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Abstract

There is a lot of focus on how Quantum Computing as an accelerator differs from other traditional HPC resources, including

accelerators like GPUs and FPGAs. In classical computing, how to design the interfaces that connect the different layers of the

software stack, from the applications and its high-level programming language description through compilers, schedulers, down

to the hardware, and gate-level, has been critical. Likewise, quantum computing’s interfaces enable the access to quantum

technology as a viable accelerator. From the ideation of the quantum application to the manipulation of the quantum chip,

each interface has its challenges. In this column feature, we discuss the structure of this set of quantum interfaces, their many

similarities to the traditional HPC compilation stack, and how these interfaces impact the potential of quantum computers as

HPC accelerators.

Quantum computing will not replace classical HPC systems —at least not in the foreseeable future. How-
ever, there is currently a lot of research focusing on how they can be used as an accelerator for quantum
simulations, Machine Learning applications (missing citation); (missing citation), optimization and combi-
natorial problems (missing citation); (missing citation), and other computationally expensive applications
(missing citation). Quantum Computing grew from the birth of quantum information theory in 1970 and
Benioff´s four publications in the early 1980´s that showed for the first time how quantum computers where
theoretically possible 1 The first experimental quantum gates were implemented shortly after. IBM, Intel,
Google, IonQ, Honneywell, Xanadu and many other large companies and start-ups are now all investing in
advancing this technology, to the point that it is hard to keep up with the number of research papers being
published.

The power of quantum computing stems from how densely they can represent information. This comes from
the quantum superposition property — the linear combinations of two or more states, much like a combination
of musical tones results in a new unique sound — and entanglement — the inexplicable correlations that
happen between quantum bits (qubits). Interference is used to cancel portions of the superposition, similar
to the use of noise canceling technologies in headphones. In addition, quantum gates are reversible, which
means that the system preserves the information at any point of the execution. The theory says that, since
information is not destroyed, application of the operands (aka, quantum gates) does not consume power.
However, note that power is required to generate the operands and to keep a closed quantum state.

While traditional computing system store 0s and 1s, a two-qubit system has been claimed by IBM 2 to store
the equivalent entangled state information of 512 classical bits, 10 qubits the equivalent of 16KB of classical
bits, and the current large quantum computing systems with 100 and 280 qubits would need the number of
bits equal to the number of atoms on planet earth and the universe, respectively.

1 https://www.anl.gov/article/remembering-paul-benioff-renowned-scientist-and-quantum-computing-pioneer.
2https://www.ibm.com/thought-leadership/institute-business-value/report/quantum-decade
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Quantum states are extremely delicate, and the challenge is to keep a system of qubits in its superposed and
entangled state, and manipulate them in a controlled way. External interactions in all energy forms, even at
the smallest scale, can easily make the state of the quantum system fall out of coherence, inducing noise as
an error. This is a major challenge for implementing concrete quantum computers. Superconducting qubits
need to be maintained at temperatures as cold as or colder than outer space in order not be susceptible
to such errors. Recent technologies using photonic and diamond-defect designs try to overcome this. In the
photonic case, the sensors still need to be super-cooled, whereas systems based on diamond-defects currently
are limited to single-digit qubits 3.

The current technology used in quantum computing is known as the Noisy Intermediate-Scale Quantum
(NISQ) systems, a term that was coined by John Preskill (missing citation). Small numbers of qubits with
high error rates and limited connectivity define these systems. On these systems, only very specific app-
lications that are hardly considered useful can outperform classical implementations. This is, however, a
necessary step towards powerful quantum computing, with a high enough number of qubits to allow not only
computational power, but also tolerance to error.

The progress is real, mainly and most crucially at the technology level, but also in all the other layers
that separate the user from physical quantum system: algorithms, applications, programming models, and
compilers (missing citation). Each of these layers is an interface that abstracts out the details of the layers
below, and simplifies the development task.

The IEEE CiSE Leadership Department recently discussed the integration of quantum computing and HPC
in a single software stack (missing citation). This time, we take a closer look at the software stack that bridges
the gap between the quantum application, and the actual quantum systems leveraging quantum-mechanical
properties.

3https://www.eetimes.eu/the-status-of-room-temperature-quantum-computers/ published March 20, 2023
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Figure 1: The quantum computing software stack can also be envisioned as this stack of interfaces.

In classical computing, interfaces support the development steps, from the high level programming language
description of an application to controlling electrons through semiconductor transistors. Similarly, quantum
computing relies on a set of steps and interfaces (missing citation). The actual computation on the quantum
hardware is only the final step, while the majority of the the development and pre-processing (D&PP) is
done classically, with a quantum mindset, as shown in Figure 1.

The challenges of this D&PP are in no way negligible. The compiler in particular calls for a series of
optimizations and graph problems that threatens the scalability of quantum computers.

QUANTUM COMPUTING INTERFACES

A quantum computer is a quantum system that evolves according to quantum-mechanical principles from an
initial state to a final state. If all things went well, this final state contains the solution to a computational
problem.

A stack of interfaces makes it possible to take a quantum application from ideation to reality. The software
stack, and the interfaces needed to realize the quantum application is envisioned as a workflow in which the
compiler plays a central role, as illustrated in Figure 2.
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Figure 2: Quantum compilation takes in information from different interfaces. Through a number of steps,
it generates the fault tolerant synthesis of the quantum applications.

A potential quantum application , e.g., identifying the maximum clique of a graph, makes use of a
quantum algorithm, e.g., Grover’s algorithm. The “only” quantum aspect of these two interfaces is the
understanding of core and fundamental quantum properties, and how classical problems can be framed in a
quantum context. This understanding is probably the greatest gap keeping the general scientific community
from taking advantage of quantum acceleration at this point in time, even greater than the technology itself.
It is still unclear which applications can be efficiently accelerated by quantum means.

Many scientists (mainly theoretical physicists) have described or envisioned these applications and algo-
rithms as mathematical exercises on “pencil and paper.” But to take these closer to an actual quantum
implementation, a description on a suitable programming language, e.g., quantum specific Python ex-
tensions, should define the steps of the application and its quantum algorithms in a way that can then be
compiled targeting a specific quantum instruction set architecture and microarchitecture .

The quantum instruction set architectures in their current form are far from being a set of general purpose
instructions, but rather a sort of single- or two-qubit basic operands known as gates. Figure 3 depicts a
basic circuit with several single- and two-qubit gates operating on a three qubit register. Each quantum
computing technology has its own set of native gates. The implementation of these quantum gates is in the
form of analog signals (microwaves, laser, or other depending on the technology) that act on the qubits, and
that are generated and controlled by the microarchitecture. Also, the qubits’ connectivity map is part of the
system’s architecture, since not all qubits can interact with all other qubits.
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Figure 3: An example of a basic circuit, including a three qubit register, Hadamard, Controlled-NOT and
NOT (+) gates build with IBM’s Quantum Composer (missing citation). The computation proceeds from
left to right, from initial to final quantum states of the three qubit register.

Therefore, with a description of the quantum application, typically as a collection of quantum gates known
as a quantum circuit, and the quantum architecture and microarchitecture’s information, the quantum
compiler can generate the necessary information to control the quantum system: its initialization and
quantum time evolution to the final quantum state on the quantum chip .

Figure 4: IBM Quantum 27-qubit Kolkata backend. The shades of color represent the quality of the qubits
and the links among them (darker shade means better quality). This quality is based on different noise and
error metrics. Different backends have different maps and noise levels (missing citation).

Notice that the D&PP down to the classical-quantum interface, does not involve any physical quantum
interaction. Instead, all of this is done on classical computing systems.

QUANTUM COMPILATION

Compilation for a quatum computer system involves a number of steps that take the high level language
description all the way down to generating the control signals. The decomposition of the high level gates
breaks them down into the native gates of the architecture. For instance, Figure 5 represent a swap gate
and its equivalent decomposition into three C-NOT gates. Sometimes, consecutive quantum gates cancel
each other, or are commutative in the order of the execution. These optimizations are taken care of before
scheduling the order in which the operands will take place, respecting all dependencies and exploiting
parallelism when possible.
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The mapping stage involves two operations: mapping and routing. In the quantum circuit high level
description, gates act on quantum variables that we call logical qubits. These have to be mapped to physical
qubits on the architecture’s map. Then, as the execution evolves, the qubits that need to interact with each
other through two-qubit gates are routed to physically adjacent qubits in the architecture’s map.

For example, if Q1 and Q2 in Figure 5 were mapped originally to physical qubits 6 and 10 in Kolkata’s
map (Figure 4), Q1 would have to be re-routed to qubit 7, so it would be physically adjacent to 10. Qubit
re-routing is done adding swap gates. Low connectivity is a critical problem in the current Noisy Intermediate-
Scale Quantum (NISQ) systems (missing citation), with high noise levels, low coherence times and no error
correction protocols enabled yet. In IBM’s superconducting systems, the necessary swap gates (three CNOT
gates each) for qubit routing do, on the other hand, accumulate link error, and increase the depth of the
circuit in ways that often surpass the quantum coherence time of the system, resulting in too noisy of an
output to be useful. Efficient routing algorithms do not only route to ensure correctness, but also to minimize
noise.

Once the final circuit is built with all its optimizations and added swaps, and gates are scheduled, the
compiler will generate the fault tolerant synthesis according to the system’s microarchitecture.

Figure 5: SWAP gate and its decomposition in three C-NOT gates.

Scheduling and mapping/routing are well known NP-hard problems that can be found in a plethora of other
fields. The HPC community is well aware of the time complexity, memory and hardware resources required
to solve these problems. Inputs are large graphs, such as dependency graphs or the connectivity map. The
goal usually involves an optimization problem in which time, hardware usage, error or noise need to be
minimized.

Quantum vs. Classical Compilation

Quantum and classical compilation processes have some analogies: starting from the dependency graphs,
scheduling of operations and allocation of resources need to be performed. Those with experience in FPGA
(Field Programmable Gate Array) acceleration may notice the resemblance with the High Level Synthesis
full compilation stack. Figure 6 represents this stack, from the High Level Language description to the
FPGA execution.
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Figure 6: High Level Synthesis full compilation process: from a High Level Language description, an
implementation in Hardware Description Language is generated (Verilog or VHDL) to then be synthesised
and run on the FPGA

Similarly to the decomposition stage, allocation identifies the basic elements needed to implement the oper-
ations described in high level language. Then, operations are scheduled and mapped (aka. bound) to those
elements. From the HDL description, the logic synthesis and necessary optimizations generate the files of 0s
and 1s that will take care of the actual implementation on a field programmable gate array (FPGA).

FPGA users may have experience with the limitations of this process: compilation on-the-fly is prohibiting
in terms of time, the HLL description of the computations cannot implement recursive calls, and may have
issues with pointers and memory accesses, and in summary hardware design skills that are not accessible to
all users are necessary. Whether using Hardware Description Languages (HDL) or High Level Synthesis, the
implementation’s description is hardware description, not software.

QUANTUM DESCRIPTION LANGUAGES

Setting aside the necessary understanding of quantum algorithms to be able to develop quantum applications,
the quantum programming paradigm is the most immediate interface to the Quantum Computer user.
The lexicon used around the description of quantum applications seems to indicate that we are describing
hardware, just like VHDL or Verilog are used to describe FPGA hardware. First of all, because we call the
description a “quantum circuit.” Second, because the operands are referred to as “gates.” Last, because the
operations are described at a qubit-by-qubit granularity. There is no memory, no data types, and no general
purpose, flexible instructions. None of this is compatible with software execution.

7
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Figure 7: Quantum gates are sent to the quantum chip as control signals.

But if we take the term hardware as its literal translation of something that is hard-wired or physically
palpable, this term does not apply either. Figure 7 gives an example of what really happens on execution
of a quantum application, after all the steps in Figure 2 have been completed, and the quantum system
finally kicks in. The quantum chip contains the “hard-wired” qubits. The quantum development and pre-
processing has generated the sets of gates as analog control signals. Groups of these control signals arrive
at the quantum chip to act on the qubits and alter the state of the quantum system. If, like in Grover’s
algorithm, the sets of gates need to be iterated through multiple times, the corresponding control signals
can be just repeated as many times as needed. They are not real “hard-wired” gates.

The quantum programming models leverage high level languages, Python most commonly, to describe these
extremely fine grained computations. The state of the quantum system contains the information. The
quantum chip and its qubits act, actually, as a very short-lived memory upon which we need to operate
before the system falls out of its delicate quantum equilibrium.

Although the quantum application is described using high level languages such as Python, much has to
happen at the development level to give “quantum description languages” a software-like feeling. This
includes the use of more generic APIs and libraries of computations. The implementation of reasonably
long-lasting quantum memory is also a key piece that is missing in this picture, and that currently forces the
start of every computation to long strings of operands just to initialize the states to the data that is going
to be operated on.

CONCLUSIONS

Despite the many challenges, quantum computing holds real potential of accelerating certain applications,
such as ML applications, combinatorial and optimization problems, and quantum molecular simulation.
Proof of quantum acceleration for practical, real world cases will most likely have to wait until post-NISQ
era is reached, with higher number of qubits, and the inclusion of error correction protocols. Most companies
are looking at a five-year timeline (missing citation), primarily depending on technology advances.

Meanwhile, a solid stack of interfaces needs to be developed to support these future applications. In this
article we discussed how the development and pre-processing of quantum applications entails a series of
classical steps that can quickly become unmanageable, even more so given that the number of qubits and
quantum gates required often can grow exponentially with the size of the problem — without even considering
error correction mechanisms. The good news is that these are not new problems. Scheduling, mapping,
routing, allocation and optimization problems are common in other fields, and heuristics can be applied to
approximately solve these problems more efficiently. An efficient programming paradigm is yet to be defined,
but the field can leverage the decades of experience of the HPC community at creating interfaces that bridge
knowledge gaps, and that conceal the intricacies and challenges of the physical implementation.
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