Phytochemical diversity enhances community resistance to herbivory in a tropical rainforest Jie Yang¹, xuezhao Wang², Yunyun He³, Brian Sedio⁴, Lu Jin⁵, Xuejun Ge⁶, Suphanee Glomglieng³, Min Cao³, Jianhong Yang⁷, and Nathan Swenson⁸ April 14, 2023 ## Abstract Metabolomics provides an unprecedented window on diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying co-existence. Here, we used untargeted metabolomics to evaluate the chemical composition of 358 tree species and its relationship to phylogeny and variation in light environment, soil nutrients, and insectherbivore leaf damage in a tropical rain forest plot. We found that tree species that co-occur locally are less chemically similar than random, and that local chemical dispersion and metabolite diversity reduce herbivory, especially that of specialist insect herbivores. Our results suggest that plant secondary metabolites have the potential to mediate plant-herbivore interactions in a manner consistent with diversity maintenance at the community scale. ## Hosted file Manuscript.docx available at https://authorea.com/users/327246/articles/635502-phytochemical-diversity-enhances-community-resistance-to-herbivory-in-a-tropical-rainforest ¹Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences ²Chinese Academy of Sciences ³Xishuangbanna Tropical Botanical Garden ⁴University of Texas at Austin ⁵South China Agricultural University ⁶South China Botanical Garden, Chinese Academy of Sciences ⁷Kunming Institute of Botany Chinese Academy of Sciences ⁸University of Notre Dame