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Abstract

The continuous advancements in LC-MS/MS proteomics over the past decades have paved the way for transformative changes in

the field of medicine, particularly in the realms of preventive and personalized healthcare. Many new algorithms are evaluated

on unknown proteomes and using databases with annotated MS2-spectra. When the research is focused on MS1-spectra, such

databases are not available yet. Specifically, we propose a comprehensive workflow to extract MS1 isotope distributions from

spectra, which we validated using a proteomics standard kit comprising known proteins at varying concentrations in duplicate.

Our workflow incorporated a database search utilizing a state-of-the-art algorithm at 1% FDR. Through this approach, we

investigated the impact of protein concentration on the probability of protein identification. Confidently identified PSMs were

used to extract the MS1 isotope distributions through the proposed workflow. A total of 138.111 MS1 isotope distributions

were extracted. Isotope distributions with 2 or more peaks were compared with their theoretical isotope distributions using the

spectral angle. A median spectral angle of 0,101 and 0,0992 was observed in both samples indicating a high similarity. The

findings from this study were compiled into a dataset which can potentially facilitate the development of novel tools with a

focus on MS1 data.
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Abstract

The continuous advancements in LC-MS/MS proteomics over the past decades have paved the way for
transformative changes in the field of medicine, particularly in the realms of preventive and personalized
healthcare. Many new algorithms are evaluated on unknown proteomes and using databases with annotated
MS2-spectra. When the research is focused on MS1-spectra, such databases are not available yet. Specifi-
cally, we propose a comprehensive workflow to extract MS1 isotope distributions from spectra, which we
validated using a proteomics standard kit comprising known proteins at varying concentrations in duplicate.
Our workflow incorporated a database search utilizing a state-of-the-art algorithm at 1% FDR. Through this
approach, we investigated the impact of protein concentration on the probability of protein identification.
Confidently identified PSMs were used to extract the MS1 isotope distributions through the proposed work-
flow. A total of 138.111 MS1 isotope distributions were extracted. Isotope distributions with 2 or more peaks
were compared with their theoretical isotope distributions using the spectral angle. A median spectral angle
of 0,101 and 0,0992 was observed in both samples indicating a high similarity. The findings from this study

2



P
os

te
d

on
1

J
u
n

20
23

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
68

56
22

96
.6

28
40

06
7/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

were compiled into a dataset which can potentially facilitate the development of novel tools with a focus on
MS1 data.

Statement of Significance

LC-MS/MS-based proteomics is continuously advancing, allowing redefinition of disease at the molecular sca-
le, transforming curative medicine to preventive and personalized medicine. While there are numerous large,
annotated spectral databases available for the development of new bioinformatic tools focused on MS2data,
the same cannot be said for research focused on MS1 data. In the MS1 setting, each spectrum contains
multiple peptides, and the primary interest often lies in their isotope distributions. However, extracting this
information is not a straightforward task. Therefore, we propose a method to extract these isotope distribu-
tions combined with other important MS1 features in a PSM data-driven manner and summarize them in a
standardized format, creating an MS1 isotope distribution benchmark dataset. We applied this workflow on
a proteomics standard and demonstrated the results, showing a high similarity between the extracted and
theoretical isotope distributions. The workflow can be applied in the future to further extend the benchmark
dataset. The dataset itself can act as the foundation to develop new bioinformatic tools. The availability of
an extensive MS1 isotope distribution benchmark dataset will foster the development of innovative bioinfor-
matic tools, enabling researchers to unlock new insights and further advance our understanding of molecular
underpinnings of disease pathology.

Introduction

Continuous advancements from a technical point-of-view have made MS an appealing technique in different
research fields, for example proteomics. In proteomics, researchers often rely on bottom-up proteomics,
cleaving the proteins and peptides in a sample using digestion enzymes, e.g. trypsin, followed by LC-MS/MS.
Different subfields of research within proteomics have emerged, including biomarker discovery , drug discovery
, PTM research such as phosphorylation , immunopeptidomics , quantitative proteomics , and many more.
The capability of MS to rapidly sequence peptides and proteins, and to detect mutations and modifications
with an incredible high sensitivity makes it an appealing analytical tool to apply within a clinical setting.

Coupled with quantitative proteomics, MS-based proteomics has the potential redefine disease definitions at
the molecular level and help shift the current curative medicine towards personalized medicine . However,
current workflows are prone to experimental errors. Because of these experimental errors, it is essential to
make a formal comparison of different proteomics techniques when creating a proteomics workflow. In the
laboratory, different techniques may easily be compared by comparing the results from different laboratory
techniques. From a bioinformatics point-of-view, this is less straightforward. Different algorithms, albeit for
peptide identification, quantification, or different purposes, are usually compared on available experimental
datasets. However, the comparison of algorithms on these experimental datasets may not be truly justified.
Griss et al. found in a large-scale study done on the Proteomics Identifications Database (PRIDE) that on
average 75% of the spectra analyzed in a MS experiment remained unidentified . Unidentified could mean
three things: incorrectly identified, correctly identified but below scoring thresholds and truly unidentified.
Hence, relying on public datasets with unknown proteomes proposes challenges when comparing different
bioinformatic tools.

Additionally, machine learning (ML) and deep learning (DL) algorithms are becoming more popular in MS-
based proteomics due to advancements in the computational field and the availability of large amounts of
(training) data. As a consequence, these algorithms are now commonly used in every processing step of
mass spectrometry data. When performing spectral clustering prior to analyzing the data, GLEAMS is a
novel algorithm that relies on neural networks . For the identification of spectra, Ionbot and Casanovo are
recent machine learning and deep learning applications . Lastly, as a part of post-processing, the scores from

3
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PSMs are almost always rescored using algorithms to increase the amount peptide identifications. Commonly
used ML and DL algorithms for this purpose are Percolator , Prosit , MS2Rescore and MSBooster . Other
applications include, but are not limited to, the prediction of MS2 peak intensities from peptide sequences,
e.g. using Prosit, MS2PIP or AlphaPeptDeep , or retention time prediction, e.g. using AlphaPeptDeep or
DeepLC . All mentioned ML and DL applications have been developed using publicly available datasets
using annotated MS2 spectra. Their usage in improving the identification of MS2 spectra and PTMs has
been extensively shown in literature.

Contrary to MS2-based research, MS1spectra contain information on multiple peptides with a corresponding
isotope distribution. This requires researchers to extract the isotope distribution from specific regions of
interest before analysis. Little research has been done on extracting these isotope distributions, causing
a lack of MS1 standardized benchmark isotope distribution datasets . In this work, we aim to develop a
workflow to extract the isotope distribution in a PSM data-driven manner and we present the results in a
standardized way. Our objective is to create a database with annotated MS1 isotope distributions and other
relevant features, which can be used as a foundation to develop new ML and DL applications in the future.
To evaluate our workflow, we analyzed the Universal Proteomics Standard 2 (UPS2) from Sigma-Aldrich
with state-of-the-art software and applied the workflow, presenting it as a first MS1 benchmark dataset.

Materials and Methods

Data

A publicly available LC-MS/MS experiment using the UPS2-kit was used. The Universal Proteomics Stan-
dard 2 contains 48 human proteins with a molecular weight ranging from 6.000 to 83.000 Daltons. The
proteins have a dynamic range of concentrations between 0,5 to 50.000 femtomole. The data is publicly
available on the PRIDE repository with identifier PXD000331 . The dataset contains raw data exclusively
from the UPS2-kit, but also the UPS2-kit in combination with micro-organisms such asMycoplasma pneu-
moniae , Drosophila melanogaster andLeptospira interrogans . For the purpose of the manuscript, only the
raw data on the UPS2-kit was selected. In the experiment, the proteins in the UPS2-kit were enzymatically
cleaved into peptides using trypsin. The peptide-mixture was separated using LC for 120 minutes prior to
performing MS/MS with the LTQ Orbitrap Velos. The UPS2-kit was measured in duplicate, A11-12042.raw
and A11-12043.raw. For more specific information about the experiment, we refer to the original article of
Ahrné et al. .

Database search

Both duplicates were analyzed with the FragPipe graphical user interface (version 19.1), using the Thermo
Fisher .RAW files as input. FragPipe incorporates the MSFragger database search engine (version 3.7) .
The default workflow was used to process the data except for the following adjustments. A precursor mass
tolerance of ±10 parts per million (ppm) and a fragment mass tolerance of ±5 ppm was specified. Car-
bamidomethylation of Cysteine was set as a fixed modification and oxidation of Methionine as a variable
modification. Trypsin was specified as the digestion enzyme with up to 2 missed cleavages. MSBooster and
Percolator were used for rescoring the PSM with an FDR of 0.01 using a reverse target-decoy approach. An
FDR of 0.01 was selected to ensure a high-quality benchmark dataset created from the MSFragger identi-
fications. The results were further investigated using R (Version 4.3.0) and RStudio (Version 2023.3.0.386)
.

Benchmark dataset construction

The general workflow is shown in Figure 1. The Thermo Fisher .RAW files were converted into mzML-format
using MSConvert (version 3.0.23051) . MSConvert had vendor specific peak picking enabled to centroid the
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spectra. The data was processed further using a custom written Python script (version 3.9) . The Python
bindings of OpenMS (version 2.7.0) were used to process the mzML files , such as selecting the MS1 spectra,
acquiring the peak information, retention times, etc. All PSMs from MSFragger were used to construct
the dataset. The amount of possible isotopic peaks was set to the monoisotopic peak followed by up to
5 isotopic peaks. It should be noted that this was an arbitrary choice. To construct the extracted ion
chromatogram (XIC), the error margin on the observed m/z for the PSM was set to 5ppm, and we opted
for a 5 second window before the retention time of the PSM and 30 seconds after. The 5 second window
before the retention time of the PSM was selected as 5 seconds was twice the maximum time between
two MS1spectra. A window of 30 seconds after the retention time of the PSM was selected as Ahrné et
al. enabled a dynamic exclusion of 30 seconds after sampling a precursor ion. Hence, it was possible that
the peptide was still present in the following MS1 spectra for 30 seconds without being sampled again. The
extracted isotope distributions with at least 2 peaks were compared with the theoretical isotope distributions
acquired using BRAIN (version 1.44.0) by computing the spectral angle . The MS1 isotope distribution
dataset with additional metadata was stored as an Excel-file. The algorithms and code are available on
https://github.com/VilenneFrederique/MS1IsotopeDistributionsDatasetWorkflow.

Figure 1 Workflow for extracting MS1 isotope distributions.

Results

Database search

The results for the database search using MSFragger are summarized in Table 1. Sample A-1112042 had
slightly more PSMs compared to sample A11-12043. The PSMs resulted in approximately the same number
of identified peptides for both samples and the same number of identified proteins. All detailed results
including p-values can be found in Supplementing Information 1.

Table 1 Summarized results of the MSFragger database search on duplicates of a UPS2-kit.

Sample A11-12042 A11-12043

PSMs 2.378 2.215
Peptides 532 538
Proteins 36 (75%) 36 (75%)

The database search results for both samples were investigated in-depth to gain more insight into the identi-
fications and their quality. On the peptide level, both samples had very similar identifications. Specifically,
501 peptides were identified in both samples, and only 68 peptides were identified in only one of the samples
(Figure 2 A). On the protein level, both samples managed to identify 35 common proteins and 1 unique
protein in each sample (Figure 2 B). Cytochrome C was identified as a unique protein in sample A11-12042
and Ubiquitin-conjugating enzyme E2 C in sample A11-12043. Both proteins had a concentration of 0,005
pmol in the UPS2 standard. In general, it can be observed that the concentration of the proteins in the
UPS2 samples influences the probability of identifying a protein. In both samples, the proteins with a con-
centration of 0,5, 5 and 50 pmol were all detected. As the concentrations of the proteins was reduced, the
percentage of detected proteins also decreased up to a point that all proteins with a concentration of 0,0005
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pmol remained undetected (Figure 2 C). The same phenomenon was observed when looking into the coverage
of the proteins. While both samples had somewhat equal coverages, it is visible that as the concentration
of the proteins decreases, so does the coverage (Figure 2 D). Proteins with a concentration of 50 pmol were
almost always identified with a coverage above 90%, except for the protein Complement C5 being an outlier
for both samples. Proteins with a concentration of 0,005 pmol almost always had a coverage well below 10%
for both samples apart from GTPase HRas in sample A11-12043, having a coverage of 20,11%.

Figure 2 Results of the database search for the UPS2 standard kit using MSFragger.

Sample A11-12042 is always shown in blue and sample A11-12043 is always shown in red. (A) Venn-diagram
with the number of identified peptides in both samples with percentages between brackets. (B)Venn-
diagram with the number of identified proteins in both samples with percentages between brackets. (C) A
bar plot with the percentage of proteins detected for both samples for all 6 concentrations present in the
UPS2 standard kit. (D) Boxplots showing the coverage of the proteins in the UPS2 standard kit at each
concentration for both samples.

Benchmark dataset

The MS1 isotope distribution benchmark dataset can be found in Supplementing Information 2. The com-
plete workflow resulted in 138.111 possible MS1 isotope distributions, 70.593 identifications in sample A11-
12042 and 67.518 identifications in A11-12043. There were 127.646 peptide isotope distributions with 2 or
more peaks and 10.465 peptide isotope distributions consisting only out of the monoisotopic peak. Isotope
distributions with 2 isotope peaks (30.706 identifications) and isotope distributions with 3 isotope peaks
(30.873) occurred the most (Table 2).
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Table 2 Amount of extracted MS1 identifications with their maximum number of isotope peaks per sample.

Amount of Isotope peaks A11-12042 A11-12043 Total

1 5.595 4.870 10.465
2 15.772 14.934 30.706
3 15.605 15.268 30.873
4 12.138 12.153 24.291
5 9.927 9.062 18.989
6 11.556 11.231 22.787
Total 70.593 67.518 138.111

The 127.646 peptide isotope distributions consisting out of 2 or more peaks were compared to their theoret-
ical isotope distributions using BRAIN by calculating the spectral angle. A similar distribution of spectral
angles in both samples was observed with a median spectral angle of 0,101 in sample A11-12042 and 0,0992
in sample A11-12043 (Figure 3). A non-parametric 95% median percentile interval was constructed for both
samples using 10.000 iterations with seed “1234”. Sample A11-12042 had a slightly higher 95% median
percentile interval of [0,1001468;0,1019028] compared to sample A11-12043 [0,0982923;0,1000837]. The com-
plete benchmark dataset consists out of 965 unique combinations of peptide sequences, PTMs and charge
states.

Figure 3 Distribution of spectral angle scores in both samples.
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The MS1 isotope distributions with at least 2 peaks were compared to the theoretical isotope distributions
acquired through BRAIN. The green line shows the median spectral angle score for both samples. A11-12042
is shown in blue and A11-12043 is shown in red.

Discussion

During our research, the objective was to establish a systematic workflow and generate a high-quality dataset
of MS1isotope distributions. To eliminate the inherent stochasticity associated with working on unknown
proteomes, we utilized the UPS2 standard kit. As the UPS2 standard kit only contains known proteins,
we know what proteins to search for, giving an increased reassurance in the identifications made by the
database search algorithm. Additionally, the varying concentrations within the kit allows researchers to test
the sensitivity of their newly developed tools.

The initial step in our research involved performing a database search on both UPS2 samples. To ensure the
production of high-quality PSMs, we employed MSFragger with a reverse target-decoy approach, maintaining
an FDR of 1%. An equal amount of PSMs was identified in both samples, and there was a high level of
agreement between the peptide and protein identifications. Upon further investigation, it was found that the
protein concentration is one of the most influential factors for protein identification. Specifically, proteins with
lower concentrations in the UPS2 standard kit exhibited reduced coverage and overall detection probability.
While this might seem like a logical finding, we do want to express the importance of it. When using
an unknown proteome to evaluate different algorithms, the PSMs will be influenced by the concentrations
of the peptides and proteins present in the sample. While there are many other factors influencing the
probability of identifying proteins and peptides, such as the preprocessing of samples or the dynamic range
of the LC-MS/MS device itself, it is an important point to consider and well described in literature .

Next, we used a workflow developed in-house to extract MS1 isotope distributions for the PSMs acquired
by the MSFragger database search. A total of 138.111 peptide isotope distributions were acquired combined
over both samples with at least 127.646 peptide isotope distributions having 2 or more peaks. There were
more MS1 isotope distributions extracted from sample A11-12042 compared to sample A11-12043, which
corresponds to sample A11-12042 having more PSMs in comparison to sample A11-12043. The spectral
angle was used to check the similarity between the experimental isotope distributions and their expected
theoretical isotope distributions computed by BRAIN. The spectral angle can take on values between 0
and 1.57, with values closer to 0 indicating a higher similarity between the experimental and theoretical
isotope distributions . The bell shape of the distributions of the spectral angle scores in both samples lay
close to 0, indicating a high similarity between theoretical and experimental isotope distributions (Figure
3). While the dataset still includes isotope distributions with a high spectral angle score, indicating a high
dissimilarity between the theoretical and experimental isotope distributions, we opted to leave them in the
dataset, as they may still serve as valuable input for training machine learning and deep learning models.
There were 10.465 isotope distributions consisting of just the monoisotopic peak. There are currently no
ways of validating these monoisotopic peaks MS1 spectra, that we are aware of. Their only legitimacy is
that they have been extracted at approximately the same time as confidently identified PSMs and within
the specified mass window. Lastly, the complete MS1 isotope distribution dataset consists out of 965 unique
peptides based on their sequence, modifications and charge state. While the complete dataset is quite large,
it is also limited to a set of unique UPS peptides. However, we believe that the workflow presented may be
used in the future to extract more MS1 isotope distributions from proteome standards such as the large-scale
ProteomeTools dataset .

In this manuscript, we provided a data-driven approach to extract MS1 isotope distributions of high-
quality while presenting them in a standardized manner. The proposed workflow can be used in the
future to further extend the benchmark dataset. The benchmark dataset itself provides an ideal foun-
dation for the development of new bioinformatics tools in the future, such as new machine learn-
ing and deep learning model. These novel algorithms may further advance our understanding of the
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molecular underpinnings of disease pathology. All code and algorithms have been made available
https://github.com/VilenneFrederique/MS1IsotopeDistributionsDatasetWorkflow
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