
P
os
te
d
on

29
M
ar

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
00
82
46
.6
06
83
12
4/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

BriskChain: Decentralized Function Composition for

High-performance Serverless Computing

Jing Ma1, Kan Wang1, and Edmund M-K Lai1

1Auckland University of Technology

March 29, 2023

Abstract

Serverless computing allows developers to create workflows for complex tasks through the composition of serverless functions.

Current serverless workflow engines rely on master-side patterns which hinder the interaction between serverless functions,

causing performance issues. In this paper, a decentralized worker-side pattern is proposed that provides enhanced performance

by allowing each workflow function to schedule itself from the current node to the next without having to interact with the

master controller. It treats the serverless workflow as a whole unit and uses a locality strategy to optimize performance.

A new high-performance workflow engine called BriskChain has been implemented to demonstrate the effectiveness of this

approach. Experiments on a real-world application show that BriskChain is able to achieve 2.5 times better performance than

a state-of-the-art serverless workflow engine.

1



Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

BriskChain: Decentralized Function Composition for
High-performance Serverless Computing

Kan Wang1 | Jing Ma1,2 | Edmund M-K Lai1

1School of Engineering, Computer and
Mathematical Sciences, Auckland
University of Technology, New Zealand

2Otago Polytechnic Auckland International
Campus, New Zealand

Abstract

Serverless computing allows developers to create workflows for complex tasks
through the composition of serverless functions. Current serverless workflow engines
rely on master-side patterns which hinder the interaction between serverless func-
tions, causing performance issues. In this paper, a decentralized worker-side pattern
is proposed that provides enhanced performance by allowing each workflow function
to schedule itself from the current node to the next without having to interact with the
master controller. It treats the serverless workflow as a whole unit and uses a locality
strategy to optimize performance. A new high-performance workflow engine called
BriskChain has been implemented to demonstrate the effectiveness of this approach.
Experiments on a real-world application show that BriskChain is able to achieve 2.5
times better performance than a state-of-the-art serverless workflow engine.

KEYWORDS:
Serverless Computing, Serverless Workflow, FaaS

1 INTRODUCTION

Serverless computing is a cloud computing paradigm that offers a promising approach to software development. It is based
on functions that are self-contained, stateless, and fine-grained. This approach is often referred to as Function as a Service
(FaaS), and it is gaining popularity due to its many benefits. Many cloud server companies offer their own proprietary serverless
platforms, including Amazon Web Services (AWS) Lambda, Google Cloud Functions, and IBM Cloud Functions, to name just a
few. Open-source serverless computing platforms, such as OpenWhisk and OpenFaaS, are also gaining popularity. Some experts
predict that serverless computing will dominate the next generation of cloud systems1.

In serverless computing, developers combine multiple function services into workflows through a workflow engine to create
their application logic. A workflow engine manages, schedules, or monitors action tasks according to predefined rules. At present,
most serverless workflow engines rely on centralized master-side pattern, which involves a powerful workflow engine as the
master, scheduling and allocating tasks and resources to many workers or serverless function tasks. This approach has significant
performance issues due to high scheduling and data movement overhead. In addition, cloud vendors typically impose quotas on
the input and output data size of each function. Users often have to make use of additional database storage services for temporary
data storage and delivery2. Therefore, this pattern is not very suitable for applications that require intensive interactions between
smaller tasks3.

To address these issues, this article proposes a decentralized work-side pattern that can significantly reduce communication
overhead in serverless workflows. In this pattern, each worker node has the ability to route state from itself to the next worker
node according to a predefined workflow schema. Each worker task transmits its state directly to the next worker in the workflow,



2

eliminating the need to route it through the master controller. This will significantly reduce workflow overhead. At the same
time, the pressure on the master side is relieved.

A decentralized workflow engine called BriskChain has been implemented based on this pattern for latency-sensitive and in-
teractive serverless computing. BriskChain schedules serverless workflows as a whole unit, just like a single serverless function,
which abides by the substitution principle4. This approach makes no distinction between serverless function tasks and workflow
tasks, allowing BriskChain to schedule the entire workflow like a normal serverless function. BriskChain is built on an open-
source FaaS system called OpenWhisk. BrishChain provides two extensions to OpenWhisk – the BriskChain runtime and the
embedded controller. The BriskChain runtime is a containerized sandbox that can handle not only normal serverless function
requests, but also functions in the workflow. The embedded controller is responsible for allocating workflow resources. It also
implements a close-locality optimization strategy that schedules sandboxes of the workflow onto the same host to avoid remote
interactions between workflow functions, thereby enhancing efficiency.

The rest of this article is organized as follows. Section 2 provides a brief review of current practices in serverless computing,
focussing on function composition and workflow engines. It also gives an overview of worker-side patterns. The proposed
decentralized serverless workflow is presented in Section 3, together with the detailed design of BriskChain. A comprehensive
evaluation of BriskChain, complete with a real-world application example, is provided in Section 4. The last section concludes
this article with some suggestions for future work.

2 RELATED REVIEW

2.1 Serverless Functions and Workflow Engines
Serverless functions are basic building blocks of serverless applications. Sandboxes, such as Docker containers, provide a
lightweight and executable environment for serverless functions. Each serverless function is packaged into a containerized sand-
box to become an autonomous and independent entity in a FaaS application. Multiple containerized functions can form more
complex serverless applications, where each serverless function handles a small, fine-grained logical service.

To create a serverless application, developers write logic codes that follow the specifications of serverless functions during
the application design process. The FaaS system then loads each function into the sandbox, ready for execution. Finally, these
containerized functions are scheduled and executed by the FaaS runtime. By integrating multiple serverless functions on a FaaS
platform, complex applications can be built.

In addition to serverless functions, there are related components such as gateways, events, and Backend-as-a-Service (BaaS),
which together constitute the FaaS System. Figure 1 illustrates the typical structure of a serverless system. Function services can
be exposed externally through an API Gateway or Event. Serverless functions can also rely on BaaS for additional cloud support.
For example, AWS S3 and Google Cloud Storage are BaaS storage services that can be used for persistent storage services.

API
Gateway

Event

DB

Files

Msg
BaaS

Fn (A)
Fn (B)

Fn (c)

Serverless functions

… …

Figure 1 A Typical Structure of FaaS and Related Components

Workflow systems use a centralized scheduler for task assignments and resource allocation5. Figure 2 illustrates a typical
workflow engine scheduling serverless functions. Most serverless workflow engines work as a separate external system to FaaS.
FaaS is responsible for executing serverless functions that can actually be thought of as tasks in a workflow, whereas the workflow
engine is in charge of scheduling these serverless functions according to predefined workflow logic.



3

BAAS
Fn (A)

Fn (B)

Fn (c)

Workflow Engine

FaaS system

Scheduling

Function calls

Workflow calls

Controller

Event

Workflow design

Figure 2 Traditional Workflow Engines with FaaS

The substitution principle of FaaS systems requires that the serverless workflow itself be a serverless function4. However,
not all FaaS systems obey this principle. For example, Amazon Step Functions and Lambda functions are not the same type of
entity and therefore do not obey the substitution principle.

Jonas et al.6 compared three common communication patterns –broadcast, aggregation and shuffle, for both VM-based and
FaaS solutions. In their research, VM instances process and combine data locally before sending it to another host. In contrast,
every serverless function with a payload must interact frequently on distributed remote hosts. Figure 3 shows the difference in
broadcast patterns for both systems. For a VM system with 𝑁 hosts, the communication complexity is 𝑂(𝑁). However, the
complexity is 𝑂(𝑁 ×𝐾) for the FaaS system where 𝐾 is the number of functions per host6.

VM-Based FaaS-based

Task HostRemote call Local call

Figure 3 The Communication Path of Broadcast Pattern in VM and FaaS Based System

Most workflow systems adopt the traditional master-side pattern7,8,9,10. It relies on a powerful workflow engine to manage tasks
and resources. Due to high scheduling overhead and frequent data movement, this pattern does not perform well in serverless
environments2. This is because each task in a workflow is a serverless function that needs to interact with the remote master
frequently. Moreover, if one serverless function needs to transport data to another function, it must move the data to the master
side first. This kind of interactions between serverless functions contribute to inefficiency6.

2.2 Worker-side Pattern
A decentralized worker-side pattern can be utilized to improve performance. The main idea is to offload the overhead from a
central master to the workers2. A few studies have emerged that utilized this idea in recent years. Nightcore11 is an efficient
serverless computing framework. that orchestrates chained serverless functions of a workflow onto the same host. It relies on



4

a gateway in each worker host to schedule tasks within that host. The gateway acts like a workflow engine proxy that takes
over some tasks from the master controller. In this way, the inner calls between chained functions can be processed locally and
efficiently because they are located on the same host. Also, their internal data can be transmitted and preprocessed by the local
gateway, without relying on a remote workflow engine.

Function

Host

Remote call

Local call
FaaS

Gateway

Worker Host 1

Gateway

Worker Host 2

…

Gateway

…Host n

Figure 4 Worker-side Pattern Structure in FaaSFlow

While Nightcore seems to utilize worker-side pattern, Li et al.2 argues that Nightcore is still based on a master-side pattern
because its gateway serves as the centralized manager to assign tasks and allocates execution states. They proposed FaaSFlow
which is closer to a worker-side design. Figure 4 shows the basic structure of FaaSFlow. There is still a decentralized workflow
engine (gateway) located in each worker host similar to Nightcore. The difference is the worker-side engine in FaaSFlow handles
more tasks than Nightcore, so the workflow tasks of the master side can be eliminated completely. Thus, FaaSFlow can be
considered a worker-side decentralized serverless workflow pattern.

Although both Nightcore and FaaSFlow make use of proxy engine located in each worker host, they are still small regional
masters. They rely on gateways to handle internal interactions between serverless functions within the same host, and between
gateways to handle remote cross-host interactions. Such worker-side pattern could be further decentralized to have the ability to
schedule themselves according to predefined workflow logic without any level of masters.

2.3 Sandbox Structure
The sandbox encapsulates serverless functions and is commoly a containerized structure that isolates the functions in serverless
applications. Virtualized containers provide an autonomous runtime which includes system libraries and program dependencies.
In existing FaaS systems, each sandbox typically only contains the code of a single function due to function isolation concerns.
Figure 5 shows the steps from when a sandbox instance is loaded from a container image to the time when the function code
is injected into the sandbox by the FaaS controller and it is ready to be invoked. The life of the sandbox is ended when it is
removed by the controller when it is no longer needed.

2.4 OpenWhisk
OpenWhisk is an open-source FaaS system although it has a commercial version called IBM Cloud Functions. It is a perfect
vehicle to help understand some of the limitations of current FaaS systems.

Figure 6 depicts the processing flow and internal structure of OpenWhisk. NGINX serves as the gateway for OpenWhisk,
handling external user requests and exposing function services. CouchDB provides persistent storage of function source code
and running states. The controller acts as the central manager, responsible for scheduling and managing serverless functions.
Upon receiving a function task from NGINX, the controller fetches the function code from CouchDB, injects it into a sandbox,
invokes the sandbox, and retrieves the function result. Kafka functions as a message bus that sends messages or commands to
the sandboxes.



5

OS Libs

FaaS runtime

OS Libs

FaaS runtime

Function code

OS Libs

FaaS runtime

Function code

Step 1: load Step 2: inject code Step 3: ready

Inject Invoke

Figure 5 The Process Steps of a Sandbox

Figure 6 The Internal Structure of OpenWhisk Figure 7 OpenWhisk with BriskChain

Figure 8 illustrates the sequence of actions undertaken from the time a function is requested to the return of the results. The
whole process starts from the user initiating a serverless function request to NGINX, which includes function parameters and
identities. NGINX then forwards the request to the controller. The controller obtains the program source code of the function
from CouchDB and injects it into a loaded sandbox. The controller sends an invocation message to Kafka. Meanwhile, the
controller will asynchronously send an activation token to the user because the function may run for a while and the user can
request the result later with the token. When Kafka received the innovation message, it transfers the request to the sandbox to
invoke the function. The function code will be run in the sandbox and the result will be stored in CouchDB. Finally, the user
can fetch the function result from CouchDB.

3 IMPROVED SERVERLESS WORKFLOW – BRISKCHAIN

The performance bottleneck of current serverless systems have been outlined in Section 2. With the aim to significantly improve
performance, we propose a novel worker-side pattern that allows functions to pass control and data from one to another in a
workflow without the need for any central controllers. It has been implemented as an extension to OpenWhisk which will be
known as BriskChain.

Figure 9 shows the basic structure of BriskChain in relation to the rest of the FaaS system. It has two important components
– an embedded workflow controller and the BriskChain runtime (sandbox). The BriskChain runtime is a sandbox that serves
as the environment for serverless functions. This runtime is endowed with the ability to schedule workflow functions from the
current node to the next through the embedded workflow controller. Each sandbox can schedule the next task of the workflow
without the support of a central controller. This is key to the implementation of a complete worker-side pattern that satisfies
the substitution principle as described in Section 2.1. In BriskChain, workflow tasks and serverless function tasks are treated



6

Figure 8 OpenWhisk Sequence Diagram

Cluster

FaaS

Gateway
Host 1

Host 2
Host N

FaaS
Controller

Embedded
Workflow
Controller

… …

Monitor

BaaS

File

…

Msg

DB

Sandbox

Sandbox

Sandbox

Fn

Fn

Fn

Figure 9 Infrastructure of BriskChain

equally. As a result, serverless workflows have all the attributes and capabilities of normal serverless functions, such as default
parameters, limits, blocking invocation, and web export. The benefit is that the system’s overall performance can be improved.

The BriskChain sandbox is an extended version of the common FaaS sandbox, as shown in Figure 7. The BriskChain runtime
is able to handle both single standalone serverless functions and serverless functions in a workflow. For example, if the function
in the sandbox is a normal serverless function (i.e. not a function of the workflow), the BriskChain runtime will forward the task
to the FaaS runtime for processing. This ensures that the processing logic of the original serverless function remains unchanged.
In contrast, if the function is a serverless function of a workflow, the BriskChain runtime will process the function according to
the specified workflow. This will be explained further in Section 3.1.

There is another part of BriskChain that is embedded in the FaaS controller. Figure 7 shows how BriskChain is integrated with
OpenWhisk. The database stores the source code and request response status of serverless functions. Each Kubernetes node is
a physical host managed by a Kubernetes cluster, which can be thought of as a virtualized computer with unlimited resources.
Each serverless function is wrapped in a sandbox, with each sandbox runnubg in a cluster.



7

3.1 The Worker-side Pattern in BriskChain
The decentralized worker-side pattern means that workers are able to schedule without relying on a master controller. The
worker here refers to the sandbox loaded with serverless functions, and the master is a central controller that schedules each
worker. The worker-side pattern is mainly supported by the BriskChain runtime which undertakes the function scheduling tasks
of the workflows. Specifically, BriskChain sandbox runtime schedule the next function that the current function is connected to,
according to the predefined workflow schema. It also forwards the result of the current function to its next function in a workflow
directly without having it flow back to the controller or database.

Algorithm 1 BriskChain runtime pseudocode

function runtime(parameters, schema){
result <- faas_runtime(parameters)
node <- schema.current()
if(schema.isNull() or node.isEnd()){

response(result) /* task end */
}else if(node is sequence){

next <- node.child()
next_sandbox <- controller.resource(next)

/* asynchronously forward to the next sandbox */
next_sandbox.msg(result, next)

}else if(node is parallel){
for(i in node.children()){

next <- node[i]
next_sandbox <- controller.resource(next);
/* asynchronously forward to a sandbox */
next_sandbox.msg(result,next)

}
}else if(node is branch){

next <- node.judge(result)
next_sandbox <- controller.resource(next)

/* asynchronously forward to the next sandbox */
next_sandbox.msg(result, next)

}else
throw an exception

}

Algorithm 1 shows the basic processing logic of the BriskChain runtime. There are two main branches in the code logic,
one is responsible for normal serverless function processing, and the other is responsible for workflow function processing. If
the current function is a function that is not part of a workflow, or it is the last function in the workflow. then the BriskChain
runtime will forward this function to the FaaS runtime. Otherwise, it will request new sandbox resources for the next step of
the workflow. There are three possibilities in the next step of the workflow. The first one is one single function that follows the
current one. In this case, the results of the current sandbox will be transferred asynchronously to the new sandbox. The second
case is that it is followed by several parallel sub-functions, then the result will be dispatched to these sub-functions. Finally, if
the current workflow node is a conditional branch, then the subsequent route will depend on which condition is satisfied.



8

3.2 Processing of Serverless Functions
The BriskChain controller has the ability to support function locality strategy. The controller orchestrates all the sandboxes of
the same workflow into the same host. Therefore, these functions can interact with each other through local communication.

NGINX Controller CouchDB Kafka Sandbox 1

① Request
②Request

③Fetch function 1 and workflow schema

⑥Message

⑦ Invoke function 1

Result⑩⑪ Result

Activation ID ④
Activation ID

Sandbox 2 Sandbox N

⑤ Function locality strategy (asynchronous)

⑧ Invoke function 2

⑨Invoke function N

Figure 10 BriskChain Sequence Diagram

Figure 10 shows the workflow processing sequence diagram using OpenWhisk with BriskChain. This could be compared with
Figure 8 which is for OpenWhisk without BriskChain. The sequence starts from the end-user request to the gateway (NGINX)
( 1 ). Specifically, the user invokes the first function of a workflow with a predefined workflow schema. NGINX forwards the
requirement to the controller with the function parameters, function ID and the workflow schema ID ( 2 ). The controller uses
this information to obtain the function source code and detailed workflow definition from CouchDB ( 3 ). Then, the user will
receive a token (activation ID) after the controller accepts the workflow task ( 4 ). Meanwhile, the controller also dispatches the
sandbox of the current function to the same location (same host) as other functions in the workflow if possible. The remaining
functions of the workflow run one after another without having to communicate with the central controller ( 7 , 8 , and 9 ).
This is performed by the embedded controller sending a workflow task to Kafa ( 6 ) At the end of processing, the result of the
workflow comes from the result of the last function of the workflow ( 10 ). Once this result is stored in CouchDB, the user can
use the token (activation ID) to obtain the workflow result.

It can be seen that BriskChain handles workflow tasks as a whole unit, and this workflow unit is no different from a single
functional task as far as the FaaS controller is concerned. Also, there is no operational difference between invoking a workflow
and a single function.

4 EVALUATION METHODOLOGY

Several experiments will be conducted to assess the performance of BriskChain in comparison with OpenWhisk12 and Apache
Composer13. These systems have similar runtime environments. However, OpenWhisk currently only supports sequential
function composition. Therefore, comparison with Apache Composer is needed when the application involves branching and
parallelism.

The evaluation seeks to answer the following questions:

(i) What is the scheduling overhead of BriskChain compared with others in different DAG forms?

(ii) What is the performance of BriskChain scheduling serverless functions based on the different payloads of the workflows?

(iii) How does BriskChain perform in real-world applications?



9

Configuration
Kubernetes Cluster Google Kubernetes Engine; Zone: us-central1-c;

One cluster with three nodes
Cluster Node 301 mCPU requested; 940 mCPU allocatable;

445 MB memory requested; 2.95 GB allocatable
Cluster Software Container-Optimized OS from Google;

Kernel: 5.10.109+; Kubelet: v1.22.11-gke;
OpenWhisk v1.2.0; BriskChain;
Composer 0.12.0

Table 1 Hardware and Software Setups in the Experiment

Table 1 shows the hardware and software environment used to conduct the experiments. A Kubernetes cluster was built on
Google Kubernetes Engine (GKE) with three host nodes installed in the same cloud zone. OpenWhisk, Apache Composer and
BriskChain are installed in the Kubernetes environments.

Figure 11 Synthetic Benchmarks

4.1 Benchmarks
Two different kinds of benchmarks are used in the experiments. They are synthetic micro workflows and real-world applications.
The synthetic benchmarks can be divided into three different types: sequence, branch, and parallel. Their workflows are shown
in Figure 11. The sequence workflows contain identical functions that are run one after another. The branch workflows contain
branching nodes. The parallel workflows break out from a single function into parallel subtasks. They are also known as fan-out
and fan-in workflows because the task breaks out (fan-out) into multiple concurrent sub-functions, and then the results of the
sub-functions are collected (fan-in) through a single node.

Two real-world applications – Travis2slack and video transcoding, are also used for evaluation. They are representative use
cases with payloads and external dependencies and involve all three workflows.

Travis2slack14 is a serverless application that responds to notifications from continuous integration and continuous deploy-
ment (CI/CD) software projects. It automatically analyses the project log and publishes the analysis report and the original error
address to subscribers.

The processing steps of Travis2slack are shown in Figure 12. Initially, Travis2slack uses a webhook to receive build notifi-
cations from Travis-CI15 which is a hosted continuous integration service for building and testing software projects hosted on
GitHub and Bitbucket. Then it retrieves pull requests and build details. The second task is to fetch and analyze build and test
logs. Finally, Travis2slack generates Slack16 messages for subscribers. This application has twelve nodes in its workflow as
shown in Figure 13. Description of these twelve nodes are provided in Table 2.

Video Transcoding (Vid) is a serverless application that converts videos from one encoding format to another. Video transcod-
ing is a resource-intensive task, and traditional transcoding application software consumes a lot of computing resources. Its
serverless workflow involves three major steps – splitting, transcoding, and merging. The splitting step divides the video file into



10

Figure 12 Pipeline of Travis CI to Slack

Figure 13 Workflow of Travis CI to Slack

Node Explanation
1 Webhook The message comes from Travis.
2 Echo Data cleaning.
3 Extract Build notification information.
4 Fetch Queries Travis CI to determine the job ID.
5 Check Is a pull request number defined?
6 Return Record logs, output error and terminating computation.
7 Slack author Get Slack author.
8 Is subscribed If author is not subscribed for notifications.
9 Return Record logs, output error and terminating computation.
10 Analyse Fetches and analyses the CI logs.
11 Format This action formats notification message with log analysis.
12 Post Sends the message to Slack

Table 2 Workflow Nodes for the Travis2slack Benchmark

a series of smaller video files of a shorter duration. This step is required to overcome the time limit of serverless functions. For
example, OpenWhisk has a default limit of 1 minute. Each segmented video file is then transcoded into the target format. In the
workflow, many segmented videos are transcoded in parallel to increase efficiency. Finally, the transcoded segmented videos are
merged into a single video file. This workflow is illustrated in Figure 14 and a description of the nodes can be found in Table 3.
In our experiment, a 100-second video file in MOV format is transcoded to MP4 format.

4.2 Evaluation Metric
Overhead is a key metric to measure the quality of BriskChain workflow scheduling. The runtime overhead of the workflows
depends on the following parameters:

(a) Number of functions: This is a significant parameter with the performance difference for different numbers of serverless
functions in the workflows.



11

Figure 14 Workflow of Video Transcoding

Node Explanation
1 Trigger It triggers the workflow by a newly uploaded video.
2 Split It splits the video into small video slices according

to a defined time interval.
3 Transcode It transcodes sliced videos in parallel.
4 Other tasks Other optional tasks such as content security

review or video watermarking.
5 Merge Merge(fan-in) the transcoded videos into one final video.
6 After-process Update information to database.

Table 3 Workflow Nodes for the Video Transcoding Benchmarks

(b) Variability and 95th percentile latency: The 95-th percentile latency and variability of the overhead values are also
important in the evaluation.

(c) Size of payload: This is an important parameter with the performance difference when BriskChain schedules serverless
workflows with payloads of different sizes.

In our benchmarks, unless stated otherwise, the overhead includes the total time spent outside of the functions. It typically
includes scheduling time, state transition time, and delay time between the workflow functions.

5 RESULTS

5.1 Synthetic Benchmarks
5.1.1 Sequence Workflow
The sequence workflows consist of identical functions. Furthermore, these functions do not perform any processing and respond
to calls immediately. Also, there is no payload transferred between the internal functions of the workflow; only a short string is
transmitted to record the execution status of the workflow. The functions will normally encounter a long cold start delay when
they are run for the first time. However, the results shown in this experiment do not include any cold start delay. Each workflow
case is executed 100 times.

Figure 15 shows the results for BriskChain and OpenWhisk. They show that BriskChain outperforms OpenWhisk by over
70%. This is directly due to the worker-side pattern of BriskChain. On the other hand, OpenWhisk requires multiple internal
interaction loops between the master and the workers when processing the workflow, resulting in much higher overhead. Another
desirable effect of BriskChain’s worker-side pattern is that the overhead increases linearly with the number of functions in the
sequence.

Another reason why BriskChain’s overhead is lower is that it omits many unnecessary remote database accesses. OpenWhisk
stores the result of each serverless function call into Apache CouchDB, which may be located in a remote host from the functional



12

Number of function tasks in a workflow

O
ve

rh
ea

d 
(m

s)

0

250

500

750

1000

1250

10 20 30 40 50

BC-average OW-average BC 95%-ile latency OW 95%-ile latency

Overhead of synthetic sequence workflow

Figure 15 Overhead of Synthesize Sequential Workflows

tasks of the workflow. BriskChain sends the result of the current function directly to the next function of the workflow, without
accessing the database unless any errors occur.

5.1.2 Branch Workflows
The branch workflows each consist of two branches. If the result of the judicial function is true, the result is dispatched to the
first branch. Otherwise, it goes to the second branch. Since OpenWhisk does not support branch scheduling, comparisons are
made between Apache Composer and BriskChain. Note that this experiment does not examine the workflows with more than
two branches.

Overhead (seconds)

Apache OpenWhisk 
Composer

BriskChain

0.00 0.05 0.10 0.15

Average 95th Percentile

Figure 16 Overhead of Synthetic Branch Workflow

Figure 16 shows the experimental results. For these benchmarks, BriskChain vastly outperforms OpenWhisk Composer.
BriskChain requires only 0.023 seconds of overhead on average, which is one-third that of OpenWhisk Composer. Furthermore,
the 95-th percentile latency is 70% lower. This is because BriskChain dispatches the branch node directly from the condition



13

node without waiting for the scheduling order from the controller. A branch is no different from a sequence, except that there is
an additional conditional test before scheduling the next correct workflow node. Therefore, the overhead of BriskChain in the
branching benchmark is also low, similar to the sequence workflow experiments.

5.1.3 Parallel Workflows
The experiment simulates synthetic parallel workflows composed of various number of sub-functions. A whisker plot of the
results for Apache Composer and BriskChain over 1000 runs is shown in Figure 17. Overall, BriskChain requires 50-75% less
overhead than Composer across the different number of parallel functions. Also, the overhead of BriskChain grows linearly
with the number of parallel functions, but Composer shows exponential growth. For example, in a parallel test of 30 concurrent
functions, the overhead of BriskChain is only 1/5 of the overhead of Composer. In addition, BriskChain overhead shows much
smaller variance. For example, for 30 parallel tasks, some executions with Composer use nearly 3000 milliseconds which is
50% higher than the lowest value. This is because parallel scheduling in Composer requires complex multisystem dependencies.
Delays in any one of these components will lead to delays in the entire workflow. As the number of parallel functions increases,
the probability of latency becomes greater, and hence the higher variance.

Number of concurrent functions (n)

O
ve

rh
ea

d 
(m

s)

0

1000

2000

3000

co-10 bw-10 oc-20 bw-20 oc-30 bw-30

Parallel of OpenWhisk Composer(co) and BriskChain(bc)

Figure 17 Whisker Plot of Parallel Workflow

Another reason why BriskChain shows better performance than Composer is resource competition. Large numbers of subtasks
in parallel workflow lead to large resource demand spikes, albeit for a short period of time. Such spikes could cause network
resource contention. BriskChain’s locality strategy enables serverless functions of the same workflow to be exeduted on the
same host. Therefore, such network contention issues could be avoided.

5.1.4 Payload Evaluation
To assesses how well BriskChain performs with various payload sizes, we constructed a workflow using six functions that
operate sequentially. Different payload sizes are used, with each function handing off the payload to the next until the workflow
is completed. Figure 18 shows the overhead associated with each payload size. In comparison with BriskChain, OpenWhisk
requires roughly three times higher overhead for a 1K byte payload. The overhead of OpenWhisk also increases exponentially
while that for BriskChain shows only polynomial increase. This is due to riskChain’s locality mechanism effectively avoiding
cross-host internal communications. High overhead for high payload in typical FaaS systems is the reason why many platforms
place a limit on the payload size.



14

0

250

500

750

1000

1K 8K 32K 64K 128K 256K 512K 1024K

OpenWhisk Seqeunce BriskChain

Figure 18 Overhead with Different Payloads

5.2 Real-world Case Studies

Figure 19 The Effect of Video Transcoding

Figure 19 shows the transcoding performance of the video transcoder workflow. In general, the time required to transcode
decreases substantially as the duration of each segment decreases. When the video is split into two video segments of 50-second
duration each, the workflow takes about 170 seconds to complete. But this process only takes 38 seconds if the duration of each
video segment is 5 seconds.

With both applications, BriskChain is shown to be more efficient. Figure 20 shows a comparison of the overhead between
BriskChain and Composer. This mirrors the results obtained through the synthetic workflow experiments. For Travis2slack,
BriskChain’s overhead is 3.5 seconds, about 30% of Composer’s overhead of 11.3 seconds. In the case of Vid, BriskChain
requires 60% less overhead on average than Composer for video segments of 5 seconds.



15

0

20

40

60

Travis2slack Average Travis2slack 95th 
Percentile

Vid Average Vid 95th Percentile

BriskChain Composer

Figure 20 Overhead of the Real-world Applications

6 CONCLUSIONS

The article presented a new design and implementation of worker-side pattern for serverless computing. It shows that by re-
ducing the requirement for each function sandbox to communicate with a central controller, computation overhead could be
drastically reduced. Furthermore, with an embedded controller in each sandbox, each function could directly transfer payloads
to a subsequent function in the workflow, thereby reducing the overhead for data transfer even more. In this way, serverless ap-
plications are able to run much more efficiently. Experimental results using our implementation, BriskChain, showed that this
is indeed the case, for both synthetic workflows and real-world applications.

The concept of decentralized architecture holds promise for improving the efficiency of cloud computing, and represents a
valuable area for further research. For instance, auto-scaling is an important feature of every virtualized container and is typically
supported by the master in most FaaS systems. Decentralized containers could manage their own auto-scaling instead of relying
on the master. This would involve each container having its own lifespan, with any inactive containers automatically terminated
after a predetermined length of time. In this way, the requirement for scaling down could be fulfilled. When service demand
increases, each container could spawn more replicas by itself to enable scaling up.

References

1. Schleier-Smith J, Sreekanti V, Khandelwal A, et al. What serverless computing is and should become: The next phase of
cloud computing. Communications of the ACM 2021; 64(5): 76–84.

2. Li Z, Liu Y, Guo L, et al. FaaSFlow: enable efficient workflow execution for function-as-a-service. In: ; 2022: 782–796.

3. Li Z, Guo L, Cheng J, Chen Q, He B, Guo M. The Serverless Computing Survey: A Technical Primer for Design
Architecture. ACM Computing Surveys (CSUR) 2021.

4. Baldini I, Cheng P, Fink SJ, et al. The serverless trilemma: Function composition for serverless computing. In: ACM. ;
2017: 89–103.

5. Carver B, Zhang J, Wang A, Cheng Y. In search of a fast and efficient serverless dag engine. In: IEEE. ; 2019: 1–10.

6. Jonas E, Schleier-Smith J, Sreekanti V, et al. Cloud programming simplified: A berkeley view on serverless computing.
arXiv preprint arXiv:1902.03383 2019.



16

7. Adhikari M, Amgoth T, Srirama SN. A survey on scheduling strategies for workflows in cloud environment and emerging
trends. ACM Computing Surveys 2019; 52(4): 1–36.

8. Ao L, Izhikevich L, Voelker GM, Porter G. Sprocket: A serverless video processing framework. In: Proceedings of the ACM
Symposium on Cloud Computing. ; 2018: 263–274.

9. Fouladi S, Wahby RS, Shacklett B, et al. Encoding, Fast and Slow:{Low-Latency} Video Processing Using Thousands of
Tiny Threads. In: USENIX Symposium. ; 2017: 363–376.

10. Malawski M, Gajek A, Zima A, Balis B, Figiela K. Serverless execution of scientific workflows: Experiments with
hyperflow, aws lambda and google cloud functions. Future Generation Computer Systems 2020; 110: 502–514.

11. Jia Z, Witchel E. Nightcore: efficient and scalable serverless computing for latency-sensitive, interactive microservices. In:
; 2021: 152–166.

12. Apache Software Foundation . Apache OpenWhisk. http://openwhisk.apache.org; 2022.

13. Apache Software Foundation . Apache OpenWhisk Composer. https://github.com/apache/openwhisk-composer; 2022.

14. Travis CI to Slack. https://github.com/rabbah/travis-to-slack; 2022.

15. Idera, Inc. . Travis CI. http://travis-ci.com; 2022.

16. Slack Technologies, LLC . Slack. https://slack.com; 2022.


	BriskChain: Decentralized Function Composition for High-performance Serverless Computing
	Abstract
	Introduction
	Related Review
	Serverless Functions and Workflow Engines
	Worker-side Pattern
	Sandbox Structure
	OpenWhisk

	Improved Serverless Workflow – BriskChain
	The Worker-side Pattern in BriskChain
	Processing of Serverless Functions

	Evaluation Methodology
	Benchmarks
	Evaluation Metric

	Results
	Synthetic Benchmarks
	Sequence Workflow
	Branch Workflows
	Parallel Workflows
	Payload Evaluation

	Real-world Case Studies

	Conclusions
	References


