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Abstract

The representation of an explicit solution to the Prabhakar fractional differential delayed system is studied employing the far-

famed Laplace transform technique. Second, the existence uniqueness of the solution is debated together with the Ulam-Hyers

stability of a semilinear Prabhakar fractional differential delayed system. Thirdly, the necessary and sufficient circumstances

for the controllability of linear Prabhakar fractional differential delayed system are determined by describing the Gramian

matrix. A sufficient circumstance for the relative controllability of a semilinear Prabhakar fractional differential delayed system

is studied via the Krasnoselskii’s fixed point theorem. Numerical examples are offered to verify the theoretical findings.
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ond, the existence uniqueness of the solution is debated together with theUlam-Hyers
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1 INTRODUCTION

If an equation consists of the state and its rate of changes, it is known as either an ordinary differential equation or a partial
differential equation. If it also includes the past state, it is called as a differential delayed equation. Although it did not make
sense that the future state depends on the past state, at the beginning of the 1900s, Volterra modelled certain differential delayed
equations in his studies1 2 such as predator-prey and viscoelasticity. In the same years, Minorskii3 formulated the differential
delayed equations whose delays were used in the feed back mechanism in his different kinds of studies such as ship stabilization
and automatic steering. These kinds of works have revealed the importance of the past state(delay parameters) in the theory
of both control and differential equations. When having look at studies about (fractional) differential delayed equations in the
literature, we have observed that they have been investigated by many of researchers in many aspects such as existence and
uniqueness of their solutions, controllability, stability, etc. For more details, the readers can check the references11-28. As can be
seen in the cited works, it is more difficult to model and solve a differential delayed equation and check whether it is controllable
or stable, etc according to an ordinary differential equation which does not includes delay parameters. Even if one gets the delay
parameter equal to zero, the available results are valuable again.
Fractional calculus, in brief, can be seen as an extension of integer calculus. Although its birthdate dates back to 1600 years

such as the traditional calculus, it has been the focus of attention by the most of researchers for the last 30 years. One of the
main reasons for this is the fact that almost all of scientific improvements for fractional calculus are valid for traditional calculus.
Another main reason is the fact that it is noticed that it models many of real-life social problems or real-world systems more
appropriate than the traditional calculus, etc. Today, fractional calculus is employed in many sorts of areas such as biophysics,
control theory, engineering, electrochemistry, signal, mathematical physics, etc; see4-10.

†Qualitative analysis of the Prabhakar fractional delayed system.
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In the quite recent years, Prabhakar fractional calculus have been revealed in the scientific world. The fractional integral
operator which was firstly described in the reference29 causes the onset of the Prabhakar fractional calculus. It is profoundly
investigated and studied in the reference30 and expanded to the notion(concept) of fractional derivatives in the reference31. It
has been applied to pure and applied mathematics32 33 and miscellaneous applications34 35. On the other hands, the Prabhakar
fractional derivatives can be made into different types of fractional operators like the Lorenzo-Hartly, the Miller-Ros, Riemann-
Liouville, Gorenflo-Minerdi, Caputo fractional operators, etc.
To the best of our knowledge, there is no study about the Prabhakar Caputo-type fractional differential delayed equations.

The above-counted explanations and the above-cited works have inspired us to take into consideration the following semilinear
Prabhakar Caputo-type fractional delayed equations

{ PC
0+ H,�

�,� w (t) = Zw (t − r) + ℸ (t, w(t)) , t ∈ (0, T ], r > 0,
w (t) = � (t) , t ∈ [−r, 0]

(1)

where C
0+

H,�
�,� represents the Prabhakar Caputo-type derivative of fractional order 0 < � < 1,H,Z ∈ ℝn×n, T = lr for a fixed

natural number l, and r is a retardation(delay), the disturbing function ℸ ∶ [−r, T ] × ℝn → ℝn is continuous, � ∶ [−r, 0] → ℝ
is an absolutely continuously differentiable function.
This paper is arranged as noted below. In Section 1, the brief history about the differential delayed equation, Fractional

calculus and Prabhakar fractional calculus is stated and the Prabhakar Caputo-type differential delayed system is introduced.
In Section 2, the available tools in the literature we will use are presented. In Section 3, an analytical solution to the linear
Prabhakar fractional differential delayed system is obtained from the Laplace technique and a global solution to the semilinear
system is offered. In Section 4, the existence and uniqueness of the solutions to the semilinear system is proved and the Ulam-
Hyers stability of the semilinear system is debated. In Section 5, the Gramian matrix is defined, the necessary and sufficient
circumstances for controllability of the linear version are presented and the sufficient circumstance for relative controllability of
the semilinear version is offered. In Section 6, our theoretical findings are supported by means of numerical examples.

2 PRELIMINARIES

In this section, the most fundamental tools are presented to make the coming findings easily understandable.
ℝn is an Euclidean space with dimension n ∈ ℕ(Natural numbers). C([0, T ] ,ℝn) consisting of all continuous functions is

the Banach space with the norm ‖ℸ‖C ∶= supt∈[0,T ] ‖ℸ(t)‖ for an arbitrary norm ‖.‖ on ℝn. The set ACn([0, T ]) consists of
real-valued functions f such that it has derivatives up to order n − 1 on [0, T ], and f (n−1) is absolutely continuous.
For �, �, � ∈ ℂwithRe(�) > 0,Re(�) > 0, andH ∈ ℝn×n, the Prabhakar (fractional) integral operator39 is defined as follows

(

0+
H,�
�,� ℸ

)

(t) =

t

∫
0

(t − s)�−1 ��,� (H (t − s)�)ℸ (s) ds (2)

where the well-known three-parameter Mittag-Leffler function33

��,� (x) =
∞
∑

m=0

(�)m
Γ(m� + �)

xm

m!
.

which is a generalisation of the Mittag-Leffler function and defined by Prabhakar in 1971, here Γ(.) is the famous Gamma
function and (�)m is the Pochhammer symbol, that is, (�)m =

Γ(�+m)
Γ(�)

or

(�)0 = 1, (�)m = �(� + 1)...(�)(� + m − 1), m = 0, 1, 2, ... .

In the study? , the Prabhakar Riemann-Liouville-type and Caputo-type derivatives are defined respectively, as follows

(

PR
0+ H,�

�,� ℸ
)

(t) = dm

dxm

t

∫
0

(t − s)m−�−1 −��,m−� (H (t − s)�)ℸ (s) ds, (3)

and
(

PC
0+ H,�

�,� ℸ
)

(t) =

t

∫
0

(t − s)m−�−1 −��,m−� (H (t − s)�) d
m

dsm
ℸ (s) ds, (4)
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where �, �, � ∈ ℂwithRe(�) ≥ 0,Re(�) > 0,m = ⌊Re(�)⌋+1 (here ⌊.⌋ is the floor function),H ∈ ℝn×n and ℸ ∈ ACm([0, T ]).
Definition 1. 36 If f ∶ [0,−∞) → ℝ is both exponentially bounded and measurable on [0,−∞), then the Laplace transform
F (s) = L {f (t)} (s) is given by

F (s) = L {f (t)} (s) =

∞

∫
0

e−stf (t)dt, s ∈ ℂ,

exists and is an analytic function of s for Re(s) > 0.
Lemma 1. 36 The time-shift property for the Laplace integral transform is given by

L {f (t − a)(t − a)} (s) = e−asF (s),

where the heaviside function  ∶ ℝ → ℝ is defined as follows

(t) =
{

1, t ≥ 0,
0, t < 0.

Lemma 2. 36 The inverse Laplace transform of a function F (s) is given by

f (t) = L−1 {F (s)} (t) = lim
�→∞

1
2�i

c+i�

∫
c−i�

estF (s)ds, c = Re(s) > 0.

Lemma 3. 36 The convolution of two functions f and gb on [0,∞) under the Laplace integral transform is given by

L {(f ∗ g) (t)} (s) = L {f (t)} (s)L {g (t)} (s) , s ∈ ℂ.
Lemma 4. 36 Assume that H is a linear and bounded operator defined on a Banach space with ‖H‖ < 1. Then, (I −H)−1 is
linear and bounded such that

(I −H)−1 =
∞
∑

k=0
Hk.

Lemma 5. 37 For any �, �, � > 0, the Laplace transform of the general version ofMittag-Leffler type function of three parameters
��,�(Ht

�) is
L
{

t�−1��,�(Ht
�)
}

(s) = s−� (I −Hs−�)−� ,

which holds for Re(s) > ‖A‖
1
� , where I is the identity operator.

Lemma 6. 37 The Laplace integral transform of Prabhakar fractional derivative of Caputo-type is represented by

L {f (t)} (s) = s� (I −Hs−�)� L {f (t)} (s) −
m−1
∑

k=0
s�−k−1 (I −Hs−�)� f (k)(0).

where m − 1 ≤ Re(�) < m.

Lemma 7. (Krasnoselskii’s fixed point theorem) Let  be a convex bounded and closed subset of Banach space X and let
1,2 be maps  into Y such that 1w + 2v ∈  for every pair w, v ∈ . If 2 is compact and continuous and 1 is a
contraction, then the equation 1w +2w = w is of a solution on .

From now on, all of the following sharing will be new contributions.

3 AN ANALYTICAL SOLUTION TO PRABHAKAR CAPUTO-TYPE FRACTIONAL
DELAYED SYSTEM

In this section, we research for an exact solution to linear and semilinear Prabhakar Caputo-type fractional delayed system by
using the well-known famous Laplace technique which is prerequisite for differential systems.
First of all, we are interested in an exact solution to the following linear Prabhakar Caputo-type fractional delayed system

{ PC
0+ H,�

�,� w (t) = Zw (t − r) + ℸ (t) , t ∈ (0, T ], r > 0,
w (t) = � (t) , t ∈ [−r, 0]

(5)

where C
0+

H,�
�,� represents the Prabhakar Caputo-type derivative of fractional order 0 < � < 1,H,Z ∈ ℝn×n, T = lr for a fixed

natural number l, and r is a retardation(delay), the disturbing function ℸ ∶ [−r, T ] → ℝn is continuous, � ∶ [−r, 0] → ℝn is an
absolutely continuously differentiable function.
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Lemma 8. Under the assumption of the commutativity ofH andZ, the linear Prabhakar Caputo-type fractional delayed system
(5) is equivalent to the following integral equation for w ∈ AC ([0, T ])

w(t) =
∞
∑

k=0
(t − kr)k� k��,k�+1(H (t − kr)�)(t − kr)Zkw(0)

+

min{t−r,0}

∫
−r

ΩH,Z(t, s + r)Z�(s)ds +

t

∫
0

ΩH,Z(t, s)ℸ(s)ds,

where

ΩH,Z(t, s) =
∞
∑

k=0
(t − kr − s)(k+1)�−1  (k+1)��,(k+1)�(H (t − kr − s)�)(t − kr − s)Zk.

Before proving this lemma, we make a little preparation. We especially deal with the Laplace transform of the retarded term
w(t − r). In the light of the substitution � = t − r, we get

L {w (t − r)} (s) =

∞

∫
0

e−stw (t − r) dt

= e−sr
∞

∫
−r

e−s�w (�) d�

= e−sr
⎛

⎜

⎜

⎝

0

∫
−r

e−s�w (�) d� +

∞

∫
0

e−s�w (�) d�
⎞

⎟

⎟

⎠

= e−srL {w (t)} (s) +

0

∫
−r

e−s(�+r)� (�) d�.

Under the substitution � + r = t, one can acquire

L {w (t − r)} (s) = e−srL {w (t)} (s) +

r

∫
0

e−st� (t − r) dt

= e−srL {w (t)} (s) +

∞

∫
0

e−st�̄ (t − r) dt

= e−srL {w (t)} (s) + L
{

�̄ (t − r)
}

(s) , (6)

where the unit-step function �̄ ∶ ℝ → ℝ is defined as follows

�̄(t) =
{

�(t), −r ≤ t ≤ 0,
0, t > 0.

Proof. of Lemma 8: We apply the Laplace transform to both sides of equations (5) and acquire the following equalities,

L
{

PC
0+ H,�

�,� w (t)
}

(s) = ZL {w (t − r)} (s) + L {ℸ (t)} (s) ,

If Lemma 6 and equation (6) are implemented in the just-above equation, one can obtain

⇒ s� (I −Hs−�)� L {w (t)} (s) − s�−1 (I −Hs−�)� w(0) = e−srZL {w (t)} (s) +ZL
{

�̄ (t − r)
}

(s) + L {ℸ (t)} (s)

⇒ s� (I −Hs−�)� L {w (t)} (s) + e−srZL {w (t)} (s) = s�−1 (I −Hs−�)� w(0) +ZL
{

�̄ (t − r)
}

(s) + L {ℸ (t)} (s)

⇒
(

s� (I −Hs−�)� + e−srZ
)

L {w (t)} (s) = s�−1 (I −Hs−�)� w(0) +ZL
{

�̄ (t − r)
}

(s) + L {ℸ (t)} (s)

⇒ s� (I −Hs−�)�
(

I − s−� (I −Hs−�)−� e−srZ
)

L {w (t)} (s) = s�−1 (I −Hs−�)� w(0) +ZL
{

�̄ (t − r)
}

(s) + L {ℸ (t)} (s)
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one acquires the Laplace transform of w (t), L {w (t)} (s) :

L {w (t)} (s) = s−� (I −Hs−�)−�
(

I − s−� (I −Hs−�)−� e−srZ
)−1

s�−1 (I −Hs−�)� w(0)

+ s−� (I −Hs−�)−�
(

I − s−� (I −Hs−�)−� e−srZ
)−1

ZL
{

�̄ (t − r)
}

(s)

+ s−� (I −Hs−�)−�
(

I − s−� (I −Hs−�)−� e−srZ
)−1

L {ℸ (t)} (s) .

If Lemma 4 is applied to the above equation with the norm
‖

‖

‖

s−� (I −Hs−�)−� e−srZ‖

‖

‖

< 1,

one gets

L {w (t)} (s) =
∞
∑

k=0
s−(k�+1) (I −Hs−�)−k� e−skrZkw(0)

+
∞
∑

k=0
s−(k+1)� (I −Hs−�)−(k+1)� e−skrZk+1L

{

�̄ (t − r)
}

(s)

+
∞
∑

k=0
s−(k+1)� (I −Hs−�)−(k+1)� e−skrZkL {ℸ (t)} (s)

Based on Lemma 5, one easily obtain the following equality L {w (t)} (s) :

L {w (t)} (s) =
∞
∑

k=0

{

(t − kr)k� k��,k�+1(H (t − kr)�)(t − kr)Zk
}

w(0)

+
∞
∑

k=0
L
{

(t − kr)(k+1)�−1  (k+1)��,(k+1)�(H (t − kr)�)(t − kr)Zk+1
}

(s)L
{

�̄ (t − r)
}

(s)

+
∞
∑

k=0
L
{

(t − kr)(k+1)�−1  (k+1)��,(k+1)�(H (t − kr)�)(t − kr)Zk
}

(s)L {ℸ (t)} (s)

If the inverse Laplace transform and convolution are applied to the just-above equation, one obtains w (t) :

w (t) =
∞
∑

k=0
(t − kr)k� k��,k�+1(H (t − kr)�)(t − kr)Zkw(0)

+
∞
∑

k=0
(t − kr)(k+1)�−1  (k+1)��,(k+1)�(H (t − kr)�)(t − kr)Zk+1 ∗ �̄ (t − r)

+
∞
∑

k=0
(t − kr)(k+1)�−1  (k+1)��,(k+1)�(H (t − kr)�)(t − kr)Zk ∗ ℸ (t)

and so

w (t) =
∞
∑

k=0
(t − kr)k� k��,k�+1(H (t − kr)�)(t − kr)Zkw(0)

+

min{t−r,0}

∫
−r

ΩH,Z(t, s + r)Z�(s)ds +

t

∫
0

ΩH,Z(t, s)ℸ(s)ds,

in this just-above equation, we evaluate that if t ≥ r, then
t−r

∫
−r

ΩH,Z(t, s + r)Z�(s)ds =

0

∫
−r

ΩH,Z(t, s + r)Z�(s)ds,

and if t < r, then
t−r

∫
−r

ΩH,Z(t, s + r)Z�(s)ds =

t−r

∫
−r

ΩH,Z(t, s + r)Z�(s)ds,
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which provide
t−r

∫
−r

ΩH,Z(t, s + r)Z�(s)ds =

min{t−r,0}

∫
−r

ΩH,Z(t, s + r)Z�(s)ds.

This is the last point for this lemma, which means the proof is completed.

Corollary 1. The global solution of the semilinear Prabhakar Caputo-type fractional delayed system (1) is given by

w(t) =
∞
∑

k=0
(t − kr)k� k��,k�+1(H (t − kr)�)(t − kr)Zkw(0)

+

min{t−r,0}

∫
−r

ΩH,Z(t, s + r)Z�(s)ds +

t

∫
0

ΩH,Z(t, s)ℸ(s,w(s))ds,

where

ΩH,Z(t, s) =
∞
∑

k=0
(t − kr − s)(k+1)�−1  (k+1)��,(k+1)�(H (t − kr − s)�)(t − kr − s)Zk, (7)

whose graph is as follows under the special choices of the available parameters

0.5 1.0 1.5 2.0
t

100

200

300

400

500

600

Ω(t, s)

Figure 1 The graph of the function ΩH,Z(t, s) given in (7) for the special choices � = 0.6, � = 0.5, r = 1,H = 2, Z = 1, and
s = 0.

4 EXISTENCE UNIQUENESS OF THE SEMILINEAR PRABHAKAR FRACTIONAL
DELAYED SYSTEM AND ITS STABILITY

In this section, we questionnaire whether there exists a solution to the system (1) and it is unique. In fact, we have just found
the explicit solution to the system (1) in Lemma 8. Here, the important question is to examine if statements in the system (1)
ensure that this solution is unique or not. Unfortunately, available conditions do not guarantee the uniqueness of the analytical
solution, so we need to put one more condition on the disturbing function ℸ (t, w (t)) to assure the explicit solution is unique.
This condition is the fact that disturbing function ℸ (t, w (t)) is the Lipschitzian in the second component with Lℸ.

Lemma 9. Under the appropriate choices of the parameters, the following inequality holds true:
t

∫
0

‖

‖

‖

ΩH,Z(t, s)‖‖
‖

ds ≤ tΩ‖H‖,‖Z‖(t, 0).
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Proof. If the norm and the integral properties and the rule of ΩH,Z(t, s) are employed, one easily gets
t

∫
0

‖

‖

‖

ΩH,Z(t, s)‖‖
‖

ds ≤

t

∫
0

‖

‖

‖

‖

‖

∞
∑

k=0
(t − kr − s)(k+1)�−1  (k+1)��,(k+1)�(H (t − kr − s)�)(t − kr − s)Zk

‖

‖

‖

‖

‖

ds

≤
‖

‖

‖

‖

‖

∞
∑

k=0
(t − kr)(k+1)�−1  (k+1)��,(k+1)�(H (t − kr)�)(t − kr)Zk

‖

‖

‖

‖

‖

t

∫
0

ds

≤ t
∞
∑

k=0
(t − kr)(k+1)�−1  (k+1)��,(k+1)�(‖H‖ (t − kr)�) ‖‖

‖

Zk‖
‖

‖

∶= tΩ‖H‖,‖Z‖(t, 0).

Theorem 1. If the disturbing continuous function ℸ (t, w) fulfills the Lipschitz condition in the second component with the
Lipschitz constant Lℸ > 0 and TLℸΩ‖H‖,‖Z‖(T , 0) < 1 is valid, then the integral equation in the Lemma 8 has a unique solution
in [−r, T ].

Proof. We use the Banach fixed point theorem among fixed point theorems. Thus, we firstly define  ∶ C ([−r, T ] ,ℝn) →
C ([−r, T ] ,ℝn) by

w(t) =
∞
∑

k=0
(t − kr)k� k��,k�+1(H (t − kr)�)(t − kr)Zkw(0)

+

min{t−r,0}

∫
−r

ΩH,Z(t, s + r)Z�(s)ds +

t

∫
0

ΩH,Z(t, s)ℸ(s,w(s))ds,

where

ΩH,Z(t, s) =
∞
∑

k=0
(t − kr − s)(k+1)�−1  (k+1)��,(k+1)�(H (t − kr − s)�)(t − kr − s)Zk.

For any w, v ∈ C ([−r, T ] ,ℝn), we take into consideration

‖w (t) − v (t)‖ ≤

t

∫
0

‖

‖

‖

ΩH,Z(t, s)‖‖
‖

‖ℸ (s,w (s)) − ℸ (s, v (s))‖ ds

≤ TLℸΩ‖H‖,‖Z‖(T , 0) ‖w − v‖C .

which ensures that  is a contraction in the light of the inequality condition. It is well-known that C ([−r, T ] ,ℝn) is the Banach
space with the norm ‖.‖C . Then, Banach fixed point theorem provides that  has a unique fixed point on [−r, T ], i.e. ∃!v ∈
C ([−r, T ] ,ℝn), v (t) = v (t).

Now, we will show that Prabhakar fractional delayed system is stable in the sense of Ulam-Hyers. Before this, We share one
definition and remark related Ulam-Hyers stability.

Definition 2. Let & > 0. The system (1) is stable in the setting of Ulam-Hyers if for every solution w ∈ C ([0, T ] ,ℝn) of
inequality,

‖

‖

‖

PC
0+ H,�

�,� w (t) −Zw (t − r) − ℸ (t, w(t))
‖

‖

‖

≤ ", (8)
there is a solution v ∈ C ([0, T ] ,ℝn) of system (1), and # > 0 such that

‖w (t) − v (t)‖ ≤ #.", t ∈ [0, T ] .

Remark 1. A function w ∈ C1 ([0, T ] ,ℝn) is a solution of the inequality equation (8) if and only if there is a function g ∈
C ([0, T ] ,ℝn), such that

i. ‖g (t)‖ < ",

ii. PC
0+ H,�

�,� w (t) = Zw (t − r) + ℸ (t, w(t)) + g (t).

Theorem 2. Under all of conditions given in Theorem 1, the system (1) is Ulam-Hyers stable.
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Proof. Assume w ∈ C ([0, T ] ,ℝn) which fulfills the inequality (8), and let v ∈ C ([0, T ] ,ℝn) which is the unique solution of
system (1) with the initial condition v (t) = w (t) for all t ∈ [−r, 0]. With the aid of the definition of  and Remark 1 in mind,
we can acquire

‖g (t)‖ < &, w (t) = w (t) +

t

∫
0

ΩH,Z(t, s)g (s) ds,

and also v (t) = (v) (t) for each t ∈ [0, T ]. One can easily get

‖w (t) −w (t)‖ ≤

t

∫
0

‖

‖

‖

ΩH,Z(t, s)‖‖
‖

‖g (s)‖ ds ≤ TΩ‖H‖,‖Z‖(T , 0)&.

We are ready to make and estimation ‖v (t) −w (t)‖:

‖v (t) −w (t)‖ ≤ ‖v (t) − w (t)‖ + ‖w (t) −w (t)‖
≤ LℸTΩ‖H‖,‖Z‖(T , 0) ‖v −w‖C + TΩ‖H‖,‖Z‖(T , 0)&,

which provides
(

1 − LℸTΩ‖H‖,‖Z‖(T , 0)‖
)

‖v − v‖C ≤ TΩ‖H‖,‖Z‖(T , 0)&,
from this just above inequality, we obtain the desired result

‖v −w‖C ≤ #&, # =
TΩ‖H‖,‖Z‖(T , 0)

1 − LℸTΩ‖H‖,‖Z‖(T , 0)
> 0.

The proof is completed.

5 RELATIVE CONTROLLABILITY OF THE PRABHAKAR FRACTIONAL DELAYED
SYSTEM

In the current section, we have discussed about relative controllability of the Prabhakar fractional delayed system. We have
determined necessary and sufficient circumstances for controllability of linear Prabhakar fractional delayed system addition to
establishing sufficient circumstances for controllability of semilinear Prabhakar fractional delayed system.
Before expressing main theorems, we remind a couple of necessary tools. ForH ∈ ℝn×n, the matrix norm

‖A‖ = max
1≤j≤n

n
∑

i=1
|aij|

where ℎij are the entries of the matrixH . LetX1,X2 be two Banach spaces,B(X1, X2) is the Banach space of all bounded linear
operator from X1 to X2. Let J = [0, �] be a bounded closed interval. L2(J , Y2) symbolizes the Hilbert space with ‖.‖L2(J ,Y2).

Definition 3. The system (1) is relatively controllable if for the final state w� ∈ ℝ and the time �, an arbitrary continuously
differentiable initial function �, then there exists such a control function u ∈ L2 ([0, �] ,ℝn) that the system (1) has a solution
w ∈ C ([0, �] ,ℝn) which satisfies w(�) = w� and w(t) = �(t) t ∈ [−r, 0].

We consider two different types of the control systems. One of them is the case ℸ(t, w(t)) = 0 ∈ ℝ, that is, we firstly investigate
the linear Prabhakar fractional delayed control system:

{ PC
0+ H,�

�,� w (t) = Zw (t − r) + Au(t), t ∈ (0, T ], r > 0,
w (t) = � (t) , t ∈ [−r, 0]

(9)

where C
0+

H,�
�,� represents the Prabhakar Caputo-type derivative of fractional order 0 < � < 1, H,Z,A ∈ ℝn×n, T = lr for a

fixed natural number l, and r is a retardation(delay), � ∶ [−r, 0] → ℝn is an absolutely continuously differentiable function. Its
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explicit solution is given by

w(t) =
∞
∑

k=0
(t − kr)k� k��,k�+1(H (t − kr)�)(t − kr)Zkw(0)

+

min{t−r,0}

∫
−r

ΩH,Z(t, s + r)Z�(s)ds +

t

∫
0

ΩH,Z(t, s)Au(s)ds,

where

ΩH,Z(t, s) =
∞
∑

k=0
(t − kr − s)(k+1)�−1  (k+1)��,(k+1)�(H (t − kr − s)�)(t − kr − s)Zk.

Now, it is time to describe Gramian matrix as noted below

W [0, �] =

�

∫
0

ΩH,Z(t, s)AATΩHT ,ZT (t, s)ds,

where
(

ΩH,Z(t, s)
)T =∶ ΩHT ,ZT (t, s), and .T stands for the transpose of a matrix.

The following theorem provides necessary and sufficient circumstances to control the linear system (9).

Theorem 3. The system (9) is relatively controllable if and only if the Gramian matrixW [0, �] is nonsingular.

Proof. Necessity: Suppose the contrary, that is, W [0, �] is singular despite the system (9) being relatively controllable. Then
there is such at least an nonzero b ∈ ℝn that

W [0, �] b = 0.
One can easily acquires that

bTW [0, �] b =

�

∫
0

bTΩH,Z(�, s)AATΩHT ,ZT (�, s)bds,

which gives
bTΩH,Z(�, s)A = 0, 0 ≤ s ≤ �. (10)

Because of the relatively exact controllability of the system (9), for the final state 0 and time �, there is such a control u1 ∈
L2 ([0, �] ,ℝn) that the system (9) has a solution w ∈ AC1 ([0, �] ,ℝn) satisfying w(�) = 0, that is,

w(�) =
∞
∑

k=0
(� − kr)k� k��,k�+1(H (� − kr)�)(� − kr)Zkw(0)

+

min{�−r,0}

∫
−r

ΩH,Z(�, s + r)Z�(s)ds +

�

∫
0

ΩH,Z(�, s)Au1(s)ds = 0,

similarly, for the final state b and time �, there is such a control u2 ∈ L2 ([0, �] ,ℝn) that the system (9) has a solution w ∈
AC1 ([0, �] ,ℝn) satisfying w(�) = b, that is,

w(�) =
∞
∑

k=0
(� − kr)k� k��,k�+1(H (� − kr)�)(� − kr)Zkw(0)

+

min{�−r,0}

∫
−r

ΩH,Z(�, s + r)Z�(s)ds +

t

∫
0

ΩH,Z(�, s)Au2(s)ds = b.

By subtracting the last two equalities and keeping zero equation (10) in mind, one acquires that

b =

t

∫
0

ΩH,Z(�, s)A
[

u2(s) − u1(s)
]

ds

bT b =

t

∫
0

bTΩH,Z(�, s)A
[

u2(s) − u1(s)
]

ds = 0
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So, b = 0 which is a contradiction with b being nonzero.
Sufficiency: We prove that the system (9) is controllable when W [0, �] is nonsingular. Since it is nonsingular, its inverse

(W [0, �])−1 is well-defined. For the final state b ∈ ℝ, if the following function

u(s) = ATΩHT ,ZT (�, s) (W [0, �])−1
(

b −

min{�−r,0}

∫
−r

ΩH,Z(�, s + r)Z�(s)ds

−
∞
∑

k=0
(� − kr)k� k��,k�+1(H (� − kr)�)(� − kr)Zkw(0)

)

can be chosen as a control, then one can easily verify

w(�) =
∞
∑

k=0
(� − kr)k� k��,k�+1(H (� − kr)�)(� − kr)Zkw(0)

+

min{�−r,0}

∫
−r

ΩH,Z(�, s + r)Z�(s)ds +

t

∫
0

ΩH,Z(�, s)Au(s)ds

=
∞
∑

k=0
(� − kr)k� k��,k�+1(H (� − kr)�)(� − kr)Zkw(0) +

min{�−r,0}

∫
−r

ΩH,Z(�, s + r)Z�(s)ds

+

t

∫
0

ΩH,Z(�, s)Au(s)ATΩHT ,ZT (�, s)ds (W [0, �])−1
(

b −

min{�−r,0}

∫
−r

ΩH,Z(�, s + r)Z�(s)ds

−
∞
∑

k=0
(� − kr)k� k��,k�+1(H (� − kr)�)(� − kr)Zkw(0)

)

= b.

The second case ℸ(t, w(t)) ≠ 0 ∈ ℝ, that is, we investigate the semilinear Prabhakar fractional delayed control system:
{ PC

0+ H,�
�,� w (t) = Zw (t − r) + Au(t) + ℸ(t, w(t)), t ∈ (0, T ], r > 0,

w (t) = � (t) , t ∈ [−r, 0]
(11)

where C
0+

H,�
�,� represents the Prabhakar Caputo-type derivative of fractional order 0 < � < 1, H,Z,A ∈ ℝn×n, T = lr for a

fixed natural number l, and r is a retardation(delay), ℸ ∶ [−r, T ] × ℝn → ℝn is continuous, � ∶ [−r, 0] → ℝn is an absolutely
continuously differentiable function. Its explicit solution is given by

w(t) =
∞
∑

k=0
(t − kr)k� k��,k�+1(H (t − kr)�)(t − kr)Zkw(0)

+

min{t−r,0}

∫
−r

ΩH,Z(t, s + r)Z�(s)ds +

t

∫
0

ΩH,Z(t, s)Au(s)ds +

t

∫
0

ΩH,Z(t, s)ℸ(s,w(s))ds.

Unfortunately, we make impose a couple of limitations under the name of assumptions except for expressing conditions in
the system (11) to guarantee the relative controllability of the semilinear Prabhakar fractional delayed system.
A1) The operatorW ∶ L2(J ,ℝn)→ ℝn defined by

Wu =

�

∫
0

ΩH,Z(t, s)Au(s)ds

is of an inverse matrix operatorW−1 taking values in L2(J ,ℝn)
/

kerW.

A2) The disturbing function ℸ ∶ J ×ℝn → ℝn is the Lipschitzian in the second component with Lℸ > 0.
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For simplicity, we now introduce the following notations:

Π = ‖

‖

‖

W−1‖
‖

‖B
(

ℝn,L2(J ,ℝn)
/

kerW
) ,

and

Π1 =
∞
∑

k=0
(t − kr)k� k��,k�+1(‖H‖ (t − kr)�)(t − kr) ‖‖

‖

Zk‖
‖

‖

‖w(0)‖ + �
(

‖Z‖ ‖�‖ +Nℸ
)

Ω‖H‖,‖Z‖(�, 0),

and
Π2 = �LℸΩ‖H‖,‖Z‖(�, 0)

whereNℸ = maxt∈J ‖ℸ(t, 0)‖. From38, Remark 3.3, one acquires

Π =
√

‖

‖

‖

(W[0, �])−1‖‖
‖

Theorem 4. Under the assumptions of (A1) and (A2), the system (11) is relatively controllable for 1 > � ≥ 0.5 if
(

1 + �Ω‖H‖,‖Z‖(�, 0) ‖A‖Π
)

Π2 < 1. (12)

Proof. In the light of (A1), for an arbitrary w ∈ C = C[J ,ℝn], we describe the below control operator uw(t):

uw(t) =W−1
(

w� −
∞
∑

k=0
(t − kr)k� k��,k�+1(H (t − kr)�)(t − kr)Zkw(0)

−

min{t−r,0}

∫
−r

ΩH,Z(t, s + r)Z�(s)ds −

t

∫
0

ΩH,Z(t, s)ℸ(s,w(s))ds
)

.

By employing this control function, we can define  ∶ C → C by

w(t) =
∞
∑

k=0
(t − kr)k� k��,k�+1(H (t − kr)�)(t − kr)Zkw(0)

+

min{t−r,0}

∫
−r

ΩH,Z(t, s + r)Z�(s)ds +

t

∫
0

ΩH,Z(t, s)Au(s)ds +

t

∫
0

ΩH,Z(t, s)ℸ(s,w(s))ds.

Let’s consider

B� = {w ∈ C ∶ ‖w‖ ≤ �}
which is a closed, bounded and convex set in C.

Our first task is to determine the positive real number � > 0 so that
(

B�
)

⊆ B�. Now we make an estimation to the control
function uw by using the assumptions (A1) and (A2) as expressed below:

‖

‖

uw(t)‖‖ =
‖

‖

‖

‖

W−1
(

w� +
∞
∑

k=0
(t − kr)k� k��,k�+1(H (t − kr)�)(t − kr)Zkw(0)

+

min{t−r,0}

∫
−r

ΩH,Z(t, s + r)Z�(s)ds +

t

∫
0

ΩH,Z(t, s)ℸ(s,w(s))ds
)

‖

‖

‖

‖

= ‖

‖

‖

W−1‖
‖

‖

(

‖

‖

w�
‖

‖

+
∞
∑

k=0
(t − kr)k� k��,k�+1(‖H‖ (t − kr)�)(t − kr) ‖‖

‖

Zk‖
‖

‖

× ‖w(0)‖ + �
(

‖Z‖ ‖�‖ +Nℸ
)

Ω‖H‖,‖Z‖(�, 0) + �LℸΩ‖H‖,‖Z‖(�, 0) ‖w‖C

)

≤ Π
(

‖

‖

w�
‖

‖

+ Π1 + Π2 ‖w‖C
)

= Π ‖

‖

w�
‖

‖

+ ΠΠ1 + ΠΠ2 ‖w‖C .
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Now we make an estimation for w(t):

‖w(t)‖ ≤
‖

‖

‖

‖

‖

∞
∑

k=0
(t − kr)k� k��,k�+1(H (t − kr)�)(t − kr)Zkw(0)

‖

‖

‖

‖

‖

+
‖

‖

‖

‖

‖

‖

‖

min{t−r,0}

∫
−r

ΩH,Z(t, s + r)Z�(s)ds +

t

∫
0

ΩH,Z(t, s)Au(s)ds
‖

‖

‖

‖

‖

‖

‖

+
‖

‖

‖

‖

‖

‖

‖

t

∫
0

ΩH,Z(t, s)(ℸ(s,w(s)) − ℸ(s, 0))ds +

t

∫
0

ΩH,Z(t, s)ℸ(s, 0)ds
‖

‖

‖

‖

‖

‖

‖

≤ Π1 + Π2 ‖w‖C + �Ω‖H‖,‖Z‖(�, 0) ‖A‖
(

Π ‖

‖

w�
‖

‖

+ ΠΠ1 + ΠΠ2 ‖w‖C
)

≤ Π1
(

1 + �Ω‖H‖,‖Z‖(�, 0) ‖A‖Π
)

+
(

�Ω‖H‖,‖Z‖(�, 0) ‖A‖Π
)

‖

‖

w�
‖

‖

+ Π2
(

1 + �Ω‖H‖,‖Z‖(�, 0) ‖A‖Π
)

� ∶= �.

One can easily obtain the ratio �:

� ∶=

(

1 + �Ω‖H‖,‖Z‖(�, 0) ‖A‖Π
)

Π1 +
(

�Ω‖H‖,‖Z‖(�, 0) ‖A‖Π
)

‖

‖

w�
‖

‖

1 −
(

1 + �Ω‖H‖,‖Z‖(�, 0) ‖A‖Π
)

Π2
> 0

which provides 
(

B�
)

⊆ B�. Its positiveness comes from the condition (4) given in the statements of the present theorem.
Now we divide w(t) into two different operators 1w(t) and 2w(t) on B� as noted below:

1w(t) =
∞
∑

k=0
(t − kr)k� k��,k�+1(H (t − kr)�)(t − kr)Zkw(0)

+

min{t−r,0}

∫
−r

ΩH,Z(t, s + r)Z�(s)ds +

t

∫
0

ΩH,Z(t, s)Au(s)ds, .

and

2w(t) =

t

∫
0

ΩH,Z(t, s)ℸ(s,w(s))ds.

The next task is to show 1 is a contraction on B�. By taking any w, v ∈ B� and keeping (A1) and (A2) in mind, we get

‖

‖

uw(t) − uv(t)‖‖ ≤ Π

�

∫
0

‖

‖

‖

ΩH,Z(�, s)‖‖
‖

‖ℸ(s,w(s)) − ℸ(s, v(s))‖ ds

≤ ΠΠ2 ‖w − v‖C .

Thus

‖

‖

1w(t) −1v(t)‖‖ ≤

�

∫
0

‖

‖

‖

ΩH,Z(�, s)‖‖
‖

‖A‖ ‖
‖

uw(s) − uv(s)‖‖ ds

≤ �Ω‖H‖,‖Z‖(�, 0) ‖A‖ΠΠ2 ‖w − v‖C .

Due to the condition (4), �Ω‖H‖,‖Z‖(�, 0) ‖A‖ΠΠ2 < 1 which guarantees that 1 is a contraction on B�.
The next task is to demonstrate that 2 is continuous on B�. Assume that wn → w ∈ B�. (A2) ensures that ℸ(t, wn(t)) →

ℸ(t, w(t)). Dominated convergence theorem provides

‖

‖

2wn(t) −2w(t)‖‖ ≤

t

∫
0

‖

‖

‖

ΩH,Z(t, s)‖‖
‖

‖

‖

ℸ(s,wn(s)) − ℸ(s,w(s))‖‖ ds→ 0

as n→∞.
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The last task is to check whether 2 is compact. For w ∈ B�, 0 < t < t + ℎ < �

2w(t + ℎ) −2w(t) =

t+ℎ

∫
t

ΩH,Z(t + ℎ, s)ℸ(s,w(s))ds +

t

∫
0

(

ΩH,Z(t + ℎ, s) − ΩH,Z(t, s)
)

ℸ(s,w(s))ds.

Set the following notations:

�1 ∶=

t+ℎ

∫
t

ΩH,Z(t + ℎ, s)ℸ(s,w(s))ds,

�2 ∶=

t

∫
0

(

ΩH,Z(t + ℎ, s) − ΩH,Z(t, s)
)

ℸ(s,w(s))ds.

With an easy computation, one gets

‖

‖

�1‖‖ =
(

Lℸ ‖w‖C +Nℸ
)

t+ℎ

∫
t

‖

‖

‖

ΩH,Z(t + ℎ, s)‖‖
‖

ds→ 0

‖

‖

�2‖‖ =
(

Lℸ ‖w‖C +Nℸ
)

t

∫
0

‖

‖

‖

ΩH,Z(t + ℎ, s) − ΩH,Z(t, s)‖‖
‖

ds→ 0

as ℎ→ 0. As a consequence, one obtains
‖

‖

2w(t + ℎ) −2w(t)‖‖ ≤ ‖

‖

�1‖‖ + ‖

‖

�2‖‖ → 0 as ℎ→ 0.

2
(

B�
)

is bounded because one easily reach to the following upper bound with the similar calculations,
‖

‖

2
‖

‖

≤
(

Lℸ� +Nℸ
)

�Ω‖H‖,‖Z‖(�, 0).

Based on the equicontinuity and boundedness of 2, Arzela-Ascoli theorem gives it is compact. Krasnoselskii’s fixed point
theorem assures that  has a fixed point w ∈ B�. This completes the proof.

6 EXAMPLES

In this section, we illustrate our theoretical results.

Example 1. We will take into consideration the following linear Prabhakar Caputo-type fractional differential delayed system
{

PC
0+ 0.1,1

0.2,0.3w (t) = 0.5w (t − 0.6) + t
2, t ∈ (0, 3],

w (t) = t, t ∈ [−0.6, 0]
(13)

whose closed-form formula of the solution is given by

w(t) =
∞
∑

k=0
(t − 0.6k)0.3k k0.2,0.3k+1(0.1 (t − 0.6k)

0.2)(t − 0.6k)0.5kw(0)

+ 0.5

min{t−0.6,0}

∫
−0.6

Ω0.1,0.5(t, s + 0.6)sds +

t

∫
0

Ω0.1,0.5(t, s)s2ds,

where

Ω0.1,0.5(t, s) =
∞
∑

k=0
(t − 0.6k − s)(k+1)0.3−1  (k+1)0.2,(k+1)0.3(H (t − 0.6k − s)�)(t − 0.6k − s)0.5k,

and the graph of the solution to the system (13) is in Figure 2.

Example 2. We will examine the following linear Prabhakar Caputo-type fractional differential delayed system
{

PC
0+ H,1

0.1,0.7w (t) = Zw (t − 0.2) +
et

1+et
t2 sin (w(t)) , t ∈ (0, 0.8], ,

w (t) = � (t) , t ∈ [−0.2, 0]
(14)
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Figure 2 The graph of the exact analytical solution function w(t) to the system (13).

where H = I3×3 and Z =
⎛

⎜

⎜

⎝

1 0 2
3 1 0
2 0 1

⎞

⎟

⎟

⎠

,� (x) =
⎛

⎜

⎜

⎝

t2

3t + 1
t

⎞

⎟

⎟

⎠

. One can easily calculate that ℸ (t, w(t)) = 1
2

t4

1+t2
sin (w(t)) is both

continuous and the Lipschitzian with Lℸ = 0.32 and TLℸΩ‖H‖,‖Z‖(T , 0) ≅ 0.8 ∗ 0.32 ∗ 3.40541 = 0.871 < 1. Hence, all of
circumstances given in the statements of Theorem 1 and 2 are fulfilled, so system (14) has an unique solution as well as being
Ulam-Hyers stable.

Example 3. Wewill consider the following homogenegous Prabhakar Caputo-type fractional differential delayed control system
{

PC
0+ H,1

0.6,0.5w (t) = Zw (t − 1) + Au(t) t ∈ (0, 4],
w (t) = �(t), t ∈ [−1, 0]

(15)

whereH = Z =
⎛

⎜

⎜

⎝

0.2 0.4 0.6
0.8 0.1 0.3
0.7 0.9 0.5

⎞

⎟

⎟

⎠

, A =
⎛

⎜

⎜

⎝

1 5 7
4 9 6
2 8 3

⎞

⎟

⎟

⎠

, �(t) =
⎛

⎜

⎜

⎝

t2 + 4
2t + 5
3t

⎞

⎟

⎟

⎠

. A representation of the Gramian matrix for the homogenegous

Prabhakar Caputo-type fractional differential delayed system(15) as follows:

W [0, 2] =

2

∫
0

ΩH,Z(2, s)AATΩHT ,ZT (2, s)ds

=
⎡

⎢

⎢

⎣

0.0016 2.048 2.4696
2.048 0.0081 3.4992
2.4696 3.4992 0.5625

⎤

⎥

⎥

⎦

.

We compute the determinant of Gramian matrixW [0, 2] which is 32.9678. Thus,W [0, 2] is nonsingular. Based on Theorem 3,
the system (15) is relatively controllable.

Example 4. We will investigate the following inhomogeneous Prabhakar Caputo-type fractional delayed control system
{

PC
0+ H,1

0.2,0.9w (t) = Zw (t − 2) + Au(t) + ℸ(t, w(t)), t ∈ (0, 6],
w (t) = � (t) , t ∈ [−2, 0]

(16)

whereH =
(

0.1 0.2
0.3 0.4

)

,Z =
(

0.5 0.4
0.6 1.1

)

,A =
(

0.2 0.5
0.3 0.1

)

, �(t) =
(

t2 + 4
2t + 5

)

, ℸ(t, w(t)) =
(

sinw(t)
�6t

tan−1 w(t)
(�2t)2

)T
. A representation

of the Gramian matrix for the homogenegous Prabhakar Caputo-type fractional differential delayed system(16) as follows:

W [0, 4] =

4

∫
0

ΩH,Z(4, s)AATΩHT ,ZT (4, s)ds

=
[

0.250 8.640
8.640 19.360

]

,

and
(W[0, 4])−1 =

[

4 0.115741
0.115741 0.0516529

]
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From38, Remark 3.3, one acquires

Π = ‖

‖

‖

W−1‖
‖

‖B
(

ℝ2,L2([0,4],ℝ2)
/

kerW
) =

√

‖

‖

‖

(W[0, 4])−1‖‖
‖

= 2.02873

which guarantees that the inverse operator W−1 exists, so the operator W ∶ L2([0, 4],ℝ2) → ℝ2 fulfills (A1). The function
ℸ ∶ [0, 4] ×ℝ2 → ℝ2 is a continuous function and for arbitrary w, v ∈ ℝ2

‖

‖

‖

‖

‖

(

tan−1 v(t)
10(�2t)2

sin v(t)
20(�t)6

)T

−
(

tan−1w(t)
(�2t)2

sinw(t)
�6t

)T
‖

‖

‖

‖

‖

≤ Lℸ‖v(t) −w(t)‖, t ∈ [0, 4]

where Lℸ =
1

40�4
which provides that (A2) is satisfied for system (16). It is easy to confirm that the inequality (4) is satisfied as

noted below
(

1 + �Ω‖H‖,‖Z‖(�, 0) ‖A‖Π
)

Π2 ≅ 0.0761901 < 1.
As a consequence, all of the circumstances of Theorem 4 are confirmed. Theorem 4 ensures the system (16) is relatively
controllable in the light of the control function uw(t):

uw(t) =W−1
(

w� −
∞
∑

k=0
(t − 2k)0.9k k0.2,0.9k+1(H (t − 2k)�)(t − 2k)Zk(4 5)T

−

min{t−2,0}

∫
−2

ΩH,Z(t, s + 2)Z(t2 + 4 2t + 5)T ds −

t

∫
0

ΩH,Z(t, s)
(

sinw(s)
�6s

tan−1w(s)
(�2s)2

)T

ds
)

,

where

ΩH,Z(t, s) =
∞
∑

k=0
(t − 2k − s)0.9(k+1)−1  (k+1)0.2,0.9(k+1)(H (t − 2r − s)0.2)(t − 2r − s)Zk.

7 CONCLUSION

This paper is devoted to introducing the Prabkahar Caputo-type fractional differential delayed system, investigating existence
uniqueness of solutions to the system, discussing about its stability, and lastly demonstrating that not only the linear version but
also the semilinear version are relatively controllable under some restrictions we impose.
In addition to the importance of Fractional calculus, the Prabhakar calculus, and delayed systems, the fact that the Prabhakar

fractional differential delayed system is firstly introduced and studied in the setting of its qualitative properties make this paper
different and give it prominence. It is clear that the obtained results are also new even if the retardation is equal to zero or is
removed in the system. Because of the definition of Prabhakar fractional derivatives which include somany of different fractional
operators such as the Lorenzo-Hartly, the Miller-Ros, Riemann-Liouville, Gorenflo-Minerdi, Caputo fractional operators, etc.,
our results are comprehensive and also valid for these fractional differential delayed systems.
As a future work, one can investigate the same system replacing the constat coefficients by variable coefficients. Another work

is to consider the Langevin fractional differential equations with the Prabhakar fractional derivatives. There are lots of things to
do because the Prabhakar calculus is quite novel.
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