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Abstract

1. Metabarcoding of environmental DNA (eDNA) has recently improved our understanding of biodiversity patterns in marine
and terrestrial ecosystems. However, the complexity of these data prevents current methods to extract and analyze all the
relevant ecological information they contain. Therefore, ecological modeling could greatly benefit from new methods providing
better dimensionality reduction and clustering. 2. Here we present two new deep learning-based methods that combine different
types of neural networks to ordinate eDNA samples and visualize ecosystem properties in a two-dimensional space: the first is
based on variational autoencoders (VAEs) and the second on deep metric learning (DML). The strength of our new methods lies
in the combination of several inputs: the number of sequences found for each molecular operational taxonomic unit (MOTU),
together with the genetic sequence information of each detected MOTU within an eDNA sample. 3. Using three different
datasets, we show that our methods represent well three different ecological indicators in a two-dimensional latent space: MOTU
richness per sample, sequence α-diversity per sample, and sequence -diversity between samples. We show that our nonlinear

methods are better at extracting features from eDNA datasets while avoiding the major biases associated with eDNA. Our

methods outperform traditional dimension reduction methods such as Principal Component Analysis, t-distributed Stochastic

Neighbour Embedding, and Uniform Manifold Approximation and Projection for dimension reduction. 4. Our results suggest

that neural networks provide a more efficient way of extracting structure from eDNA metabarcoding data, thereby improving

their ecological interpretation and thus biodiversity monitoring.
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our understanding of biodiversity patterns in marine and terrestrial ecosystems. However, the complexity
of these data prevents current methods to extract and analyze all the relevant ecological information they
contain. Therefore, ecological modeling could greatly benefit from new methods providing better dimension-
ality reduction and clustering. Here we present two new deep learning-based methods that combine different
types of neural networks to ordinate eDNA samples and visualize ecosystem properties in a two-dimensional
space: the first is based on variational autoencoders (VAEs) and the second on deep metric learning (DML).
The strength of our new methods lies in the combination of several inputs: the number of sequences found for
each molecular operational taxonomic unit (MOTU), together with the genetic sequence information of each
detected MOTU within an eDNA sample. Using three different datasets, we show that our methods repre-
sent well three different ecological indicators in a two-dimensional latent space: MOTU richness per sample,
sequence α-diversity per sample, and sequence β-diversity between samples. We show that our nonlinear
methods are better at extracting features from eDNA datasets while avoiding the major biases associated
with eDNA. Our methods outperform traditional dimension reduction methods such as Principal Compo-
nent Analysis, t-distributed Stochastic Neighbour Embedding, and Uniform Manifold Approximation and
Projection for dimension reduction. Our results suggest that neural networks provide a more efficient way
of extracting structure from eDNA metabarcoding data, thereby improving their ecological interpretation
and thus biodiversity monitoring.Keywords: biodiversity monitoring; deep learning; deep metric learning;
data visualization; environmental DNA; machine learning; neural networks; variational autoencoder 1 IN-
TRODUCTIONHuman-induced disturbances affect most of the Earth’s ecosystems, which are suffering
from the accelerating impacts of climate change and overexploitation (Johnston et al., 2022; Jouffray et
al., 2020). These threats alter species assemblages and lead to escalating perturbations in ecosystem pro-
cesses (Frainer et al., 2017, McLean et al., 2019), ultimately altering ecosystem services and thus humanity
(Cinner et al., 2020; Tigchelaar et al., 2022). In the context of global change, it is crucial to capture the
spatio-temporal dynamics of species assemblages and better understand their responses in order to design
appropriate management and mitigation measures (Makiola et al., 2020). Recently, our ability to rapidly
generate comprehensive biodiversity inventories has been enhanced by the development of environmental
DNA (eDNA) metabarcoding, which allows the retrieval and analysis of DNA naturally shed by organisms
in their environment (Miya 2022; Deiner et al., 2017). eDNA metabarcoding is now operational in many
ecosystems for a wide range of micro- and macroorganisms (Cantera et al., 2022; Kjær et al., 2022; Mathon
et al., 2022; Cordier et al., 2021), providing information on their taxonomic, functional, but also phylogenetic
affiliations (Marques et al., 2021; Rozanski et al., 2022). Given the low field effort and disturbance (Muff
et al., 2022), even in the most remote locations, and the decrease in sequencing costs in recent years, this
approach can be scaled up to monitor many sites at high temporal frequency (Agersnap et al., 2022). eDNA
metabarcoding produces massive sequencing data (i.e., a high number of short DNA sequences), that repre-
sent complex and high-dimensional information. Typically, these sequences are assigned to known taxonomic
units stored in a genetic reference database. The incompleteness of genetic reference databases (Marques et
al., 2020) precludes the identification of many species, thus working with Molecular Operational Taxonomic
Units (MOTUs) representing a cluster of similar sequences may be required (Deiner et al., 2017; Mathon et
al., 2022). MOTUs are then defined by a consensus sequence. The attribute attached to an eDNA MOTU is
the relative frequency of the sequences in each MOTU and the genetic sequence itself. Both attributes can
be directly related to ecosystem states and properties (Shelton et al., 2019; Bakker et al., 2017). Therefore,
eDNA data are potentially relevant for revealing ecological patterns that distinguish sampled sites along en-
vironmental or human pressure gradients (Marques et al., 2020). Such patterns are expected to emerge from
the interaction and nonlinear combination of both abundance and phylogenetic information. However, the
dimensionality of the massive amount of sequence information must be reduced to extract relevant features.
Dimensionality reduction is the transformation of high-dimensional data into a meaningful representation of
reduced dimensionality (Van Der Maaten et al., 2009; Nguyen and Holmes, 2019). Traditionally, dimensio-
nality reduction is performed using linear techniques such as Principal Component Analysis (PCA; Pearson,
1901), Factor Analysis (Spearman, 1904), and classical scaling (Torgerson, 1952). However, due to their
hypotheses, these linear techniques cannot adequately deal with complex non-linear relationships in data
such as eDNA. In the last decade, many nonlinear techniques have been proposed for dimensionality reduc-
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tion (Nguyen et al., 2019; Facco et al., 2017). Recently, two machine learning techniques - the t-distributed
stochastic neighbour embedding (t-SNE; van der Maaten and Hinton, 2008) and the Uniform Manifold Ap-
proximation and Projection (UMAP; McInnes et al., 2018) - have shown promising results in generating
two-dimensional visualisations of high-dimensional biological data (Diaz-Papkovich et al., 2019). However,
the interpretation of t-SNE and UMAP plots remains challenging due to the lack of global structure in the
reduced space representation (Battey et al., 2019). Although these methods perform well in clustering similar
samples, distances between clusters are not always meaningful (Becht et al., 2019). However, neural networks
(NN) have been shown to have a good representation of learning capacity (Sze et al., 2017). NN are complex
mathematical models consisting of many operators called neurons, organized in a network of interconnected
nodes. UMAP and t-SNE learn features by satisfying distances between observations, i.e., in contrast. Other
methods instead use generative latent variable models, where prior distributions are specified for the unobser-
ved structure in the data so that these unknown properties can be inferred by posterior inference. Examples
include factor analysis, probabilistic PCA, and Variational Autoencoders (VAEs). VAEs combine two deep
neural networks, where the first network (the encoder) encodes input data (e.g., the number of sequences
per MOTU detected in each sample) as a probability distribution in a latent space, and the second network
(the decoder) attempts to reconstruct the input data given a set of latent coordinates. VAEs have been
used extensively in image generation (e.g., Larsen et al., 2015; Gulrajani et al., 2016; Hou et al., 2016), and
several recent studies have applied them to dimensionality reduction and classification of single-cell RNAseq
data (Grønbech et al., 2018; Lafarge et al., 2019; Wang and Gu 2018; Battey et al., 2019). Thanks to the
design flexibility of artificial neural networks in general, they also have the advantage of being able to encode
and mix information from different data types. Deep metric learning (DML) lies between contrastive and
generative latent variable models. Metric learning is an approach directly based on a distance metric that
aims to establish similarity or dissimilarity between objects (Kulis, 2013). Although metric learning aims to
reduce the distance between similar objects, it also aims to increase the distance between dissimilar objects
(Duffner et al., 2021). Through DML, it is possible to use a distance measure relevant to the case study as
a contrastive model but also to encode different inputs via neural networks. VAE and DML have not yet
demonstrated their potential to ordinate eDNA samples in a low-dimensional space. In this study, we present
two new methods, one based on VAE and the other on DML, to perform data visualisation. In our methods,
we assemble, modify, and adapt these neural networks with others to work best with eDNA data. We tested
our methods on three different published eDNA datasets: a fish eDNA dataset collected in the Mediterranean
Sea (Boulanger et al. 2020), and two eukaryotic plankton eDNA datasets from the Tara Ocean expedition
(de Vargas et al. 2015). We used both the number of sequences per detected MOTU and the genetic sequence
information of each MOTU detected in each sample as input data. To validate these two new methods, we
compare them with three classical methods: PCA, t-SNE, and UMAP. Finally, we show how the proposed
methods outperform classical methods in their representation of ecological indicators.2 MATERIALS and
METHODS 2.1 VAE-based method applied to eDNA DataThe VAE-based method, called VAESeq
(Fig. 1), processes eDNA samples into a two-dimensional latent space. The model consists of an autoencoder
(AE) and a variational autoencoder (VAE). The AE takes as input the genetic sequence information and
the presence/absence of each MOTU within each sample to generate the first latent encodingzAE. The VAE
encoder then receives the embedding generated by the genetic autoencoder and analyses it in combination
with the number of sequences found for each MOTU detected in the sample under consideration. By mixing
the two inputs, it encodes the samples as points in a 2D latent space called zVAE. In the decoding part, the
VAE decoder seeks to recreate the two inputs from zVAE. The decoder measures how much information is
lost from the input during the encoding, and optimizes the network accordingly. To reduce the running time
of the model, we separately trained the AE to embed genetic sequences. Because we were interested in the
compression of the genetic information rather than its representation, we decided to use an AE rather than
a VAE. To encode the DNA sequence information in the AE, the sequences are equalised to the same length.
We have chosen to keep the maximum length, adding nucleotides X to equalise. Each canonical base (A, C,
T, G) of the sequence and the IUPAC ambiguity codes are translated into an appropriate four-dimensional
probability distribution over the four canonical bases (A, T, C, G), including uncertain base sequences (e.g.,
W and S). For example, A becomes [1,0,0,0] or W becomes [0.5, 0, 0, 0.5] (Flück et al., 2022). Furthermore,
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X nucleotides added to equalise the sequence length become [0.25, 0.25, 0.25, 0.25]. We combine the genetic
information with the presence/absence of each MOTU in each sample. Therefore, each sample is represented
by a tensor containing the translated binary matrices of the detected MOTUs and, alternatively, a zero
matrix if the MOTU was not detected. The AE component of the network uses the Adam optimiser and the
binary cross-entropy loss function to optimise the network. The AE encoder consisted of seven fully connec-
ted layers with decreasing widths down to 100, rectified linear unit activations, and dropout regularization. A
mirror architecture was used as the decoder. The VAE component of the network uses the Adam optimiser
and two loss functions to reconstruct the two inputs: the VAE loss function (Kullback-Leibler divergence +
reconstruction error) for the occurrence information and binary cross-entropy for the genetic sequence infor-
mation. After testing different combinations, we set the loss function weights to 1 and 0.2 respectively. The
VAE encoder consisted of three fully connected layers with decreasing widths down to 2, rectified linear unit
activations, and dropout regularization. A mirror architecture to the encoder was used as the decoder. 2.2
ΔΜΛ-βασεδ μετηοδ ον β-διvερσιτψ ας α διστανςεThe ENNBetaDist DML-based method (Fig.
2) trains the network accordingly to the pairwise β-diversity calculated between the samples. The pairwise
β-diversity is used as a distance measure on each pair of samples, to help the network distribute the points
in the latent space. We used pairwise Jaccard dissimilarity as a measure of β-diversity, using the ’beta-
part’ library in R. The structure of ENNBetaDist consists of two encoder neural networks. The encoders of
ENNBetaDist are similar to those of VAESeq, with differences in the number of hidden layers, training, and
optimisation. VAESeq reconstructs input from the latent space, however, we want the latent space to respect
the distances we want to optimise. At each iteration, each encoder takes as input a sample containing the
number of sequences per MOTU and the genetic latent encoding from the AE of that sample.Then, the two
encoders process the two samples, combining the number of sequences found for each MOTU detected and
the autoencoder embedding of the sequences into a point in the two-dimensional latent space z1 and z2. To
optimise the model, we calculate the Euclidean distance between the two points in z1 and z2 and compare
it with the pairwise β-diversity via a loss function (the mean square error (MSE)). In z1 and z2 we find the
visual representation of all data points. Indeed, ENNBetaDist represents the distances related to the species
composition of the samples (i.e., the information provided by Jaccard’s β-diversity) as distances between
points in the 2D space. The encoders consisted of 5 fully connected layers with decreasing widths down to 2,
rectified linear unit activations, and dropout regularization.2.3 Sensitivity To perform a cross-validation
of our two new methods, we set a global random seed to split 80% of the original dataset in the training
set and 20% in the validation set. We repeated the tests until the results were stable, ensuring that we did
not overfit by monitoring the loss on the validation set. We implemented the models in R (version 4.1.3 R
Core Team, 2020) using TensorFlow (Abadi et al., 2015) and Keras (Chollet, F. et al., 2015) libraries.2.4
Case study2.4.1 Data sets We tested our methods on three different published eDNA datasets: a fish eDNA
dataset collected in the western Mediterranean Sea (Boulanger et al. 2020) and two eukaryotic plankton
eDNA datasets from the Tara Ocean Campaign (de Vargas et al. 2015). Details are given in Table 1. eDNA
samples from the Western Mediterranean Sea dataset were collected at 77 stations in six marine regions
covering the western Mediterranean, including fished and no-take protected areas (Fig. S1) (Boulanger et
al. 2020). eDNA extraction and amplification were performed at the SPYGEN facility. PCR amplification
was performed using the teleo primer pair, targeting a 64 bp fragment of the mitochondrial DNA 12S rRNA
gene specific for teleost fishes and elasmobranchs, according to the protocol described in (Valentini et al.
2016). Data collection and sample processing are described in detail in Appendix 1 of the supplementary
material. The Tara Ocean datasets were obtained from the Tara Oceans V9 rDNA metabarcoding dataset
(De Vargas et al. 2015) collected across tropical and temperate oceans during the circumglobal Tara Oceans
expedition. The analysis was based on metabarcoding data from 129 stations in various oceanic provinces
worldwide, using 18S ribosomal DNA sequences across the intermediate plankton-size spectrum. All details
on data collection, extraction, and sequencing can be found in the article by Vargas et al. (2015). We
selected the Dictyochophyceae and Telonemia subsets by taxonomic identification, resulting in two smaller
datasets of similar sizes to the western Mediterranean one and whose specifications are shown in Table 1.2.5
Comparison and evaluationWe tested the ability of the two new methods to better represent the distance
between samples based on their species and sequence composition. We compared the 2D representations of
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VAESeq and ENNBetaDist with three other classical dimension reduction methods: PCA, which is linear,
and t-SNE, UMAP, which are non-linear. Furthermore, we analysed the genetic embedding generated by
the autoencoder using the PCA to evaluate the results of the first part of the models. We also compared it
with a simpler VAE, i.e., to which the embedding of the sequence autoencoder has not been given as input.
The inputs to PCA, t-SNE and UMAP are the presence/absence information of each MOTU in each sample
and the number of sequences found during eDNA extraction for each detected MOTU (Table 3). Our neural
network-based methods also receive genetic information on the sequences of the latent embedding of the
autoencoder (Table 2). To evaluate the performance of all the methods, we used both multiple regressions
on distance matrices (MRM) representing the sample in space (Table 3). For MRM, we implemented two
different tests and assessed the statistical significance using permutations. TEST 1 performs a multiple
regression between the sample distances in the two-dimensional latent spaces of each method and their Jac-
card’s β-diversity (Table 3). TEST 2, instead of using Jaccard’s β-diversity matrix, uses the distance matrix
calculated on the β-diversity between sequences within the Hill number framework (Table 3). The baseline
methods were performed using R version 4.1.3 with the packages ”stats” for PCA, ”umap” (Konopka 2019)
for UMAP, ”Rtsne” (Jesse Krijthe 2022) for t-SNE and ”TensorFlow” with ”Keras” for VAE. We used the
MRM function of the ”ecodist” package to perform the tests. We computed the Euclidean distance matrix
between each pair of samples in the latent spaces using the function dist from the package ”stats” and the
Jaccard β-diversity using the library ”betapart”. We calculated the distance matrix of sequence β-diversity
between each pair of samples using the Hill number framework (Alberdi 2019). The genetic distance be-
tween each pair of sequences was computed with the functiondist.gene from the package ”ape”. Sequence
β-diversity was calculated with the function beta.fd.hill from package ”mFD”, with parameters q = 1 and =
”mean” (Chao et al. 2019), using Sørensen’s β-diversity.3 RESULTS3.3 Comparison with other meth-
odsWe decide to test the representations of the points in the 2D latent spaces of the three different data
sets with the methods shown in Table 3. We test the 2D representations with the Jaccard β-diversity matrix
and the sequence β-diversity matrix (TEST 1 and 2). Out of the three datasets considered, the highest R2

values are achieved by the neural network-based methods. For our methods, the results of TEST 2 are better
than those of TEST 1. In TEST 1, using the matrix based on Jaccard’s β-diversity, the R2 values in the
latent space of the autoencoder (AEgen+PCA) are 102 times higher than those of PCA, t-SNE, and UMAP.
Furthermore, for all three datasets, the R2 values increase in the case of VAEseq and ENNBetaDist, that
is, when the number of sequences is also given as input. The best results for all three datasets are obtained
with ENNBetaDist, i.e., when the model is optimised in pairwise β-diversity. The worst-performing method
is PCA, which is the only linear method used. Furthermore, we have shown that VAE fails to extract infor-
mation for the three datasets when genetic sequence information is not added. We describe below in more
detail the results in the case of the Mediterranean eDNA fish data set. The same results obtained on the
Dictyochophyceae and Telonemia data sets are shown in Figure S2 in the supplementary material.3.2 VA
Latent spaces representations and ecological interpretation on western Mediterranean eDNA
fish data setThe 2D latent space representations of the eDNA fish data samples using two new methods
(Fig. S3) reveal gradients both in terms of MOTU richness (Figs. 3 a-c) and sequence α-diversity (Figs.
3 b-d). The two gradients were visible along both directions of the 2D latent space. For simplicity, we
report only the studies along the vertical direction, where the correlations are the strongest. We performed
correlation tests to validate the relationship between the vertical direction of our 2D latent space and the
diversity metrics. For both methods, we found that the latent variable along the second axis is significantly
correlated with the sequence α-diversity (Pearson’s r = 0.80, p < 0.001 for VAESeq Fig. 3a; r =0.84, p <
0.001for ENNBetaDist Fig. 3d). The same latent variable axis 2 is also significantly correlated with the
MOTU richness (r =0.86, p < 0.001 for VAESeq Fig. 3b; r= 0.95, p < 0.001 for ENNBetaDist Fig. 3e).
We tested the correlation between the 2D spatial representation of the two new methods with the Jaccard’s
β-diversity matrix and with the sequence β-diversity matrix (TEST 1 and 2; Table 3). We found that the
two new methods outperform traditional methods (i.e., PCA, t-SNE, UMAP, Fig. S4). The R2 values of the
VAESeq and ENNBetaDist are 102 times higher than PCA, and more than twice that of t-SNE and UMAP.
The first principal component of the PC axes in the PCA on the eDNA dataset explains only 2.9% of the
variance of the data, and there is a nonsignificant correlation in both tests (Fig. S4 a, Table 3). Among the
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non-linear methods, ENNBetaDist shows the best results (TEST 2: R2 = 0.5041; p < 0.001 for VAESeq
and R2 = 0.7415; p < 0.001 for ENNBetaDist; Table 3).4 DISCUSSIONThe massive arrival of big data
in ecology, facilitated by new technologies (Farley et al. 2018; Besson et al. 2022), makes dimensionality
reduction, as well as data visualization, an important analytical tool. In this study, we introduce two new
deep learning-based methods that combine different types of neural networks to ordinate eDNA samples
and visualize ecosystem properties in a two-dimensional space: the first is based on variational autoencoder
(VAE), and the second on deep metric learning (DML). The strength of our new methods lies in their abil-
ity to combine multiple inputs simultaneously, namely for eDNA the number of sequences found for each
molecular operational taxonomic unit (MOTU), together with the genetic sequence information for each
detected MOTU. Using three different datasets - a fish eDNA dataset collected in the Mediterranean Sea
(Boulanger et al. 2020), and two eukaryotic plankton eDNA datasets from the Tara Ocean expedition (de
Vargas et al. 2015) - we show that our methods well represent three different ecological indicators in the
two-dimensional latent space: (i) MOTU richness per sample, (ii) sequence α-diversity per sample, and (iii)
sequence β-diversity between samples along a gradient in the latent space (Fig. 3 and Fig. S2, Table 3).
Thus, the 2D representation obtained reveals the ecological information underlying the study of communi-
ties. Additionally, we have shown how our two new methods outperform the representation of eDNA data
compared to other dimensionality reduction techniques such as PCA, t-SNE, UMAP, and even a simple VAE
to which no sequence information is added (Table 3). In contrast, linear methods such as PCA result in
poor dimensionality reduction to ordinate eDNA samples (Table 3; Fig. S4 a). This is due to the complex-
ity of eDNA data (Miya 2022, Xiong et al., 2022). eDNA metabarcoding is defined as the use of general
or universal polymerase chain reaction (PCR) primers on mixed DNA samples of any origin, followed by
high-throughput next-generation sequencing (NGS) to determine the species composition in a given sample
(see, e.g., Deiner et al., 2017). Despite its potential in biodiversity monitoring (Pawlowski et al., 2022,
V.d. Heyde et al., 2022, Mathon et al., 2022), it can be limited by false reads due to contamination, errors
that can occur during the extraction, PCR, or sequencing process (Bohmann et al., 2014; Ficetola et al.,
2016; Creer et al., 2016; Hering et al., 2018, Calderón-Sanou, et al., 2020). Although field and laboratory
practices can mitigate some of this, the risk of error cannot be eliminated and must be considered (Burian
et al., 2021). Furthermore, eDNA metabarcoding sampling produces large, high-resolution datasets that are
complex and high-dimensional, with a single observation from the experimental system containing measu-
rements describing multiple traits (Hallam et al., 2021). For this reason, application neural architectures
such as VAESeq and ENNBetaDist provide a better solution for clustering or understanding eDNA data.
Neural networks allow the integration of multiple inputs into a single model (Cichy et al., 2019; LeCun
et al., 2015; Schmidhuber, J. 2015). This is particularly relevant for the analysis of eDNA metabarcoding
data, which are combinations of different types of information (Table 2). Our two new methods combine the
number of sequences found for each MOTU and the genetic sequence of the detected MOTUs, which provide
complementary information about the rarity and dissimilarity of the sequences, respectively. Our methods
can then represent eDNA samples in 2D space, placing samples in relation to each other according to their
composition (Fig. 3, Fig. S2). Due to the process of phylogenetic niche conservatism (Wiens et al., 2010)
and environmental filtering (Guimarães 2020), species present in a particular habitat or under particular
management constraints may show some phylogenetic and trait clustering (Jarzyna et al., 2021). In the
context of eDNA, it is therefore expected that if two MOTUs are present in the same habitat, their genetic
sequence similarity, even based on a short sequence, will be higher than for MOTUs from different habitats.
Therefore, this genetic ’proximity’ information, taken into account in our two methods, contributes to the
ordination of eDNA samples in a lower-dimensional space along ecological, environmental, or management
gradients. Furthermore, despite the short length of the recovered sequence in metabarcoding (Teleo fish da-
taset approximately 60 pb, Table 1), our results indicate that such genetic information can inform species
ecology. Here, the manipulation of the genetic information of the sequences highlights the proximity of the
sequences where the respective MOTUs are present in the different samples. Therefore, the composition of
each MOTU together with its DNA sequence improves the representation of fish diversity and its indicators.
In addition, we show that a simple VAE, using only the information on the number of sequences present in
each sample, gives a poor representation of the data (Table 3). The sequences turn out to be crucial for good
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information extraction. Instead of relying solely on the number of sequences identified per MOTU or the
genetic information within the sequences as in Cordier et al., (2018) and Flück et al. (2022), our methods
combine both information (Table 2). VAESeq is based on VAE that is optimised to reconstruct the input.
ENNBetaDist is a DML method that also uses the diversity information (here the β-diversity) as a distance
metric between samples. Using VAESeq for data extraction has the advantage of treating each data inde-
pendently because it is not relying on any pairwise distance between samples. In this case, the model is free
to discover connections and highlight possible new ones in a fully unsupervised learning process. Alternately,
ENNBetaDist helps to represent samples in a latent space according to an input metric. In addition, two new
methods allow users to define the output dimensionality while preserving the global geometry (i.e., relative
positions in the latent space) better than competing methods. Our results demonstrate that neural networks
provide a more efficient way of extracting structure from eDNA metabarcoding data than traditional dimen-
sion reduction methods, thereby improving future ecological interpretation. The resulting diversity indices
can be used in future applications to improve our understanding of the processes behind spatial patterns
coming from other types of monitoring approaches and in any other fields. Visualizing ecosystem complexity
can improve our understanding of biodiversity and ecosystems, and thus help stakeholders manage ecosys-
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