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Abstract

For many design applications in offshore engineering, including offshore wind turbine foundations, engineers need accurate
statistics for kinematic and dynamic quantities, such as hydrodynamic forces, whose statistics depend on the stochastic sea
surface elevation. Nonlinear phenomena in the wave—structure interaction require high-fidelity simulations to be analyzed
accurately. However, accurate quantification of statistics requires a massive number of simulations, and the computational cost
is prohibitively expensive. To avoid that cost, this study presents a machine learning framework to develop a reliable surrogate
model that minimizes the need for computationally expensive numerical simulations, which is implemented for the monopile
foundation of an offshore wind turbine. This framework consists of two parts. The first focuses on dimensionality reduction of
stochastic irregular wave episodes and the resulting hydrodynamic force time series. The second of the framework focuses on
the development of a Gaussian process regression surrogate model which learns a mapping between the wave episode and the
force-on-structure. This surrogate uses a Bayesian active learning method that sequentially samples the wave episodes likely to
contribute to the accurate prediction of extreme hydrodynamic forces in order to design subsequent CFD numerical simulations.
Additionally, the study implements a spectrum transfer technique to combine CFD results from quiescent and extreme waves.
The principal advantage of this framework is that the trained surrogate model is orders of magnitude faster to evaluate than the
classical modeling methods, while built-in uncertainty quantification capabilities allows for efficient sampling of the parameter

using with the CFD tools traditionally employed.
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Abstract

For many design applications in offshore engineering, including offshore wind turbine foun-
dations, engineers need accurate statistics for kinematic and dynamic quantities, such as
hydrodynamic forces, whose statistics depend on the stochastic sea surface elevation. Nonlinear
phenomena in the wave—structure interaction require high-fidelity simulations to be analyzed
accurately. However, accurate quantification of statistics requires a massive number of simu-
lations, and the computational cost is prohibitively expensive. To avoid that cost, this study
presents a machine learning framework to develop a reliable surrogate model that minimizes
the need for computationally expensive numerical simulations, which is implemented for the
monopile foundation of an offshore wind turbine. This framework consists of two parts. The
first focuses on dimensionality reduction of stochastic irregular wave episodes and the resulting
hydrodynamic force time series. The second of the framework focuses on the development
of a Gaussian process regression surrogate model which learns a mapping between the wave
episode and the force-on-structure. This surrogate uses a Bayesian active learning method that
sequentially samples the wave episodes likely to contribute to the accurate prediction of extreme
hydrodynamic forces in order to design subsequent CFD numerical simulations. Additionally,
the study implements a spectrum transfer technique to combine CFD results from quiescent
and extreme waves. The principal advantage of this framework is that the trained surrogate
model is orders of magnitude faster to evaluate than the classical modeling methods, while
built-in uncertainty quantification capabilities allows for efficient sampling of the parameter
using with the CFD tools traditionally employed.

Keywords: Heavy tails and extreme events; Offshore structures; Wave episodes; Reduced-order
modeling; Optimal Experimental Design; Active Sampling.



1 Introduction

Renewable energy technologies are critical to secure a reliable energy future while mitigating the
detrimental effects of climate change [2,18]. Of these technologies, offshore wind turbines are expected
to play a key role in the global sustainable energy transition [15,19,29]. Over the last decade, the
offshore wind turbine technology has experienced a remarkable growth [31], however, there is the
need for targeted research to overcome challenges to the further offshore wind establishment, such as
the relatively high cost of energy. At shallow and medium water depths, most offshore wind turbine
applications use fixed-bottom foundations [7,32], which include structures with monopile, tripod
and jacket type foundations. Across their working lifetime, these structures are exposed to stochastic
and extreme sea states which cause severe loads that impact the fatigue life [12,14,25,38,47,58]. To
implement current best practices, such as designing for a reliable operation lifetime of 25 years [45,46],
engineers require prior knowledge of the long-term load statistics on critical structural components
(e.g. loads on the monopile support structure). Accurate analysis of the ultimate limit state (ULS)
and fatigue limit state (FLS) would allow for less conservative designs and thus reduced costs.

A particular difficulty in the design of offshore wind turbines is their exposure to stochastic
and harsh offshore environmental conditions. In the design stage, physical experiments and/or
computational simulations are conducted in order to provide engineers with critical insights into the
performance of the offshore wind turbine structures [48]. Through modeling approaches, engineers
study three main load categories: structural dynamics, hydrodynamics, and aerodynamics [48]. In
this study, we focus on the hydrodynamic loads on the monopile foundation of an offshore wind
turbine. In the literature, several studies are available which utilize high-fidelity computational fluid
dynamics (CFD) simulations to examine the monopile-type foundation in breaking waves [3,33,68],
analyse the slamming effects [23,49], investigate the flow and scour around the monopile [8,61]
and identify the second order hydrodynamic loads [43,64]. Apart from the high-fidelity simulations,
there are studies that implement lower fidelity models to estimate the critical loads [44, 63]. To
facilitate the efficient and reliable design of an offshore wind turbine structure, engineers usually
need to perform studies for sensitivity analysis, optimization, uncertainty quantification, statistics
reconstruction for the ULS and FLS definition. However, these studies require a massive number of
simulation runs. The high-fidelity simulations demand prohibitive computational cost and thus are
infeasible in practice. Although lower fidelity numerical simulations are faster, they cannot capture
high nonlinear phenomena (e.g. slamming) which are critical for the reliable design of the offshore
wind turbine foundations.

Scientists have addressed the question of experimental design for these studies—what waves to
simulate—with a number of methods, including stochastic wavegroups [11,50], critical wavegroups
[4-6,57], equivalent waves [36], reduced order wavegroups [16,20,42], and Karhunen-Loéve (KL) wave
episodes [26]. At the same time, generalizing from simulation or experimental results to the recovery
of steady state statistics requires the application of careful data-driven surrogate modeling [21,53,62].
Surrogate modeling, such as with Gaussian Process Regression (GPR) [52,59], additionally allows the
deployment of techniques from the optimal experimental design literature [13,30,51], where initial
simulation or experimental results are used to improve subsequent designs [9, 10,42, 54,55]. While
optimal experiment design techniques are not yet widely used in offshore wind applications, some
recent studies have focused on developing reduced order models (surrogate models) for studying the
support structure characteristics [41] and dynamic response [60,69] of offshore wind turbines.

In this work, we construct a surrogate model that is able to evaluate the hydrodynamic loads
on the monopile foundation of an offshore wind turbine at selected sea states. The surrogate



model is constructed using the GPR machine learning technique. The model learns to map the
wave episode—hydrodynamic force relationship from CFD simulation data. In each simulation, the
monopile foundation interacts with an irregular wave episode and the hydrodynamic force time
series is recorded. However, to extend the GPR technique designed to map scalar quantities into
one useful for time series, we emphasize dimension reduction techniques for the wave and force
time series: a KL procedure for the prescribed wave episodes, which simultaneously allows for a low
dimensional parametrization and acceptable statistical recovery, and Principle Component Analysis
(PCA) for the simulated forces, for which no statistics are known a priori. Our surrogate model
is created by leveraging simulation data from multiple sea states: one quiescent and one extreme.
The irregular wave-structure interaction simulations are implemented in the open source CFD code
OpenFOAM, which is able to capture strong nonlinear hydrodynamic effects (e.g. wave breaking
and slamming loads).

We structure this paper as follows. In section 2, we briefly recapitulate the design of KL wave
episodes first described in [26]. In section 3, we describe the techniques we use to build the surrogate
model: GPR, active sampling, and spectrum transfer. In section 4, we describe our CFD simulation
design in the OpenFOAM software, and describe some of the challenges we faced adapting this
approach to nonlinear waves. In particular, we describe both how we account for nonlinear dynamics
when the KL wave episodes have Gaussian statistics, as well our approach to generating steady state
validation data. Finally, in section 5, we present results for a quiescent sea state (significant wave
height H; = 5 m) and an extreme sea state (Hs; = 13 m). Additionally, we include Appendix A with
details about the CFD simulations setup and the characteristics of examined wave episodes.

2 Irregular Wave Episodes

Our goal is to estimate the hydrodynamic load statistics for an offshore wind turbine monopile
foundation subjected to a selected sea state. Traditionally, a sea state (i.e., steady state) is approxi-
mated as an irregular wave record with duration from 30 minutes to 3 hours. To avoid the enormous
computational cost involved with CFD simulations of this duration, we instead perform a number
of shorter simulations with carefully selected irregular wave episodes, which are defined from the
wave spectrum of the examined sea state. We initially focus on the selection of the irregular wave
episodes. However, we cannot create a GPR surrogate model to learn the relationship between the
wave episode time series and hydrodynamic force time series. Therefore, we need to represent the
time series in a reduced order form.

We follow Guth and Sapsis [26] for constructing irregular wave episodes using a KL basis and a
parametrizing coefficient vector. The choice of basis corresponds to the choice of sea state, while the
choice of coefficients corresponds to a particular sample from that sea state. In the remainder of this
section, we will briefly recapitulate this method.

2.1 Wave episode representation

The sea surface elevation x (&, t) is a stochastic process, which we assume to be zero mean, statistically
stationary, and described by Gaussian statistics. Additionally, we assume that waves are long-crested
(unidirectional). We use the JONSWAP spectrum [27] to describe the time series z(§ = 0,t) at a
fixed spatial location:
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Figure 1: a) One-sided power spectral density for a JONSWAP spectrum with Hs = 13 meters. b)
Corresponding JONSWAP time autocorrelation function.
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and F' is the wind fetch, g is the acceleration due to gravity, and Ui is the wind speed at 10
m elevation. In this work, we consider two sea states, i.e., in both sea states the peak period is
T, = i—z = 8 s, while the significant wave height Hs = 5 m in the mild sea state and H; = 13 m in
the extreme sea state. The option to examine a mild and an extreme sea state is taken to emphasize
the nonlinear effects associated with high and steep waves.

Each irregular wave episode requires a distinct realization of this random process on a finite
interval [0,T], [4,6,57]. In the random phase method, the frequency space is discretized between

[Wmin, wmax] (with spacing d,,), and the recovered signal is given by

(t) = aicos(wit + ¢;), (2)

i=1

where w; is sampled uniformly between [w;_1,w;], ¢; is a random phase drawn uniformly on [0, 27],
and a; is coefficient given by

A; = 1/ 2SJ(wi)6w. (3)

However, the random phase model does not provide the low dimensional parametrization necessary
to apply ML techniques. Instead, we follow Guth and Sapsis [26] in building a basis set corresponding
to a particular sea state and interval. We present the KL theorem [34,40]:



Theorem 2.1 (Karhunen Loéve). Consider the stochastic process x(t) which is zero mean and
square integrable on the probability space (Q, F,P). Define the covariance function

Koo(s,) = E[e(s)2(t)], (4)

with corresponding integral operator over the interval [0,T),

Ty o(t) = / K, (1, $)6(t)ds, t € [0,T]. (5)

Then by Mercer’s Theorem for every interval [0,T] the operator Tk, has an orthonormal basis of
eigenvectors {é; r(t)} and corresponding eigenvalues {\;}. Moreover, the coefficients

T
a = / (e () dt (6)
0
are centered orthogonal random variables:
Ela;a;] =0 for i#j and Var(a;) =E[Z}] = \;. (7)

Furthermore, we can expand the random process x(t) as

z(t) = Zaiéw(t), t e [0,7]. (8)

In summary, the eigenvectors of the spatial covariance matrix of the sea surface form an
orthonormal basis. The decomposition of z(¢) onto this basis produces a set of centered, orthogonal
(in the random sense) coefficients. In particular, we can change back and forth between the function
representation x(t),¢ € [0,T] and the coefficients representation «;,i = 1,2, .... In the literature, this
procedure is also known as principle component analysis (PCA), proper orthogonal decomposition
(POD) [22]. For this work, we will always refer to this general technique as KL.

We truncate the KL expansion in equation (8) in a finite number of modes, n. In this way, we
may represent the stochastic process on the interval [0,7T] as an n-dimensional vector e of KL
coefficients, each component of which is an orthogonal random variable with variance \;. Each
irregular wave episode corresponds to a distinct choice of coefficients.

Finally, we note that we stochastically extend the wave episode outside of the interval [0,T] by
use of a Gaussian process extrapolation technique [26]. This is important for physical realization of
the sea surface elevation over an extended domain, and for the initialization phase of the OpenFOAM
simulation.

2.2 Wave episode generation

Applying the KL expansion, we represent each wave episode as a truncated series of KL. mode
coefficients, the vector . The truncation order, n, determines both what fraction of energy included
in the wave episode is captured by the KL reduced order wave, as well as the dimensionality of the
reduced wave episode. For this work, we chose a truncation order of n = 3 to balance fidelity against
dimensionality, and in section 3.2 we describe our method for choosing the vector a.

We follow the same technique described in Guth and Sapsis [26] to convert from the coefficient
vector a to the OpenFOAM input. As we describe in section A.3 of Appendix A, the OpenFOAM



wave maker requires a series of linear waves with prescribed amplitude, period, and phase. These
prescribed wave components are fixed on the interval [20,52] s, where T' = 32 s is the KL interval
length and Tpre = 20 s is the numerical initialization time associated with the ramp time in
OpenFOAM simulations.

Then, we extrapolate the signal onto the interval [0, 20] using the stochastic prelude technique
described in Guth and Sapsis [26] that allows for statistically-consistent extrapolation. Specifically,
this technique generates encounter conditions, which are statistically consistent with the sea spectrum
but also transition smoothly to the prescribed wave episode. Finally, we perform a discrete Fourier
transform (DFT) on this extended time series, and retain the N = 90 Fourier components with
greatest magnitude. This DFT truncation order was chosen to balance simulation costs against
reconstruction fidelity.

To summarize, OpenFOAM simulates the wave episodes for 52 s, where the first 20 s are the
ramp time and the rest is the real simulation time. We note that during the later data analysis, we
drop the prelude and shift the time scale forward by Tpre = 20 s so that our data records always
correspond to the interval [0, 32] s.

2.3 Basic wave parameters

The wave steepness, s, for the irregular waves is defined as [3]:

iy (9
94p
where Hj is the significant wave height and 7T, is the peak wave period. In this study, each wave
episode has duration 32 s which translates to approximately 4 wave cycles. To estimate the wave
steepness for each wave episode, we consider the maximum wave height in the wave record.

The Keulegan-Carpenter (KC) number describes the relative importance of drag forces over the
inertia forces exerted on the monopile foundation under the irregular wave episode, and it is defined
as:

Sw =

27

KC =", (10)
where 7 is the maximum wave elevation at the position of the monopile foundation, which is obtained
from the empty wave tank simulations (without the presence of the structure), and D is the monopile
foundation diameter. The KC number indicates the flow separation around the structure, i.e.,
for high KC number the drag force dominates resulting to flow separation, vortex shedding and
increased loading on the structure. In our study, the wave episodes obtained from the quiescent
sea state have KC < 4.5 (except the wave episode 451, KC = 7.3). For the extreme sea state wave
episodes, 6.4 < KC < 12.3. In general, the critical region starts for KC > 7, since wave breaking
and slamming effects start to occur [39]. For each wave episode in this study, the wave steepness
and the Keulegan-Carpenter number are listed in the Appendix A (Table 2, Table 3,Table 4).

2.4 Breaking wave criterion

Before performing the CFD simulations, we want to have a priori-knowledge whether the analytical
irregula wave episodes appear breaking wave behavior. They are assessed in relation to the breaking
wave criterion [24], which is defined by:
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Figure 2: The analytical wave episodes are located based on their wave breaking limit. Left: At
the quiescent sea state, the majority of the wave episodes are below the breaking region (orange),
except the wave episode 451 which is exceeds the maximum breaking limit (blue). The wave episode
310 is probable to break as it is above the minimum breaking limit. Right: In the extreme sea
state, all the wave episodes are above the maximum breaking limit (blue), therefore, breaking wave
phenomena is expected to occur.
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gT? P 2

where H, is the breaking wave height, T, is the peak wave period, L,, is the wave length, k is the
wave number, and d is the water depth. For irregular waves, 0.12 < A < 0.18. The wave number, k
is estimated from the dispersion relation:

w2 =k g-tanh(k - d). (12)

To employ the breaking wave criterion for the examined wave episodes, T, = 8 s, d = 33 m, and
the breaking wave height, Hy, is equal to the maximum wave height in the 32 s duration irregular
wave episode. The values are summarized in Appendix A — Table 2, Table 3, Table 4. Figure 2
presents the wave breaking assessment of the analytical wave episodes. The left plot refers to the
wave episodes obtained from the quiescent sea state. Most of the waves are below the breaking limit.
Wayve episodes 310 and 451 constitute the exception, with the former being just above the lower
breaking limit and the latter being above the upper breaking limit thus it is very likely to break.
The right plot refers to the wave episodes obtained from the extreme sea state, and they are all
above the upper breaking limit, therefore, they are expected to break.

2.5 Hydrodynamic force representation

In OpenFOAM, while the structure is modeled to interact with the irregular wave episode, a number
of kinematic and dynamic quantities are recorded. We choose the total hydrodynamic force in the
z-direction as the primary quantity of interest. An important obstacle we encounter is that the
total force is a time series. That is to say, we cannot describe the force-on-structure across the
whole interval [20,52] s with a single scalar quantity. In order to fit the output into the optimal



experimental design framework, we first represent the time series as a low dimensional vector q, and
each component, g;, of the vector is treated separately. Specifically, we employ the following reduced
order representation for the force:

Nout

Fo(t) = Z qifur(t), telo,T). (13)

where the g; are the reduced order coefficients and the fi; 1 (t) are the force modes. We represent
each ¢; as a separate output component. We use n.,; = 12 modes to describe the force, chosen to
recover more than 99% of the signal energy. For this problem, we compute the output modes by
applying a separate KL expansion to the training data ( [26]), a set of force-on-structure time series
associated with the particular wave episodes we simulated.

3 Surrogate Modeling with Gaussian Process Regression

3.1 Gaussian process regression

Here we follow the Gaussian process surrogate construction, i.e. we formulate a Gaussian process
surrogate model to estimate the unknown function. For an introduction to Gaussian process theory,
see Rasmussen and Williams [52]. Briefly, the Gaussian process constructs a normal distribution for
every choice of a given by

p(gi | @) ~ N (u(a), o(ar)), (14)

where,
pla) = KI(K +0.1)7'Q (15)
o?(a) = Ky — KI(K 4+ 021) 'K, (16)

w(@) is the posterior mean, o%(&) is the posterior variance, K, K., and K., are kernel matrics, and
@ is the observed output data vector.

For our application, we use a squared exponential kernel with automatic relevance determination
(ARD), given by

ARD 2 RS (1, — az,i)? 2 1 T
kin” (a1, a0) = of exp 752172 =0 exp fi(alfag) Moy —as) |, (17)

where M = diag(l;). The kernel hyperparameter oy, is a measure of variability due to choice of a, and
the [; are a measure of the length scale associated with input dimension. The final hyperparameter,
not associated with the kernel but part of the GPR scheme, is the aleatoric uncertainty o2 (also
referred as irreducible uncertainty), sometimes interpreted as a regularization parameter as in ridge
regression.

In equation (13), we give a representation of the output time series F,(t) as weighted sum of
basis vectors. We use this representation to build a separate surrogate for each output mode as a
function of the wave episode vector a. That is, for each i € [1,nyt], we build a distinct Gaussian
process to estimate a posterior distribution

gi(a) ~ N(pi(a), oi(a)). (18)



This collection of independent scalar surrogates allows us to model a low dimensional projection
of the the full time series F,(t|ar). We can sample from the combined surrogate by sampling each
¢; individually from the Gaussian process posteriors, and then combining the coefficients using
equation (13)

3.2 Active sampling of training data

In order to build the surrogate models, we require a set of training data—representative wave episodes,
and the associated force-on-structure time series calculated with OpenFOAM. The training data
should be representative of both quiescent and extreme wave episodes. We build our training set
through two steps.

First, we uniformly sample wave episodes from the space of possible wave episodes. We perform
this step by using Latin Hypercube sampling from a hyper box with side length D = 2z*+/);, where
v/A; is the KL length scale associated with the ith component of o, and z* = 3 is a control parameter
that balances between extreme and quiescent waves. We choose Latin hypercube sampling in order
to avoid the ‘clumps and voids’ that are associated with independent sampling. Figure 8 (Right)
also shows the spectral decay associated with those modes. We indeed see a major drop after the the
first 3 directly excited modes—the higher order output modes represent memory effects and nonlinear
effects.

Second, we make use of the initial uniform data points in order to optimally choose subsequent
training data samples. Active sampling, or Bayesian Optimal Experimental Design, is a method
to use existing data, along with a surrogate model and an acquisition function, to design later
experiments. The new training data can be added to refine the intermediate model in a loop [9,10,67].

For this problem, we use Likelihood Weighted Uncertainty Sampling (LW-US) an acquisition
function developed in [10,54] to preferentially sample inputs likely to contribute to the output
statistical tails — rare events. The functional form of the acquisition function is given by:

_ pale) -
uaw-sl@) =4 gty 7

(19)
where pa(a) is the probability of the encountering the wave episode in the steady state (from the
KL construction), py(g(c)) is the likelihood associated with g(er) from the surrogate, and o7 (a) is
the posterior variance associated with the surrogate.

In the standard formulation, the LW-US acquisition function is designed for scalar outputs.
Following [26], we make two changes when borrowing uyw _ps(c). First, because we represent time
series using a set of multiple output modes, we associate with each mode ¢; a separate acquisition
function upw_ys j(a). During the active sampling loop, we iterate through these j output modes
in a round robin format, selecting one experimental design for each. Second, because there is non-
negligible intrinsic noise associated with this system, we perform uncertainty regularization. For this
technique, we first estimate the intrinsic noise associated with the surrogate model. For a Gaussian
process, this is simply the hyperparameter o2. Then, we replace the Gaussian process posterior

variance o2 (c) with the epistemic variance (02(a) — 072 ), i.e. total variance reduced by the aleatoric

q
variance. This regularization step improves acquisition function performance in weighted uncertainty
sampling schemes when the true function has significant aleatoric variance.

Taken together, the final acquisition function we use for each output component, g;, is given by,



uLW—US,j(Ot) = p(a))) (Ui(a) - Ui,j) . (20)

3.3 Spectrum transfer

One of the advantages of wave-episode sampling is that the pairs of wave-episodes and hydrodynamic-
responses can be used to quantify the statistical responses of different spectra, assuming that these
have the same modal period and have similar shapes [26]. For the present context assume we have
input-output pairs o, q; associated with significant wave height Hs; and we want to use this
information for quantifying statistics for another significant wave height H, o.

We follow the spectrum transfer technique described in Guth and Sapsis [26]. First, we calculate
the KL basis for each spectrum, S; and Ss. Second, we calculate the eigenvalue ratios

el 1)
= 4| =
J N&
J
Finally, we adjust the a from J®) to J3) by rescaling
ozg-l) = a§2)rj (22)

Through this energy-based rescaling of the KL coeflicients we are able to use the same wave-episode
data to build surrogate models corresponding to different sea states. We caution, however, that the
initial data set, associated with waves having significant height H; has poor skill on describing forces
associated with waves of Hs, if the latter is significantly larger. This is not a surprise given that in
the low-energy spectrum only small amplitude waves are needed to capture the overall statistics.

4 High-Fidelity CFD Modeling

High-fidelity CFD simulations are employed to provide the hydrodynamic performance of the
monopile foundation interacting with the irregular wave episodes. Complex physical flow mechanisms,
e.g. fluid viscosity, wave diffraction, radiation, wave overtopping and slamming can be captured by
CFD modeling based on the solution of Navier-Stokes equation. The simulations performed with
the open-source software OpenFOAM and further description of the numerical setup is available in
Appendix A.

Wave induced force

The wave induced force on the structure, F', is calculated by integrating the normal pressure, pn,
where 71 is unit normal matrix, and the tangential viscous stress vector, 7, over the surface, A, of
the structure.

Fe / /A (ph + T)dA, (23)

In our application, the horizontal component of the force, which is known as the inline force, F,
has the major contribution thus it is chosen as the quantity of interest in this study.
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Numerical wave calibration

In OpenFOAM simulations, to produce the target irregular wave episode (e.g., analytical) at a
specific location in the numerical wave tank (e.g. where the monopile foundation will be placed),
we follow a wave calibration procedure [17]. Figure 3 shows the schematic depiction of the wave
calibration which is similar to the one presented in [66] and previously has been applied by the
authors in [35,37].

The target wave episode and the numerical wave obtained from the last iteration are compared
through their density wave spectrum. Figure 4 compares four representative wave episodes. For
the waves obtained from the quiescent sea state (i.e., 404 and 403), the analytical and numerical
spectrum match very well-in terms of frequency and amplitude. Conversely, the two spectrum
corresponding to extreme waves (i.e., 503 and 504) present significant divergence. In general, due to
complex nonlinear hydrodynamic phenomena related to high and steep waves, the numerical wave
episodes 501-514 cannot match the target wave profile. In high KC numbers (see section 2.3), the
real wave propagation breaks down the theoretical approach. In practice, the nonlinear interaction
between the wave components leads to breaking wave phenomena, which may contribute to changing
wave profile, and thus difficulty to match with the analytical solution anymore.

In Figure 2, we compare the analytical wave episodes to the two estimates of the breaking limit —
defined from the breaking wave criterion (section 2.4). We observe that, for the quiescent sea state
(Hs = 5 m), all but one of the waves are firmly below the breaking limit. However, for the extreme
sea state (Hs = 13 m), nearly all of the waves are above the breaking limit. In Figure 5 and Figure
6, we provide an OpenFOAM visualization of the breaking wave evolution and its interaction with
the monopile foundation, respectively.

Ground truth solution

To evaluate the accuracy of the GPR surrogate model, we compare the model prediction with a
reference solution—i.e., the ground truth. For the purpose of this study, the ground truth is the
statistics (i.e., pdf) of the hydrodynamic force-on-structure during the steady state realization (i.e.,
the full sea state realization). We calculate the ground truth force statistics for the quiescent (H, =
5 m) and extreme sea state (H; = 13 m) by simulating the wave—structure interaction across 30
min and 60 min, respectively.

In CFD simulations, because of the computationally expensive cost as explained in section 5.2,
the wave—structure interaction is usually modeled for a short time period (a few minutes). In the
case of steady state realization, in order to accelerate the numerical simulation process and avoid
possible numerical instabilities due to running such a long simulation, we split the 30 min and 60
min sea state into 12 and 24 intervals, respectively. Each interval constitutes a 180 s irregular wave
episode. However, from each interval we discard the first 20 s which is the ramp time that the wave
train needs to reach the desired profile (transient), and thus 160 s of wave-structure interaction are
retained from each interval, as explained in section 2.2. The intervals are then merged to reconstruct
a representative long time-record for the steady state of the particular sea state. Our application
studies the interaction of the irregular wave episode with the monopile foundation of an offshore
wind turbine. For this application the dynamic memory effects are not so critical as the monopile
is a fixed structure. That is to say, the reconstruction of the full sea state by merging short-time
intervals does not affect significantly the solution. Instead, for a floating structure whose current
position is dependent on the previous dynamics, more care must be taken when reconstructing long
time statistics from shorter interval simulations.
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Figure 3: An overview of the numerical wave calibration procedure. 1) Definition of the target irregular
wave, n(t), 2) which is analyzed into sinusoidal wave components via DFT. For each frequency, f;,
the corresponding amplitude, a;(f;), and phase, ¢¢(f;), are obtained. 3a) To numerically reproduce
the target wave episode, the OpenFOAM numerical wave maker should receive the amplitude and
phase for each frequency component. In the first iteration, the components of the target wave are
the inputs to the numerical wave maker, however, these values are corrected at every iteration,
ie., awi(fj) = w,it1(f;) and ¢wi(fj) = Gw,it1(f;). 3b) The OpenFOAM simulation runs and 4)
the numerical wave episode, n.,(t), is recorded at a selected location in the numerical wave tank.
5) Similarly to target wave, the numerical wave is analyzed into sinusoidal wave components via
DFT. For each frequency, f;, the numerical amplitude, a, ;(f;), and phase, ¢, ;(f;), are obtained
and compared to the corresponding values from the target wave. 6) An amplitude correction factor,
which is the ratio of the target to numerical wave amplitude, is applied to the new wave maker
inputs. 7) A phase correction factor, which is the difference between target and numerical phase, is
also applied to the new wave maker input. Steps (3)—(7) are repeated either until numerical and
target waves are converged or further improvement is not succeeded.
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Figure 4: Numerical (CFD) and analytical wave spectral density over frequencies for the sea states
with significant wave height, Hy; = 5 m (wave episodes 402 and 403), and Hs = 13 m (wave episodes
503 and 504).
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Figure 5: Wave episode 508: Schematic depiction of the wave breaking process in the empty numerical
wave tank (without the presence of the monopile foundation).

In order to reproduce the short wave—structure interaction intervals, we use the random phase
model (discussed in section 2, in equations (2) and (3)) to generate random waves from the examined
sea state. The sea state is characterized by the significant wave height H,, period T}, and is described
by the JONSWAP wave spectrum. For this procedure, we discretize the wave spectrum into N = 90
wave components with angular frequency equally spaced in the range [wpip, wmax] = [0.44, 2.26]
rad/s.

4.1 Surrogate Model of the Monopile Foundation

We model the distortion introduced between the target (analytical) wave episode and the numerical
wave episode as a nonlinear mapping. The numerical solver along with the boundary conditions and
absorption, implicitly define the map, f, between the target and numerical wave episodes (this is
the wave calibration from section 4). In Figure 4, we display the wave spectral density comparison
of the analytical wave (in black) and OpenFOAM realization (in red). The numerical solver also
defines the mapping g from the numerical wave episode to the numerical force on the structure.

When we use a machine learning technique to construct a surrogate model from the target
wave episode (parametrized by the coefficient vector o), we are learning the composed function
h = go f. This is not the same as g, which maps the numerical waves to numerical forces, unless
the OpenFOAM realization perfectly matches the target wave (i.e., f(-) is very nearly the identity).
In Figure 7, we show a schematic depiction the relationship between the target and OpenFOAM
wave realization, the resulting force on the structure as estimated from OpenFOAM, and what the
surrogate learns to map.

This shift is a problem for training a model that converges pointwise. That is to say, if we want
the precise structural loads corresponding to the target wave episode (that we parametrized with
@), the OpenFOAM solution for the force-on-structure does not correspond to the desired wave.
However, if instead our goal is to train a model that merely calculates the correct steady state
statistics, including nonlinearities from real physics, the developed surrogate model successfully
achieves this goal.

How can we recover the correct statistics without a precise model? If, in Figure 7 the function
f(-) does not change the statistics of the steady state, then the machine learning model may still
learn the statistics of steady state forces on structure. One straightforward case where this could be
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Figure 6: Isometric views of the wave - structure interaction (wave episode 508). The colormap
expresses the velocity magnitude. Upper Left: Initiation of breaking wave at t = 23 s, Upper
Right: Breaking wave hits the monopile foundation at t = 24.5 s, Lower Left: Wave run-up on
the foundation at t = 25.5 s, Lower Right: Second-order effects around the monopile at t = 28 s.
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Figure 7: Flow chart showing the procedure to estimate the hydrodynamic force followed by (top)
OpenFOAM simulation and (bottom) GPR surrogate model. In OpenFOAM simulations, the
numerical wave may differ from the analytical wave due to the strong nonlinear hydrodynamic
phenomena. The forces are estimated corresponding to the numerical wave. The surrogate model
provides the map between the analytic wave episode and numerical force.
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Figure 8: Left: KL. mode shapes for the wave episodes, displayed in pairs due to approximate
even/odd symmetries. Note that due to our normalization convention, the y-axis is arbitrary. Right:
KL spectrum decay. X-axis counts the number of KL coefficient. The plots account for the quiescent
sea state with wave height H; = 5 m. For extreme sea state H; = 13 m the plots are identical except
for scale.

so is if f(+) were simply the forward time evolution operator. In this ideal case, our surrogate model
for h(-) = g o f(-) might still learn the correct statistics of forces, even if it incorrectly predicts the
force associated with any particular wave episode.

Here the deviation of the OpenFOAM realization from the target wave episode is likely caused
by nonlinear effects. Our target wave episode model assumes linear wave theory, which begins to
break down in the extreme, steep waves (due to wave breaking, overtopping and other higher order
hydrodynamic effects) that lead to extreme forces on structure (slamming effects - especially for the
sea state 13 m).

This form of realization error is statistically important, because peak sharpening and trough
broadening are likely to have some impact on the distribution of extreme loads. However, this effect
is likely to counteract an earlier modeling error of (incorrectly) assuming that the extreme steep
waves we examine are well modeled by linear wave theory. Taken as a whole, we cannot say that
the divergence between target and numerical wave episode does not impact the expected results.
However, we expect this effect to be less significant for statistical reconstruction relative to the
recovery of specific force time series.

5 Numerical Results

5.1 Irregular wave episodes dimension reduction

In this study, we choose sea states described by the JONSWAP wave spectrum and parameters
H, € {5m,13m} and T, = 8 s. For the KL dimension reduction of the irregular wave episode, we
choose T = 32 s and n = 3 distinct non-zero wave episode coefficients. Figure 8 (Left) displays
the mode shapes for the KL basis, while Figure 8 (Right) displays the decay of eigenspectrum
with the increasing number of KL modes, which practically confirms that higher KL modes carry
negligible amount of energy compared the first KL modes. We note that in this study we choose
n = 3, therefore, we only use the first three KL modes shown in the Figure.
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Figure 9: For quiescent sea state with Hy; = 5 m. Left: PCA modes for the axial hydrodynamic
force, F,(t). Right: PCA eigenspectrum for F,(¢). X-axis denotes the number of PCA modes.

We construct the irregular wave episodes by drawing Latin hypercube samples from a hyperbox
with size parameter z* = 3 from which we choose the KL coefficients {ay, as, ag }. The resulting
irregular wave episode is decomposed via DFT into N = 90 distinct sinusoids which are the inputs
to the OpenFOAM wave maker. The numerical wave is simulated for 52 s, i.e., the T' = 32 s wave
episode, along with a Tpre = 20 s ramp-up period to reduce the transients.

Finally, the GPR surrogate model is trained on irregular wave episodes of 32 s duration, which
are obtained from a mild and an extreme sea state. In particular, from the wave spectrum of the
sea state with Hs; = 5 m, we initially generate 16 training irregular wave realizations, selected via
Latin hypercube sampling, which are followed by 4 additional training irregular wave episodes using
active sampling. Subsequently, we use the spectrum transfer technique described in Section 3.3 to
adjust our existing training wave data to the spectrum of the sea spectrum with H; = 13 m. From
the extreme sea state, we collect an additional 9 irregular wave realizations using active sampling.

5.2 Computational Resources

In this study, the CFD simulations are performed on Tetralith HPC cluster utilizing 128 processors
per simulation. Each irregular wave episode, used for training the surrogate model, is simulated to
interact with the monopile foundation for 52 s. This simulation requires approximately 12 h - 18
h real time. The steady state (or full sea state) simulations for sea states with H; = 5 m and H,
= 13 m model the wave—structure interaction for 30 min and 60 min, respectively. As mentioned
in section 4, this time is split into 12 and 24 intervals, respectively, which has the advantage that
the shorter interval simulations can run in parallel, and thus the modeling of the full sea state is
accelerated. Each interval models 180 s of wave-structure interaction and requires 40 h - 45 h of
real time on the HPC cluster.

5.3 Hydrodynamic force dimension reduction

Figure 9 (Left) shows the mean and the PCA modes associated with the axial hydrodynamic
force time series, F,(t), in the quiscent sea state with H,,, = 5 m. We note that, because input
dimensionality is n = 3, based on Wiener—Khinchin theory we expect at least 3 significant PCA
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Figure 10: For extreme sea state with H; = 13 m. Left: PCA modes for the axial hydrodynamic
force, F,(t). Right: PCA eigenspectrum for F,(¢). X-axis denotes the number of PCA modes.

modes to describe the output. Figure 9 (Right) also shows the spectral decay associated with those
modes. We indeed see a major drop after the first 3 directly excited modes — the higher order output
modes represent memory effects and nonlinear effects.

Figure 10 shows the equivalent information for the extreme sea state with H,, = 13 m. The
primary difference we notice is that the eigenspectrum decay is slower, corresponding to more energy
at higher PCA modes, because extreme waves contain more nonlinear behavior. Figure 11 shows
contour slices for the KL-GPR, surrogate for different combinations of PCA modes. The contours
show the regions where the peak hydrodynamic force presents maxima and minima values. This is
helpful for engineers in the design stage to extract information about how the waves (which are
described by the KL coefficient vector e) impact the maximum hydrodynamic force. In other words,
Figure 11 answers for which combination of «; the force is maximized.

5.4 KL-GPR model predictions for the force time series and statistics

Figure 12 shows the KL-GPR-model predicted time series of the axial hydrodynamic force, F, (),
for wave episodes 401 - 404, which are used for the validation of the KL-GPR-based surrogate
model (i.e., these wave episodes are not used for the construction of the surrogate model). The wave
episodes 401 - 404 represent "large waves" associated with the Hy = 5 m sea state.

We note a few features here. First, the surrogate model presents higher uncertainty at the
beginning of the interval. This is probably caused both by the encounter condition, which is
stochastic, and by transients from initializing the numerical simulation. Second, we note that
agreement is weakest near the extreme peaks, particularly in wave 404. This is likely because the
nonlinear wave phenomena are most significant in this wave. Initially the KL-GPR model is trained
on wave episodes from the quiescent sea state and their characteristics are listed in Table 2 Appendix
A The training waves are characterized by smaller wave height, wave steepness and KC number
compared to the corresponding values of the validation wave 402 and 404. The validation waves 401
and 403 are closer to the training waves. The characteristics of validation waves are listed in Table 3
Appendix A. This led to our decision to additionally train on extreme waves associated with the
spectrum Hy, = 13 m.

In Figure 13, we compare the steady state statistics for the quantity F, computed via steady state
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Figure 11: Maximum (unsigned) predicted force,Fy, of KL-GPR surrogate in [N], for the extreme
sea states withHg = 13 m. The colormap shows the change in force for varying input waves, which
are described by vector . Left: ( 1; 2), 3=0.Right: ( 1; 3), 2=0.

Figure 12: Comparisons off(t) from (red) OpenFoam and (blue) KL-GPR-model with posterior
uncertainty, for quiescent sea state withHs =5 m. Y-axis counts 1 ~ 10° [N]. These waves are only
used for validation purposes not used during the model training.
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of the energy is truncated by choosing only the first three coefficients. At this point we examine
whether this energy truncation effect the recovered force statistics.

We study the effects of energy truncation in the hydrodynamic force predicted from the KL-GPR
surrogate model. We chose wave episode 507 to estimate the CFD axial and vertical force components,
shown in Figure 15, for the basis of our comparison. This wave episode is constructed as previously
described, i.e., with n = 3 nonzero components of the KL vector a, and a stochastic prelude.
Importantly, our stochastic prelude technique means that any adjustment to wave episode 507
(other than global rescaling) will unavoidably add some aleatoric variance to a second OpenFOAM
simulation, especially at the very beginning of the region of interest.

We consider two methods to correct for the effect of energy truncation. One option is to scale
the coefficient vector o by an energy factor. This would have the effect of shifting energy from high
wave numbers to lower wave numbers. At the same time, by retaining the low dimensionality of «,
this method maintains both the shape of the wave episode, and its easy applicability to machine
learning. We constructed wave episode 701 by scaling the first three components of a from wave
episode 507. The corresponding CFD force to wave 701 is also shown in Figure 15. It is clear that
each peak force on structure is significantly increased relative to wave episode 507. This increase is
too large to be consistent with the steady state, and demonstrates that the distribution of wave
energy across different scales is important on the force applied to the marine structure.

The second option is to simply avoid truncation of the higher order modes from the wave episode.
That is to say, instead of a low order truncation n = 3, choose a very high order truncation (here,
n = 25) to ensure that most of the wave energy is captured. This method has the advantage
of modeling the waves with the highest fidelity. However, it has the disadvantage of increasing
the dimensionality of the wave episode space, which makes the application of machine learning
challenging. In Figure 15, we construct wave episode 702 by copying the first three components from
a from wave episode 507, and then drawing the remaining components (k € 4,...25) from the KL
distribution. We can see that the first and fourth peak of the force on structure are significantly
different between wave episodes 507 and 702, but the second and third peak are very similar. We
explain this by noting that the first peak, at ¢ = 20 s, is at the border of the stochastic prelude
region and the wave-episode region. The divergence of this peak is well explained by the random
draw of stochastic prelude. The significant difference for the fourth peak cannot be explained away
so easily. By comparing with wave 702, and examining the viscous force, it is likely that that wave
507 has no significant wave crashing here. However, a small addition of energy, either in lower wave
numbers or higher, was enough to cause a wave crash at the fourth peak.

In summary, correcting for the energy deficit by moving energy from high wave numbers to
low wave numbers significantly and nonphysically overestimates the peak forces on the structure.
However, correcting for the energy deficit by including the truncated KL modes increases the peak
forces by a much less dramatic margin. This suggests that the KL truncation is likely responsible
for some of the tail underestimate in Figure 14. We focus our optimal experimental design on the
force component F,, and in the quiescent sea states (with H; = 5 m) the GPR model is able to
accurately recover the load statistics with only a handful of wave episodes in the training set. In the
extreme sea state (with Hy = 13 m), we need more data points to recover the heavier distribution
right tail. When we examine other force components with more strongly non-Gaussian character,
FY and FY, (which are not considered during the active sampling phase) the KL-GPR model is less
accurate. Finally, by studying how the energy truncation of the wave episodes effects our results, we
determine that the truncated energy itself likely is not the cause of any remaining statistical error,
nonlinear effects from the truncated shape complexity may play a subtle role in the distribution of
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extreme loads.

6 Conclusions

We have presented a efficient computational framework for the statistical quantification of the
force on a wind turbine monopile foundation caused by nonlinear interactions with irregular waves.
The surrogate model is built using GPR, a data-driven machine learning technique combined
with active learning and order reduction methods. To ensure that the developed model provides
accurate predictions, we train with data from CFD simulations. CFD models are able to capture the
nonlinear and complex phenomena in the wave—structure interaction, yet they command expensive
computational costs and are thus unsuitable when massive simulations are required (e.g. uncertainty
quantification, sensitivity analysis, statistical calculations for risk, etc).

As a adjunct to the active learned GPR model, our approach relies on two dimensionality
reduction steps: to describe irregular wave episodes and to describe the force-on-structure time series.
Specifically, we use the KL theorem to construct low dimensional wave episodes that nonetheless
adequately represent the sea state associated with a specific power spectrum (i.e., JONSWAP). At the
same time, we use KL to reduce the dimensionality of the force-on-structure time history. Together,
these dimensionality reduction steps allow the construction of the efficient surrogate modeling with
the GPR method, which otherwise has difficulty with the high dimensionality associated with directly
modeling time series.

The wave episode samples are the inputs for the high-fidelity CFD simulations—the OpenFOAM
code—which are able to capture nonlinear wave phenomena, such as breaking wave and slamming
loads. While important for accurately resolving the interactions between extreme waves and offshore
structures, these phenomena also raise the difficulty of choosing experimental designs due to a
matching problem: the numerical irregular wave may not match the target analytic wave profile. We
explicitly address this matching problem with a wave calibration procedure, but this mismatch is
also implicitly accounted for via machine learning.

Once we obtain a first set of simulation data, we train a surrogate model using the GPR machine
learning technique to learn the relationship from the wave episode to the structural load. Particularly,
each surrogate model maps the KL coefficients («) that describe the wave episode to a single output
KL mode (g;). Thus, we construct as many GPR models as the number of output KL modes. Finally,
we model the force time series by combining the output KL coefficients from each trained GPR
model.

To evaluate the generated force statistics as estimated from the surrogate model, we compare
with longer time OpenFOAM simulations that give an accurate description of the steady state
statistics . The prediction and the ground truth of the axial hydrodynamic force show a good
agreement both in quiescent and extreme sea states. However, the viscous part of the force is not
very well predicted-especially in the right tail. We attribute this to the fact that the active sampling
method chooses wave episodes that improve the GPR model accuracy in predicting the pressure
part of the total hydrodynamic force.

This framework has strong promise for application to design problems related to offshore wind
turbine foundation or other offshore applications. The machine learned model presented in this
study can facilitate the analysis of these structures combating the restraints of the classical modeling
methods which suffer either from reduced accuracy (especially when it comes to extreme waves) or
expensive computational cost. The presented surrogate modeling method allows for the investigation
of more scenarios in the design stage, including extreme events, as well as efficient estimation of pdf
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including their non-trivial tails. Therefore, it offers a reliable way for significant cost reduction and
acceleration of the design process.
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A Appendix A: CFD simulations
A.1 Numerical Methods

A.1.1 Governing equations

The Navier-Stokes equations are used to determine the motion of a fluid and can be seen as Newton’s
second law for fluid motion. For an incompressible Newtonian fluid flow, the Navier-Stokes equations
take the form:

ou; 0 1 0p

ot + Oz (i) = p 0x;
where u is the fluid velocity, p is the fluid pressure, p is the fluid density, v is the fluid dynamic
viscosity, and f; includes the external forces. The ¢ and j denote the indices in z and y direction
respectively. The left-hand side of this equation corresponds to the inertial forces while in the
right-hand side the first term corresponds to pressure forces, the second term to viscous forces and
the third term to the external forces applies in the fluid. These equations are always solved together
with the continuity equation:

+ szui + f (24>
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The CFD code the numerical model solves the Reynolds-averaged Navier-Stokes (RANS) equa-

tions, which are a reduced form of the general Navier-Stokes equations. The Reynolds decomposition

is applied, according to which the variables u and p of Navier-Stokes equations are written as the
sum of the time-averaged and fluctuating part:

=0 (25)

u=u+u
— (26)
P=pP+Dp
The RANS equations and the mass conservation take the following form:
— (wu;) = —— Vi, + - = 27
8t+8xj(uuj) p@a:iJrV u+p8$cj+fb (27)
du;
=0 28
oz, (28)
where 7;; is the Reynolds stress tensor, 7;; = —u;ug To achieve a close form the RANS equations,

the £k —w SST turbulence model is adopted. More details about the computational domain and the
boundary conditions are provided in the Appendix A (subsection A.2).

A.1.2 Free surface modeling

The free water surface is captured using the volume of fluid method (VOF) [65]. The two-phase
fluid problem is treated as a single fluid and the phase fraction, «, is used to indicate the mixture
between air (o = 0) and water (o = 1) at each cell. The conservation of the phase fraction, «, is
essential and the transport equation should be added to describe the motion of the phases:

foe}

5 V- (a)+aV- (wal—a) =0 (29)
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where the last term is an artificial compression to keep the surface sharp, u. is the fluid velocity
normal to the interface, where ¢, is the compression coefficient. At each cell, the fluid properties
(density, p, and dynamic viscosity, u) are computed as:

P = QPyater + (]- - a)pair (30)

MU = Olyater + (1 - a)/”/air (31)

A.1.3 Solver and algorithm

In this study, OpenFOAM version 1906 [1], is utilized to model the wave—structure interaction.
OpenFOAM is an an open source CFD toolbox able to solve complex fluid applications based on the
cell-centered finite volume method to solve the RANS of the two phase fluid flow, i.e., air and water.
In this approach, the equations are integrated over each of the control volumes (i.e., each cell of the
computational mesh). The volume integrals are converted to surface integrals using Gauss’s theorem.
The surface integrals are calculated as the weighted sum of the cell faces. The pressure-velocity
coupling in RANS equations is solved via the PIMPLE algorithm, while the interFoam solver is
operated for capturing the two incompressible, isothermal fluids using volume of fluid method for
interface capturing.

A.2 Numerical Wave Tank

A 3D numerical wave tank (NWT) is setup in order to reproduce the wave - structure interaction
modeling. The total length of the NWT was defined by the wavelength and it is equal to 300
m (approximately 3)), the width is 42 m corresponding to 6D, where D is the diameter of the
monopile. The water depth is 33 m. The NWT utilizes symmetric side planes in order to reduce
the computational domain and thereby the computational cost. A monopile with diameter of 7 m
was fixed at 100 m from the inlet boundary (approximately a wavelength). Figure 16 shows the
computational domain with the boundary labeling.

The grid resolution is discretized based on the mesh sensitivity study presented in the following
section. The quality of the wave propagation heavily depends on the aspect ratio of the cells close to
the free water surface. The grid cells keep aspect ratio close to 1, which means the computational
mesh consists of cubic cells. In a distance of one wavelength downstream the monopile the mesh
grading technique is applied resulting in cells with larger aspect ratio. This is a technique for reducing
the computational cost of each simulation.

For turbulence modeling the k — w SST model was implemented with wall functions for the
resolution of the boundary layer around cylinder. The boundary conditions are presented in the
Table 1. The boundary conditions for the seabed and the side surfaces are type zeroGradient and
symmetryPlane, respectively.

A.3 Numerical Wave Generation and Absorption

The CFD modeling of waves requires a special set of boundary conditions. The wave is generated at
the inlet which provides the appropriate time-dependent velocity field and surface elevation the outlet
boundary offers the absorption capability. In OpenFOAM, several custom boundary con