Attention Mechanism Based Bidirectional LSTM Model for
Broadband Power Amplifier Linearization

rina Su!, Jiacheng Wang?, Gaoming Xu?, and taijun liu?

'Ningbo University of Technology
2Ningbo University

May 13, 2023

Abstract

In this letter, a novel model for broadband power amplifier (PA) linearization is proposed, namely Attention Mechanism based
Bidirectional Long Short-term Memory network (AM-BiLSTM). In order to verify the linearization performance of the AM-
BiLSTM model, a 100MHz bandwidth 5G new radio (5G NR) signal is employed to test the sub-6G PA operating at 2.6-GHz.
The experimental results show that the adjacent channel power ratio (ACPR) of the PA with AM-BiLSTM can be improved by
24dB which is 6-dB better than the generalized memory polynomial (GMP) and 3-dB better than the Chebyshev polynomials
LSTM (CP-LSTM) in ref[1]. Therefore, the proposed AM-BiLSTM is very effective for the linearization of broadband PA.
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In this letter, a novel model for broadband power amplifier (PA)
linearization is proposed, namely Attention Mechanism based
Bidirectional Long Short-term Memory network (AM-BIiLSTM). In

order to verify the linearization performance of the AM-BiLSTM model,

a 100MHz bandwidth 5G new radio (5G NR) signal is employed to test
the sub-6G PA operating at 2.6-GHz. The experimental results show
that the adjacent channel power ratio (ACPR) of the PA with AM-
BiLSTM can be improved by 24dB which is 6-dB better than the
generalized memory polynomial (GMP) and 3-dB better than the
Chebyshev polynomials LSTM (CP-LSTM) in ref [1]. Therefore, the
proposed AM-BILSTM is very effective for the linearization of
broadband PA.

Introduction: As the development of the wireless communication
system, the signal is tend to large bandwidth and high peak to average
power ratio (PAPR) [2] which will exacerbate the PAs” memory effect
and nonlinearity especially for the PAs operating in the low frequency
band. To put it more elegantly, the relative bandwidth of a 100-MHz
signal when paired with a 3.5-GHz PA is comparable to the relative
bandwidth of an 800-MHz signal when matched with a 28-GHz PA.
That is, PAs in the lower frequency range tend to exhibit stronger
memory effects. This highlights the importance of further investigation
into developing models that are capable of capturing and modeling the
strong memory effects of these amplifiers.

The robust fitting abilities of neural network models make them a
viable solution for modeling PAs’ strong memory effects[3].
Researchers have introduced Convolutional Neural Networks (CNNSs)
[4], and LSTM network models [5] [6] of deep neural networks, which
have shown promising results in various nonlinear model identification
domains. Among this model, LSTM model has a more accurate
characterization of PAs’ memory effects due to its sensitivity to time
series.

Though, the CP-LSTM has shown strong ability for linearizing the
wideband 5G mmW PA. It still need a more efficient model for the PA
in sub-6G frequency band. We porpose a novel model AM-BiLSTM
which has more effective in describing memory effects. In AM-
BiLSTM, the attention mechanism[7] allows the model to automatically
determine which parts of the input are most important in making a
prediction, rather than processing the entire input sequence equally.
This allows the model to handle input sequences of varying lengths,
attend to relevant information and make more accurate predictions.
Therefore, we propose a pre-distorter model that leverages the attention
mechanism to build a bidirectional LSTM, which accurately captures
both the advanced and delayed memory effects of the PA, thereby
providing a more comprehensive representation of the PAs’ strong
memory effect. The measured results demonstrate that the AM-
BiLSTM exhibits superior linearization performance compared to other
neural network models in cases where the PA exhibits strong memory
effects.

AM-BILSTM Model Architecture: The AM-BILSTM model is
composed of a normalization layer, BiLSTM layer (a forward LSTM
layer and a backward LSTM layer) and an attention layer. The overall
structure of the AM-BILSTM-based power amplifier model is depicted
in Figure 1.

In Figure 1, the I;, is the real value of the in-phase baseband signal
and the Q;, is the quadrature-phase part. We use the maximum
normalization to normalize the input IQ data which can be expressed as
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Fig. 2 Attention mechanism calculation process.
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The structure of the LSTM layer has been thoroughly described in ref
[1]. In BiLSTM layer, information data is fed into the model from both
the forward and backward directions. The forward LSTM network
learns the delayed historical information, and the backward LSTM
network learns the future information ahead of time, thus achieving
efficient global information training.

In an effort to minimize the computational complexity of the network,
we investigate the utilization of attention mechanism to effectively
optimize and choose memory items within the BiLSTM layer. The
attention mechanism selectively preserves memory items with
significant impact, while discarding those with minimal effect. The
implementation of the attention mechanism is shown in Figure 2. The
calculation process of the Attention mechanism designed in this paper is
as follows:

First, the correlation between each memory item x(n —m — 1) and
the output y(n) is calculated. Then, the Softmax function is used to
convert the correlation values obtained from the positive and negative
directions of the memory items to the output into numerical values, so
that the results meet the probability distribution with the sum of weights
equal to 1. Finally, the calculated correlation coefficient a,, is
multiplied by the PA model function f(x(n —m)), and the sum of
these M products is calculated to obtain the Attention value y'(n),
which is the predicted value of the output y(n). This way, a,, is used to
select and retain memory items based on their contribution.

y’(n)=m%0ame{x(n—m)} ®)

The calculation of the correlation, as mentioned in the previous text,
is performed by multiplying the output matrix A of the BiLSTM layer
with its transpose to obtain the correlation coefficient matrix B. The
product of matrix B and A is then concatenated with A, and a fully
connected layer is used to transform the data dimension. Finally, the
model output is obtained.
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Fig. 3 Digital predistortion hardware platform diagram.

AM-BIiLSTM Networks Model Training: The proposed model is
implemented in the TensorFlow2.0 platform with the training steps as
follows:

Step-1: Initialize the designed variables, set the epoch number and
limited tolerance, load the training data. The Xavier parameter
initialization method is employed to ensure that information flows more
effectively within the network and that the variance of the output from
each layer is as equal as possible.

Step-2: Build the AM-BIiLSTM network. Set the memory term as 5,
the order as 7, the time step as 2.

Step-3: Set the loss function f;,s;(k) as the mean squre error (MSE)
between the predicted output Y;,, (k) and the measured output Y, (k).

The f, (k) can be expressed as:
fa (k) =5 3 {1120 )= L ()T (@ ()~ Qe (KT} 0)

Step-4: Feed the training data into the network and train the model at
each epoch. When the epoch number or limited tolerance is reached, the
behavioral model can be used to predict a new output.

Model Validation: In order to measure the linearization performance of
the AM-BILSTM model, a 5G sub-6G PA DPD experimental setup is
built as Figure 3 exhibited. The experimental instruments used in this
experiment contain a Rohde & Schwarz (R&S) vector signal generator
(SMW-200A), an R&S power spectrum analyzer (FSW-85), a driver
PA, an attenuator, some power suppliers, and RF cables. The test signal
adopts a 5G NR signal with a bandwidth of 100 MHz and a peak-to-
average-power ratio of 10.9-dB. The peak output power of the Doherty
PA is 40 dBm and the center frequency is 2.6 GHz.

Modeling Result Analysis: In order to quantitatively describe the models’

accuracy, the normalized mean squared error (NMSE) is employed to
measure the error between the output of the model and the measured
output of the PA. Table I list the NMSE of the generalized memory
polynomial (GMP) [8], LSTM, CP-LSTM and the AM-BiLSTM with
the 5G NR signal. The coefficient settings of the LSTM, CP-LSTM and
AM-BILSTM are all the same . The lagging /leading envelope memory
depth is set to 2, memory depth is set to 5, and the order is set to 7 for
the GMP to operate at the best linearization performance. From Table 1,
it can be seen that the AM-BILSTM model exhibits better accuracy and
only causes a little complexity.

Figure 4 gives the comparisons of the amplitude modulation /
amplitude modulation (AM/AM) and amplitude modulation/phase
modulation (AM/PM) of the PA between simulated and measured,
which describes the high accuracy of the AM-BIiLSTM in another way.

Linearization Result Analysis: In order to measure the linearization
performance of the AM-BILSTM, a linearization performance test is
taken in this letter. Figure 5 exhibits the PA output spectrums with DPD
built by the GMP, LSTM, CP-LSTM, AM-BILSTM and without any
linearizer.

Table 1: Comparison of the models

Model Numbers of (Multiplies, Additions) NMSE
GMP (2520,1470) -35.79
LSTM (1932,1596) -36.48
CP-LSTM (1968,1658) -37.96
AM-BIiLSTM (2496,1748) -40.77
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Fig. 4 Comparison between measured and AM-BiLSTM modeled

characteristics of the PA.
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Fig. 5 Comparison of the linearization capability for the four
predistorters.

Table 2: ACPR of the PA under different models

Model ACPR +/-50MHz ACPR +/-100MHz
W/O DPD -27.26/-25.39-dB -33.56/-31.34-dB
GMP -44.71/-45.98-dB -47.79/-47.86-dB
LSTM -45.30/-45.51-dB -47.51/-47.14-dB
CP-LSTM -47.82/-45.60-dB -48.12/-50.87-dB
AM-BiLSTM -50.93/-50.02-dB -51.86/-50.91-dB

Figure 5 clearly illustrates that the traditional linearization model
GMP do not provide satisfactory linearization results when dealing with
the PA with strong memory effects. In contrast, neural network models
show significantly better performance than the traditional models. In the
neural network models, while the mmW model CP-LSTM model has
demonstrated a clear improvement over the LSTM model, its efficacy in
the sub-6GHz frequency band remains limited. The AM-BILSTM
model we proposed has shown remarkable performance in broadband
linearization at sub-6GHz frequency band.

Conclusion: In this paper, we propose a 5G amplifier non-linear
behavior model namely AM-BILSTM. We have presented a detailed
description of the structure of the AM-BiLSTM model as well as the
thought process behind constructing the model. In order to test the
effectiveness of the model, a pre-distorter system experiment platform
in sub-6G frequency band is build. By observing the power spectral
density it is found that the linear improvement of the ACPR of AM-
BiLSTM model can be improved by about 24dB, which is 6-dB better
than the GMP and 3-dB better than the CP-LSTM. In summary, AM-
BiLSTM model has good practical effects for wideband PAs with
strong memory effects.
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