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Abstract

In this letter, a novel model for broadband power amplifier (PA) linearization is proposed, namely Attention Mechanism based

Bidirectional Long Short-term Memory network (AM-BiLSTM). In order to verify the linearization performance of the AM-

BiLSTM model, a 100MHz bandwidth 5G new radio (5G NR) signal is employed to test the sub-6G PA operating at 2.6-GHz.

The experimental results show that the adjacent channel power ratio (ACPR) of the PA with AM-BiLSTM can be improved by

24dB which is 6-dB better than the generalized memory polynomial (GMP) and 3-dB better than the Chebyshev polynomials

LSTM (CP-LSTM) in ref[1]. Therefore, the proposed AM-BiLSTM is very effective for the linearization of broadband PA.
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In this letter, a novel model for broadband power amplifier (PA) 

linearization is proposed, namely Attention Mechanism based 

Bidirectional Long Short-term Memory network (AM-BiLSTM). In 

order to verify the linearization performance of the AM-BiLSTM model, 

a 100MHz bandwidth 5G new radio (5G NR) signal is employed to test 

the sub-6G PA operating at 2.6-GHz. The experimental results show 

that the adjacent channel power ratio (ACPR) of the PA with AM-

BiLSTM can be improved by 24dB which is 6-dB better than the 

generalized memory polynomial (GMP) and 3-dB better than the 

Chebyshev polynomials LSTM (CP-LSTM) in ref [1]. Therefore, the 

proposed AM-BiLSTM is very effective for the linearization of 

broadband PA. 

 

Introduction: As the development of the wireless communication 

system, the signal is tend to large bandwidth and high peak to average 

power ratio (PAPR) [2] which will exacerbate the PAs’ memory effect 

and nonlinearity especially for the PAs operating in the low frequency 

band. To put it more elegantly, the relative bandwidth of a 100-MHz 

signal when paired with a 3.5-GHz PA is comparable to the relative 

bandwidth of an 800-MHz signal when matched with a 28-GHz PA. 

That is, PAs in the lower frequency range tend to exhibit stronger 

memory effects. This highlights the importance of further investigation 

into developing models that are capable of capturing and modeling the 

strong memory effects of these amplifiers. 

The robust fitting abilities of neural network models make them a 

viable solution for modeling PAs’ strong memory effects[3]. 

Researchers have introduced Convolutional Neural Networks (CNNs) 

[4], and LSTM network models [5] [6] of deep neural networks, which 

have shown promising results in various nonlinear model identification 

domains. Among this model, LSTM model has a more accurate 

characterization of PAs’ memory effects due to its sensitivity to time 

series. 

Though, the CP-LSTM has shown strong ability for linearizing the 

wideband 5G mmW PA. It still need a more efficient model for the PA 

in sub-6G frequency band. We porpose a novel model AM-BiLSTM 

which has more effective in describing memory effects. In AM-

BiLSTM, the attention mechanism[7] allows the model to automatically 

determine which parts of the input are most important in making a 

prediction, rather than processing the entire input sequence equally. 

This allows the model to handle input sequences of varying lengths, 

attend to relevant information and make more accurate predictions. 

Therefore, we propose a pre-distorter model that leverages the attention 

mechanism to build a bidirectional LSTM, which accurately captures 

both the advanced and delayed memory effects of the PA, thereby 

providing a more comprehensive representation of the PAs’ strong 

memory effect. The measured results demonstrate that the AM-

BiLSTM exhibits superior linearization performance compared to other 

neural network models in cases where the PA exhibits strong memory 

effects. 

 

AM-BiLSTM Model Architecture: The AM-BiLSTM model is 

composed of a normalization layer, BiLSTM layer (a forward LSTM 

layer and a backward LSTM layer) and an attention layer. The overall 

structure of the AM-BiLSTM-based power amplifier model is depicted 

in Figure 1. 

In Figure 1, the 𝐼𝑖𝑛 is the real value of the in-phase baseband signal 

and the 𝑄𝑖𝑛  is the quadrature-phase part. We use the maximum 

normalization to normalize the input IQ data which can be expressed as 

 
                                                             

Fig. 1 Proposed AM-BiLSTM model. 

 

 
Fig. 2 Attention mechanism calculation process. 
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The structure of the LSTM layer has been thoroughly described in ref 

[1]. In BiLSTM layer, information data is fed into the model from both 

the forward and backward directions. The forward LSTM network 

learns the delayed historical information, and the backward LSTM 

network learns the future information ahead of time, thus achieving 

efficient global information training.  
In an effort to minimize the computational complexity of the network, 

we investigate the utilization of attention mechanism to effectively 

optimize and choose memory items within the BiLSTM layer. The 

attention mechanism selectively preserves memory items with 

significant impact, while discarding those with minimal effect. The 

implementation of the attention mechanism is shown in Figure 2. The 

calculation process of the Attention mechanism designed in this paper is 

as follows: 

First, the correlation between each memory item  𝑥(𝑛 −𝑚 − 1) and 

the output 𝑦(𝑛) is calculated. Then, the Softmax function is used to 

convert the correlation values obtained from the positive and negative 

directions of the memory items to the output into numerical values, so 

that the results meet the probability distribution with the sum of weights 

equal to 1. Finally, the calculated correlation coefficient 𝑎𝑚  is 

multiplied by the PA model function 𝑓(𝑥(𝑛 − 𝑚)), and the sum of 

these M products is calculated to obtain the Attention value 𝑦′(𝑛) , 

which is the predicted value of the output 𝑦(𝑛). This way, 𝑎𝑚 is used to 

select and retain memory items based on their contribution. 

( ) ( ) 
0

M

m
m
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(3) 

The calculation of the correlation, as mentioned in the previous text, 

is performed by multiplying the output matrix A of the BiLSTM layer 

with its transpose to obtain the correlation coefficient matrix B. The 

product of matrix B and A is then concatenated with A, and a fully 

connected layer is used to transform the data dimension. Finally, the 

model output is obtained. 
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Fig. 3 Digital predistortion hardware platform diagram. 
 

AM-BiLSTM Networks Model Training: The proposed model is 

implemented in the TensorFlow2.0 platform with the training steps as 

follows: 

Step-1: Initialize the designed variables, set the epoch number and 

limited tolerance, load the training data. The Xavier parameter 

initialization method is employed to ensure that information flows more 

effectively within the network and that the variance of the output from 

each layer is as equal as possible. 

Step-2: Build the AM-BiLSTM network. Set the memory term as 5, 

the order as 7, the time step as 2. 

Step-3: Set the loss function 𝑓𝑙𝑜𝑠𝑠(𝑘) as the mean squre error (MSE) 

between the predicted output ( )outy k and the measured output ( )outy k . 

The ( )lossf k  can be expressed as: 

( ) ( ) ( ) ( ) ( ) 2 2

0

1 N

Loss out out out out
n

f k I k I k Q k Q k
N =

 =  −  +  −     
 

(4) 

Step-4: Feed the training data into the network and train the model at 

each epoch. When the epoch number or limited tolerance is reached, the 

behavioral model can be used to predict a new output. 

Model Validation: In order to measure the linearization performance of 

the AM-BiLSTM model, a 5G sub-6G PA DPD experimental setup is 

built as Figure 3 exhibited. The experimental instruments used in this 

experiment contain a Rohde & Schwarz (R&S) vector signal generator 

(SMW-200A), an R&S power spectrum analyzer (FSW-85), a driver 

PA, an attenuator, some power suppliers, and RF cables. The test signal 

adopts a 5G NR signal with a bandwidth of 100 MHz and a peak-to-

average-power ratio of 10.9-dB. The peak output power of the Doherty 

PA is 40 dBm and the center frequency is 2.6 GHz. 

 
Modeling Result Analysis: In order to quantitatively describe the models’ 

accuracy, the normalized mean squared error (NMSE) is employed to 

measure the error between the output of the model and the measured 

output of the PA. Table I list the NMSE of the generalized memory 

polynomial (GMP) [8], LSTM, CP-LSTM and the AM-BiLSTM with 

the 5G NR signal. The coefficient settings of the LSTM, CP-LSTM and 

AM-BiLSTM are all the same . The lagging /leading envelope memory 

depth is set to 2, memory depth is set to 5, and the order is set to 7 for 

the GMP to operate at the best linearization performance. From Table 1, 

it can be seen that the AM-BiLSTM model exhibits better accuracy and 

only causes a little complexity. 

Figure 4 gives the comparisons of the amplitude modulation / 

amplitude modulation (AM/AM) and amplitude modulation/phase 

modulation (AM/PM) of the PA between simulated and measured, 
which describes the high accuracy of the AM-BiLSTM in another way. 

 

Linearization Result Analysis: In order to measure the linearization 

performance of the AM-BiLSTM, a linearization performance test is 

taken in this letter. Figure 5 exhibits the PA output spectrums with DPD 

built by the GMP, LSTM, CP-LSTM, AM-BiLSTM and without any 

linearizer.  

 

 
Table 1: Comparison of the models 

Model Numbers of (Multiplies, Additions) NMSE 

GMP (2520,1470) -35.79 

LSTM (1932,1596) -36.48 

CP-LSTM (1968,1658) -37.96 

AM-BiLSTM (2496,1748) -40.77 

 

 
a 

 
b 

Fig. 4 Comparison between measured and AM-BiLSTM modeled 

characteristics of the PA. 

a AM/AM 

b AM/PM 
 

 
Fig. 5 Comparison of the linearization capability for the four 

predistorters.  
 
Table 2: ACPR of the PA under different models 

Model ACPR +/-50MHz ACPR +/-100MHz 

W/O DPD -27.26/-25.39-dB -33.56/-31.34-dB 

GMP -44.71/-45.98-dB -47.79/-47.86-dB 

LSTM -45.30/-45.51-dB -47.51/-47.14-dB 

CP-LSTM -47.82/-45.60-dB -48.12/-50.87-dB 

AM-BiLSTM -50.93/-50.02-dB -51.86/-50.91-dB 

 
Figure 5 clearly illustrates that the traditional linearization model 

GMP do not provide satisfactory linearization results when dealing with 

the PA with strong memory effects. In contrast, neural network models 

show significantly better performance than the traditional models. In the 

neural network models, while the mmW model CP-LSTM model has 

demonstrated a clear improvement over the LSTM model, its efficacy in 

the sub-6GHz frequency band remains limited. The AM-BiLSTM 

model we proposed has shown remarkable performance in broadband 

linearization at sub-6GHz frequency band. 

Conclusion: In this paper, we propose a 5G amplifier non-linear 

behavior model namely AM-BiLSTM. We have presented a detailed 

description of the structure of the AM-BiLSTM model as well as the 

thought process behind constructing the model. In order to test the 

effectiveness of the model, a pre-distorter system experiment platform 

in sub-6G frequency band is build. By observing the power spectral 

density it is found that the linear improvement of the ACPR of AM-

BiLSTM model can be improved by about 24dB, which is 6-dB better 

than the GMP and 3-dB better than the CP-LSTM.  In summary, AM-

BiLSTM model has good practical effects for wideband PAs with 

strong memory effects. 
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