200 4.5

(c) Linux files (d) userbait
name instr./URL  cycles/URL instr./cycle name instr./URL  cycles/URL instr./cycle
ada 2400 570 4.2 ada 2200 600 3.7
WHATWG URL 5600 1100 51 WHATWG URL 6700 1400 4.7
Boost.URL 4100 920 4.4 Boost.URL 4200 1000 4.1
rust-url 7900 1500 5.2 rust-url 10000 2300 4.5

curl 12000 2500 4.7 curl 16000 3900 4.1
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FIGURE 9 Millions of URLs processed per second in JavaScript runtime environments

significant gains in URL parsing are still possible. There are other important components of modern web applications

that could be optimized.
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