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Abstract

In this paper, we formulate a deterministic mathematical model SEAIRB to study the
dynamics behavior of COVID-19 pandemic. The model incorporates the impact of two
strategies, health education and public sanitation, on the spread of the epidemic. Firstly,
by using Routh-Hurwitz criteria, the disease-free equilibrium is locally asymptotically stable
when the basic reproduction number does not exceed 1. Further, by using the comparison
theorem, the global asymptotic stability of the disease-free equilibrium is obtained. Finally,
numerical simulations are performed to verify the theoretical analysis and analyze the impact
of different control strategies on the spread of the epidemic.
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1. Introduction

As early as March 2020, the COVID-19 epidemic had been basically under control in
China. The reason why China successfully fights COVID-19 is due to the timely interven-
tion measures of the government, such as city closure, tracking report on social isolation,
improving public health and health education. Besides, some research results on COVID-19
are important for our country and even the world to fight against the pandemic [1, 2].

Many scholars have tried to study and analyze the epidemic situation of COVID-19
through dynamic model [3, 4]. Because mathematical models can not only help us under-
stand the spread of infectious diseases, but also guide us to find the most effective strategy
to eliminate the disease. So far, many effective results have been achieved in the study of the
transimission dynamics of COVID-19 [5, 6]. Chen et al. put forward a Bats-Hosts-Reservoir-
People transmission network model to caculate the transmissibility of COVID-19 virus and
found that the R0 of SARS CoV-2 from reservoir to person was lower than that of person to
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person [7]. Tang et al. employed a general SEIR-type epidemiological model to assess the
impact of public health interventions on infection and show that intensive contact tracking
and isolation measures can effectively reduce the transmission risk of COVID-19 virus [1].
Sasmita et al. adopted a SEI2RS model considering five control strategies for predicting
the peak of COVID-19 and concludes that the scenario consisting of large-scale social re-
striction, contact tracing, case detection and treatment, and the wearing of face masks, is
the most rational scenario to control COVID-19 spreading in Indonesia [2]. The COVID-19
model proposed by Ndairou et al. focused on the transmission of super-spreaders individuals
[4]. In addition, many scholars have analyzed the transmission pathway of COVID-19, the
structural dynamics of the SARS-CoV-2 spike protein and its interactions with receptors at
the atomistic and molecular scales from different perspectives [8, 9, 10, 11].

According to the research results received, we realized that the virus can not only be
transmitted from person to person through sneezing, coughing or close contact droplets of
infected person [12]. But it also can be indirectly transmitted through some enclosed spaces
or inadequate ventilation places where positive patients have stayed [6, 8, 13, 14]. Especially,
some patients with the new coronavirus do not have any symptoms of infection, and can
can transmit new coronavirus [15, 16]. And studies has show that some close contacts
may also spread the new coronavirus before being quarantined [16]. Some scholars have
incorporateed the infectivity of asymptomatic infected people and close contacts into their
models. However, few literatures focused on the indirect transmission of the virus in these
two groups, and the impact of the health education and public health system on the spread of
the epidemic. Thus, based on the classic SEIR model, we introduce two extra compartments,
B and A, and then proposed a SEAIRB model to depict the spread of new coronavirus in the
population and environment. Here, B(t) and A(t) represents the number of new coronavirus
in aerosols or the environment and the number of asymptomatic infectious, respectively. Our
main purpose is to explore the role health education, sanitation and treatment on COVID-19
control and elimination. Further, we analyse the global dynamics behavior of the system.
Finally, we perform the sensitivity analysis of the basic reproduction number and the endemic
equilibrium, and found that reducing the contact of exposed and susceptible persons are the
most critical factor in achieving disease control.

2. Model formation

In this section, we formulate a new deterministic mathematical model SEAIRB that
study the dynamic behavior of the transmission of COVID-19 pandemic. At any time
instant t, the total population denoted N(t) is divided into five time-dependent classes,
namely Susceptible S(t), close contacts E(t), asymptomatic infectious A(t), infectious I(t)
and Recovered R(t). In addition, considering the phenomenon that asymptomatic infected
individuals and close contacts go to supermarkets, shopping malls and other public places
before diagnosis or quarantine, we incorporate an additional compartment, B(t), which
indicates the indirect transmission of the virus in the environment is considered. The detailed
flow diagram of the model is presented in Figure 1.

Λ symbolizes the migration rate of susceptible individuals at a constant. Susceptible
2



Figure 1: Flow diagram of the COVID-19 model with health education and sanitation.

individuals may acquire COVID-19 virus infectious following effective direct contact with
close contacts, asymptomatic infectious individuals and infectious individuals at the time-
dependent rate λP (t) or after contacting contaminated environment at the time-dependent
rate λB(t). Here, λP (t) represents direct transmission between human, the force of infection

is given by λP (t) = (1 − ρ)(β1E(t) + β2A(t) + β3I(t)) and λB(t) = (1−ρ)β4B(t)
K+B(t)

. β1, β2 and
β3 is the transmission rate for close contacts, asymptomatic infectious and symptomatic
infectious, respectively. K is the half-saturation constant of COVID-19 virus number in
environment that yields a 50% chance of infect the disease. β4 is the contact rate of Virus by
individuals. B

K+B
represents the probability of a susceptible individual to develop coronavirus

pneumonia per contact. It is assumed that health education has an effect of reducing the
infection rate. Thus, the total transmission will be reduced by the rate 1−ρ, where ρ ∈ [0, 1)
describe the efficacy of health education. ρ = 0, it means that health education has been
ignored. When ρ = 1, it implies that education is 100% efficient in controlling the spread
of COVID-19. Close contacts may either join infectious or symptomatic infectious. Close
contacts may progress to infectious at the rate ω1 and asymptomatic infectious at the rate
ω2.

Considering that there are some cases of asymptomatic infectious individuals showing
symptoms in the isolation period. Therefore, we assumed that asymptomatic infectious
individuals are screened at the rate δ and join the infectious individuals where they are
finally treated at the rate γ1. Symptomatic infectious individuals are treated at the rate
γ2. COVID-19 induced mortality rate for infectious individuals is denoted by d, while the
natural death rate of humans is represented by µ. Infected individuals from both states E(t)
and A(t) transmit COVID-19 virus into the environment at the rates (1−ρ)ε1 and (1−ρ)ε2,
respectively. We assumed that the rate of excretion by the close contacts and asymptomatic
infectious, ε1 and ε2, respectively. Here, we did not consider that symptomatic infectious
individuals may spread virus into the environment. Because symptomatic infections in our
country are isolated in time. It is worth noting that virus excretion of the asymptomatic

3



Table 1: Summary of some parameters for COVID-19 model.

Parameter Description Value
Λ The input rate of susceptible individuals 20
β1 Successful contact rate from close contacts 0.0001
β2 Successful contact rate from asymptomatic infectious 0.0002
β3 Successful contact rate from symptomatic infectious 0.00008
β4 Effective transmission rate of virus due to environment to individuals 0.06
ω1 Rate at which close contacts become asymptomatic infectious 0.1
ω2 Rate at which close contacts become asymptomatic infectious 0.3
µ Natural mortality rate 0.004
γ1 Recovery rate of asymptomatic infected individuals 0.6
γ2 Recovery rate of symptomatic infected individuals 0.1
d Disease-induced death rate 0.06
δ Transition rate of asymptomatic infected individuals to I(t) 0.3
ρ Health education efficacy parameter 0.6
K Half-saturation rate of virus that can cause a 50% chance of infections 1000
µB Mortality rate of virus 0.1
ε1 Virus shed into environment supply by close contacts 0.5
ε2 Virus shed into environment supply by close contacts 0.3
σ The death rate of virus due to sanitation 3

infectious and close contacts is low. However, COVID-19 virus in environment has an
important role on the infection dynamics of COVID-19 due to its long duration and strong
survival rate. we note that the new coronavirus does not reproduce independently in the
aerosol. Thus, virus in the environment deplete naturally at µB or by sanitation measures
at the rate σ. All parameters and their values in the model are presented in Table 1.

According to the schematic diagram in Figure 1, the differential equations of the math-
ematical model are

dS(t)
dt

= Λ− (1− ρ)(β1E + β2A+ β3I + β4B
K+B

)S − µS,
dE(t)

dt
= (1− ρ)(β1E + β2A+ β3I + β4B

K+B
)S − (µ+ ω1 + ω2)E,

dA(t)
dt

= ω1E − (µ+ δ + γ1)A,
dI(t)

dt
= ω2E + δA− (µ+ d+ γ2)I,

dR(t)
dt

= γ1A+ γ2I − µR,
dB(t)

dt
= (1− ρ)ε1E + (1− ρ)ε2A− (µB + σ)B,

(2.1)

where the initial conditions S(0) > 0, E(0) > 0, A(0) > 0, I(0) > 0, R(0) > 0, B(0) > 0.
Then, the system (2.1) has a biological invariant region as

Ω =

{
S,E,A, I, R,B) ≥ 0 : S + E + I + C +R ≤ Λ

µ
,B ≤ (1− ρ)(ε1 + ε2)Λ

(µB + σ)µ

}
,

where the parameter λ > 0 is the comprehensive input rate and µ > 0 represents the
4



natural death rate. d > 0 denotes the death rate due to disease. In our model, the vertical
transmission is not considered, i.e. all newborns are susceptible. According to the results of
clinical practice, asymptomatic infections generally do not need treatment, but this group
of people is a strong source of infection. Therefore, the incidence rate is where indicates the
effective per captia contact rate of asymptomatic infections. Some asymptomatic infected
people in the 14 day isolation period, will show obvious symptoms of infection, that is,
diagnosed. The parameter p1 is the rate at which the asymptomatic individuals become
symptomatic individuals. If the asymptomatic infected person is asymptomatic during the
14 day isolation period and the nucleic acid test is negative for two times, the isolation can
be released. We hypothesized that the asymptomatic infected patients who were released
from isolation were transformed into recovered individuals after they eliminated the new
coronavirus through autoimmune resistance. The parameter p2 > 0 is the rate at which
the asymptomatic individuals become recovered individuals. γ > 0 is the recovery rate
of symptomatic individuals. Clinically, relapse is rare in the cured patients. Thus, in our
model, it is assumed that there is no transfer from the recovery individuals to susceptible
class. Based on the above assumptions, we formulated an dynamical system (2.1) consisting
of four differential equations to depict the flow diagram of COVID-19.

2.1. Model basic properties

To determine the equilibrium points, we set the right-hand side of equations (2.1) to zero
and solve the system

0 = Λ− (1− ρ)(β1E
∗

+ β2A
∗

+ β3I
∗

+ β4B
∗

K+B∗ )S
∗ − µS∗

,

0 = (1− ρ)(β1E
∗

+ β2A
∗

+ β3I
∗

+ β4B
∗

K+B∗ )S
∗ − (µ+ ω1 + ω2)E

∗
,

0 = ω1E
∗ − (µ+ δ + γ1)A

∗
,

0 = ω2E
∗

+ δA
∗ − (µ+ d+ γ2)I

∗
,

0 = γ1A
∗

+ γ2I
∗ − µR∗

,
0 = (1− ρ)ε1E

∗
+ (1− ρ)ε2A

∗ − (µB + σ)B∗.

(2.2)

By using a substitution method, we first obtain

E∗ =
Q2Q3I

∗

Q2ω2 + δω1

= M1I
∗, (2.3)

A∗ =
ω1Q3I

∗

Q2ω2 + δω1

= M2I
∗, (2.4)

R∗ =
[γ1ω1Q3 + γ2(Q2ω2 + δω1)]I∗

(Q2ω2 + δω1)µ
= M3I

∗, (2.5)

B∗ =
(1− ρ)Q3(ε1Q2 + ε2ω1)

(µB + σ)(Q2ω2 + δω1)
= M4I

∗, (2.6)

S∗ =
Λ

µ
− Q1Q2Q3I

∗

(Q2ω2 + δω1)µ
=

Λ

µ
−M5I

∗, (2.7)

5



where

Q1 = µ+ ω1 + ω2,

Q2 = µ+ γ1 + δ,

Q3 = µ+ d+ γ2,

M1 =
Q2Q3

Q2ω2 + δω1

,

M2 =
ω1Q3

Q2ω2 + δω1

,

M3 =
γ1ω1Q3 + γ2(Q2ω2 + δω1)

(Q2ω2 + δω1)µ
,

M4 =
(1− ρ)Q3(ε1Q2 + ε2ω1)

(µB + σ)(Q2ω2 + δω1)
,

M5 =
Q1Q2Q3

(Q2ω2 + δω1)µ
.

The total force of infection is denoted by

f(S∗, E∗, A∗, I∗, B∗) = (1− ρ)(β1E
∗

+ β2A
∗

+ β3I
∗

+
β4B

∗

K +B∗ )S
∗
.

Substitute (2.3), (2.4), (2.6), and (2.7) into the second equation of (2.2), we obtain

(
Λ

µ
−M5I

∗)(B1 +B2I
∗)I∗ = Q1M1I

∗(K +M4)I∗, (2.8)

where B1 = (1− ρ)[(β1M1 + β2M2 + β3)K + β4M4], B2 = (1− ρ)(β1M1 + β2M2 + β3)M4.
In fact, (2.8) is equivalent to a cubic equation of the form of

A0I
∗3 + A1I

∗2 + A2I
∗ = 0. (2.9)

where

A0 = B2M5 > 0,

A1 = B1M5 +Q1M1M4 −
Λ

µ
B2,

A2 = Q1M1K −
Λ

µ
B1 = Q1M1K(1−R0),

R0 =
(1− ρ)Λ

µ
(
β1

Q1

+
β2ω1

Q1Q2

+
β3(Q2ω2 + δω1)

Q1Q2Q3

+
β4(1− ρ)(ε1Q2 + ε2ω1)

Q1Q2K(µB + σ)
).

Obviously, I∗ = 0 is one of the solutions of equation (2.10), which means the existence
of the disease-free equilibrium. And the endemic equilibrium is the positive solution of

A0I
2∗ + A1I

∗ + A2 = 0. (2.10)
6



It is easy to see that A2 < 0 when R0 > 1. Hence, the system (2.1) has only one positive
equilibrium for R0 > 1 , namely, the endemic equilibrium P ∗(S∗, E∗, A∗, I∗, R∗, B∗). Here

I∗ =
−A1+
√
A2

1−4A0A2

2A0
> 0. Conversely, the system (2.1) has only the disease-free equilibrium,

namely, P0(Λ
µ
, 0, 0, 0, 0, 0). Here, R0 is actually the basic reproduction number of infectious

disease model. In the following part, we have a detailed solution process for the basic
reproduction number R0. Mathematical epidemiology has a threshold value, namely the
basic reproduction number, to preliminarily predict the outbreak trend of diseases. We can
find some key strategies to prevent and control disease spread by surveying their effect on R0.
Next, we will use the next-generation matrix approach to compute the basic reproduction
number R0.

Following [17], the next generation matrix is defined by FV −1. Here, the matrices F and
V representing the new infection terms and the remaining transfer terms are respectively
given by

F =


(1− ρ)β1

Λ
µ

(1− ρ)β2
Λ
µ

(1− ρ)β3
Λ
µ

(1− ρ)β4
Λ
Kµ

0 0 0 0
0 0 0 0
0 0 0 0

 ,

V =


Q1 0 0 0
−ω1 Q2 0 0
−ω2 −δ Q3 0

−(1− ρ)ε1 −(1− ρ)ε2 0 µB + σ

 .
The basic reproduction number of is now given by

R0 = ρ(FV −1) = R1 +R2 +R3 +R4,

where

R1 =
Λ(1− ρ)

µ

β1

Q1

,

R2 =
Λ(1− ρ)

µ

β2ω1

Q1Q2

,

R3 =
Λ(1− ρ)

µ

β3(Q2ω2 + δω1)

Q1Q2Q3

,

R4 =
Λ(1− ρ)

µ

β4(1− ρ)(ε1Q2 + ε2ω1)

Q1Q2K(µB + σ)
.

Obviously, The basic reproduction number consists of four parts. Each part R1, R2, R3,
and R4, characterizes the contribution of close contacts, symptomatic infectious, asymp-
tomatic infectious and environment in the process of COVID-19, respectively.

In this section, we focus on the stability of equilibriums of system (2.1). We have the
following result on the local asymptotic stability of the disease-free equilibrium P0.

7



Theorem 2.1. The disease-free equilibrium P0 of the system(2.1) is locally asymptotically
stable if R0 ≤ 1 and unstable R0 > 1.

Proof. The Jacobian matrix of the system (2.1) at the disease-free equilibrium P0 is

J(P0) =



−µ −(1− ρ)β1
Λ
µ

−(1− ρ)β2
Λ
µ
−(1− ρ)β3

Λ
µ

0 −(1− ρ)β4
Λ
Kµ

0 (1− ρ)β1
Λ
µ
−Q1 (1− ρ)β2

Λ
µ

(1− ρ)β3
Λ
µ

0 (1− ρ)β4
Λ
Kµ

0 ω1 −Q2 0 0 0
0 ω2 δ −Q3 0 0
0 0 γ1 γ2 −µ 0
0 (1− ρ)ε1 (1− ρ)ε2 0 0 −(µB + σ)

 ,

The Jacobian matrix J(P0) has eigenvalues λ1 = λ2 = −µ.
The remaining 4× 4 submatrix is given as

J1(P0) =


(1− ρ)β1

Λ
µ
−Q1 (1− ρ)β2

Λ
µ

(1− ρ)β3
Λ
µ

(1− ρ)β4
Λ
Kµ

ω1 −Q2 0 0
ω2 δ −Q3 0

(1− ρ)ε1 (1− ρ)ε2 0 −(µB + σ)

 .
Further, we define

B11 = Q1 − (1− ρ)β1
Λ

µ
, B12 = (1− ρ)β2

Λ

µ
, B13 = (1− ρ)β3

Λ

µ
, B14 = (1− ρ)β4

Λ

Kµ
,

B21 = ω1, B22 = Q2,

B31 = ω2, B32 = δ, B33 = Q3,

B41 = (1− ρ)ε1, B42 = (1− ρ)ε2, B44 = µB + σ.

Then, the remaining submatrix J1(P0) can be rewritten as

J1(P0) =


−B11 B12 B13 B14

B21 −B22 0 0
B31 B32 −B33 0
B41 B42 0 −B44

 .
The remaining eigenvalues are the roots of

λ4 + C3λ
3 + C2λ

2 + C1λ+ C0 = 0, (2.11)

where

C0 = B11B22B33B44(1− R2+R3+R4

1−R1
) + 2B13B31B22B44,

C1 = B11B22B33(1− R2+R3

1−R1
) +B11B22B44(1− R4

1−R1
) +B11B33B44(1− R41

1−R1
),

+B22B33B44(1−R2) + 2B22B13B31 +B13B31B44,
C2 = B22(B33 +B44) +B33(B11 +B44) +B13B31 +B11B22(1−R2) +B11B44(1−R41),
C3 = B11 +B22 +B33 +B44 > 0.

8



According to the Routh-Hurwitz stability criterion, we should proof that

C0 > 0, C1 > 0, C2 > 0, C3 > 0. (2.12)

∆1 = C3 > 0,

∆2 =

∣∣∣∣ C3 1
C1 C2

∣∣∣∣ = C2C3 − C1 > 0,

∆3 =

∣∣∣∣∣∣
C3 1 0
C1 C2 C3

0 C1 C2

∣∣∣∣∣∣ = C1C2C3 − C2
1 − C0C

2
3 > 0,

∆4 =

∣∣∣∣∣∣∣∣
C3 1 0 0
C1 C2 C3 1
0 C0 C1 C2

0 0 0 C0

∣∣∣∣∣∣∣∣ = C0(C1C2C3 − C2
1 − C0C

2
3) = C0∆3 > 0.

(2.13)

When R0 ≤ 1, it is obvious that R1 < 1, R2 < 1, R3 < 1, R4 < 1, R5 < 1. It also implies
that C1 > 0, C2 > 0, C2 > 0, ∆1 > 0, ∆2 > 0, C2C3 > 2C1 and C1C2 > 2C0 hold.

∆1 = C3 > 0,
∆2 = B2

11[B22(1−R2)B33) +B33 +B44] +B2
22[B11(1−R2) +B33 +B44]

+B2
33(B11 +B22 +B44) +B2

44[B11(1−R41) +B22 +B33]
+B11B22B33(2−R2) +B11B22B44(2−R2 −R41) +B11B33B44(2−R41)
+2B22B33B44 +B13B31(B11 +B33) +B14B41(B22 +B33)
+B21(B14B42 +B12B44 +B12B33 +B13B32) > 0,

C1C2 − 2C0C3 = B22B33[B11B22B33(1− R2+R3

1−R1
) +B22B33B44(1−R2) + 2B22B13B31]

+B22B44[B11B22B44(1− R4

1−R1
) +B22B33B44(1−R2)]

+B11B33[B11B22B33(1− R2+R3

1−R1
) +B11B33B44(1− R41

1−R1
) +B13B31(2B22 +B44)]

+B33B44[B11B33B44(1− R41

1−R1
) +B22B33B44(1−R2) +B13B31B44]

+B11B22(1−R2)[B11B22B33(1− R2+R3

1−R1
) +B11B22B44(1− R4

1−R1
) + 2B22B13B31]

+B13B31[B11B33B44(1− R41

1−R1
) + 2B22B13B31 +B13B31B44]

+B11B44(1−R41)[B11B22B44(1− R4

1−R1
) +B11B33B44(1− R41

1−R1
) +B13B31B44]

+B2
11B22B33B44[ (1−R1)+R3(1−R2−R41)+R2+R41(R1+R2)

1−R1
+ R4

1−R1
(1− R3

1−R1
)]

+B13B21B44(2B22B32 + 3B32B44) +B11B22B33B
2
44

(1−R3−R41)+R2+R42+R2R41

1−R1

+B11B
2
22B33B44

(1−R1−R2−R3)+R2
2(1−R1)+2R1R2+R4

1−R1

+B11B22B
2
33B44

(1−R1)(1−R2)+(R2+R42+R4)+R3(1−R2)
1−R1

,

C2C3 − 2C1 = B2
11[B22(1−R2) +B33 +B44] +B2

22[B11(1−R2) +B33 +B44]
+B2

33(B11 +B22 +B44) +B2
44[B11(1−R41) +B22 +B33]

+B11B22B33
(1−R1−R3)+R2(1+R1)

1−R1

+B11B22B44
(1−R1−R2)+R1(R1+R2)+R42+R4

1−R1

+B11B33B44
(1−R1−R3)+R41(1−R1)

1−R1
+B22B33B44(1 + 2R2)

+B13B31(B11 +B33) + 3B13B21B32 > 0,
9



where

R31 =
Λ(1− ρ)

µ

β3ω2

Q1Q3

,

R32 =
Λ(1− ρ)

µ

β3δω1

Q1Q2Q3

,

R31 +R32 = R3,

R41 =
Λ(1− ρ)

µ

β4(1− ρ)ε1

Q1K(µB + σ)
,

R42 =
Λ(1− ρ)

µ

β4(1− ρ)ε2ω1

Q1Q2K(µB + σ)
,

R4 = R41 +R42.

When R0 ≤ 1, it is obvious that R1 < 1, R2 < 1, R3 < 1, R4 < 1, R5 < 1. It also implies
that C1 > 0, C2 > 0, C2 > 0, ∆1 > 0, ∆2 > 0, C2C3 > 2C1 and C1C2 > 2C0 hold. According
to C2C3 > 2C1 and C1C2 > 2C0, we get C1C2C3 > max{2C2

1 , 2C0C
2
3} > C2

1 + C0C
2
3 .

Therefore, ∆3 > 0 and ∆4 > 0.
To sum up, all conditions of Hurwitzs criterion (2.12) and (2.13) hold. Then, the disease-

free equilibrium P0 is local stability for R0 ≤ 1. The theorem also implies that influx of
a small number of COVID-19 cases will not generate a a large-scale outbreak when the
R0 ≤ 1.

In the section, we will discuss the global stability of the disease-free equilibrium and
the endemic equilibrium by using comparison theorem and Lyapunov function, respectively.
The main results are presented in the Theorem 2.2 and 2.3.

Theorem 2.2. The disease-free equilibrium P0 of the system (2.1) is globally asymptotically
stable if R0 ≤ 1.

Proof. In the system (2.1), the rate of change of the variables describing the infected com-
ponents can be rewritten as

dE
dt
dA
dt
dI
dt
dB
dt

 = (F − V )


E
A
I
B

−

C11 C12 C13 C14

0 0 0 0
0 0 0 0
0 0 0 0



E
A
I
B

 .
where C11 = (1− ρ)β1(Λ

µ
− 1) > 0, C12 = (1− ρ)β2(Λ

µ
− 1) > 0, C13 = (1− ρ)β3(Λ

µ
− 1) > 0,

C14 = (1− ρ)β4( Λ
Kµ
− 1

K+B
) > 0. Hence, it can be obtained

dE
dt
dA
dt
dI
dt
dB
dt

 ≤ (F − V )


E
A
I
B

 .
10



In Theorem 2.1, it has been obtained that all eigenvalues of the matrix F − V have
negative real parts. And the disease-free equilibrium P0 is stable when R0 ≤ 1. Furthermore,
by comparison theorem, it follows that (E∗, A∗, I∗, B∗) → (0, 0, 0, 0) as t → ∞ [18]. The
second, third, fourth, and the sixth equations of (2.2) give S∗ = Λ

µ
and R∗ = 0 when

E∗ = A∗ = I∗ = R∗ = B∗ = 0. Thus, (S∗, E∗, A∗, I∗, R∗, B∗) → (Λ
µ
, 0, 0, 0, 0, 0) as t → ∞

for R0 ≤ 1.
Hence, the disease free equilibrium point P0 is globally asymptotically stable.

Next, we analyse global properties of the endemic equilibrium.

Theorem 2.3. The endemic equilibrium P ∗ of the system (2.1) is globally asymptotically
stable in Ω when R0 > 1 provided that

A
A∗ ≤ f(S,A)

f(S,A∗)
≤ 1 for all 0 < A ≤ A∗, and

A
A∗ ≥ f(S,A)

f(S,A∗)
≥ 1 for all A ≥ A∗.

(2.14)

Proof. First, we construct the Lyapunov function

V = S −
∫ S
ε

f(S∗,A∗)
f(τ,A∗)

dτ + E − E∗ lnE + Q1

ω1
(A− A∗ lnA), (2.15)

where f(S,A) = (λP + λB)S. Similar to f(S, I) in reference [19], f(S,A) is monotonically
growing with respect to S and A. Besides, at the endemic equilibrium P ∗ have

f(S,A∗) < f(S∗, A∗) for all 0 < S ≤ S∗, and
f(S,A∗) > f(S∗, A∗) for all S < S∗,

(2.16)

and (2.14).
Derivative (2.15) with respect to time is given by

dV
dt

= Λ− µS − f(S,A)− f(S∗,A∗)
f(S,A∗)

(Λ− µS − f(S,A))

+f(S,A)−Q1E − E∗

E
(f(S,A)−Q1E)

+Q1

ω1
(ω1E −Q2A)− Q1E∗

ω1E
(ω1E −Q2A)

(2.17)

We noted that the endemic equilibrium P ∗(S∗, E∗, A∗, I∗, R∗, B∗) satisfies (2.2). Then, sub-
stituting (2.2) into (2.17) and simplifying can get

dV
dt

= −µS∗(1− S
S∗ )(1− f(S∗,A∗)

f(S,A∗)
)

+f(S∗, A∗)[4− f(S∗,A∗)
f(S,A∗)

− E∗f(S,A)
Ef(S∗,A∗)

− EA∗

E∗A
− Af(S,A∗)

A∗f(S,A)
]

+f(S∗, A∗)[Af(S,A∗)
A∗f(S,A)

− 1− A
A∗ + f(S,A)

f(S,A∗)
]

(2.18)

By (2.14) and (2.16), we can get dV
dt
≤ 0. It is easy to see that dV

dt
= 0 holds only when

S = S∗, E = E∗, A = A∗, I = I∗, R = R∗, B = B∗ in the system (2.1). And P ∗ is the
only equilibrium in Ω. Therefore, by Lyapunov Lasalle asymptotic stability theorem, the
equilibrium P ∗ is globally asymptotically stable in Ω.

11



Figure 2: Simulation trajectories starting from different initial values when R0 = 0.7072 < 1. A: The
trajectory of the susceptible. B: The trajectory of the recovered.

3. Numerical Simulations

In this section, we firstly focus on the numerical solution of equations (2.1) to validate the
previous analysis results obtained. The values and sources of parameters used for simulation
are shown in Table 1.

Figure 2 verifies that all numerical solutions from different initial values of equations
(2.1) converge to the disease free equilibrium point P0(Λ

µ
, 0, 0, 0, 0, 0) when R0 < 1. And

Figure 3 shows that all numerical solutions from different initial values of equations (2.1)
converge to the endemic equilibrium point P ∗(S∗, E∗, A∗, I∗, R∗, B∗) when R0 > 1. These
results are consistent with those discussed in Theorem 2.2 and Theorem 2.3. Further more,
we simulate the effects of implementing different control strategies on the susceptible and
recovered.

Considering, different countries have different economic levels, so that the sanitary san-
itation conditions are also significantly different. We first simulate the impact of simply
improving the public health environment on the susceptible and recovered. Figure 3 shows
that when the sanitation induced mortality increases 0 to 6, the number of susceptible was
increased, but the number of recovered was reduced. It implies that improving environmental
sanitation conditions can reduce the risk of infection among susceptible people.

Next, we investigate the impact of health education on the system under the premise of
a stable treatment level. Figure 5 plots the time series curve of susceptible and recovery
when the health education efficacy parameter the system increases from 0 to 0.8. The result
shows that the number of susceptible was significantly increased, but the number of recovery
was reduced. And when the health education efficacy parameter reaches 0.8, the number
of susceptible in the system initially rises, and finally stabilizes to a higher level. This
indicates that the effective implementation of health education, that is, raising everyone’s

12



Figure 3: Simulation trajectories starting from different initial values when R0 = 3.2232 > 1. A: The
trajectory of the susceptible. B: The trajectory of the recovered.

Figure 4: Effect of improving the public sanitation on the susceptible and recovered. A: The trajectory of
the susceptible. B: The trajectory of the recovered.
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Figure 5: Effect of improving the health education on the susceptible and recovered. A: The trajectory of
the susceptible. B: The trajectory of the recovery.

health awareness and prevention awareness can effectively curb the large-scale spread of
diseases among the population.

Finally, we simulate the impact of joint implementation of health education and improve-
ment of public sanitation on the system. Figure 6 plots the time series curve of susceptible
and recovered when the health education efficacy parameter increases from 0 to 0.8 and the
public sanitation induced mortality increases from 0 to 6. The simulation results are similar
to Figure 5. However, the joint implementation of these two interventions can effectively
control the disease within a controllable range in a more timely manner, and even effectively
curb the outbreak of the disease.

In addition, we used a 3D plots look at the topological nature of two parameters(ie. ρ
and σ ). Figure gives the surface relation of ρ and σ on I∗ and R0. Figure 7A gives the health
education and sanitation on the basic reproduction number R0 using parameter values in
Table 1. Numerical results in Figure 7B shows that the increased of health education or
sanitation results in a reduce of R0. But, increasing the values of these two parameters at
the same time, the basic reproductionnumber R0 declined the fastest. It also implies that
health education and sanitation has positive impact on the reduction of COVID-19 virus
transmission.

Conclusion

A mathematical model of COVID-19 considering health education and public sanitation
is presented. The existence and stability of the system steady state have discussed. The
results show that the system always has a disease-free equilibrium point. And it is globally
asymptotically stable when the basic reproduction number R0 5 1. When the basic repro-
duction number R0 > 1, the endemic equilibrium point exists and is globally asymptotically
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Figure 6: The impact of dual control strategies on the susceptible and recovered. Here, the dual control
strategies: health education (ρ) and sanitation(σ). A: The trajectory of the susceptible. B: The trajectory
of the recovered.

Figure 7: Three dimensional plots of endemic state I∗ and R0. A: Surface plot of endemic state I∗ with
respect to ρ and σ. B: Surface plot of R0 with respect to ρ and σ.
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stable. Number simulation results indicate that an increase in the efficacy parameter of
health education and the mortality rate inducing sanitation may result in the increase of the
number susceptible. It implies that the effective way to reduce the spread of the COVID-19
virus is to educate people to raise awareness of prevention and improve the public health
environment conditions.

The model presented in this paper is not completely realistic. But it captures some main
properties in the COVID-19 infection models. For instance, in order to make the model more
realistic, the model considers two modes of transmission, namely direct transmission caused
by direct contact between people, and indirect transmission caused by people contacting the
environment or objects contaminated by the new coronavirus. In the next step, we will be
more interested in the impact of overseas import, vaccination and virus mutation on future
epidemics.
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