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Abstract

The paper describes the method of symbolic evaluation that serves as a useful tool to extend the studies of certain special

functions including their properties and capabilities. In the paper, we exploit certain symbolic operators to introduce a new

family of special polynomials, which is called the Mittag-Leffler-Gould-Hopper polynomials. We obtain the generating function,

series definition and symbolic operational rule for these polynomials. This approach give a wide platform to explore the study

of classical and hybrid special polynomials. We establish summation formulae and certain identities for these polynomials.

Further, we derive the multiplicative and derivative operators to study the quasi-monomiality property of these polynomials.

Some concluding remarks are also given.
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1 Introduction

The multi-variable special polynomials provide the solutions of a wide class of partial differential equations
often encountered in the field of physical problems. The importance of multi-variable Hermite polynomials
has been recognized in dealing with quantum mechanical and optical beam transport problems [8,14,15].
It happens very often that the solution of a given problem in physics or applied mathematics requires the
evaluation of infinite sums involving special functions. Problems of this type arise, for example, in the
computation of the higher-order moments of a distribution or to evaluate transition matrix elements in
quantum mechanics. It has been shown that the summation formulae of certain special functions, often
encountered in applications ranging from electromagnetic processes to combinatorics, can be written in
terms of the multi-variable Hermite polynomials. [8].
Throughout this paper, we use the notations: N = {1, 2, 3...} and N0 := N ∪ {0}.
Also, as usual R denotes the set of real numbers, R+ denotes the set of positive real numbers and
R+

0 := R+ ∪ {0}.

We recall that the Mittag-Leffler function is given by the following series definition [3, 12]:

Eα,β(x) =

∞∑
r=0

xr

Γ(αr + β)
, ∀x ∈ R,∀α, β ∈ R+, (1.1)

which plays an important role in the solution of problems arising in fractional calculus.

The symbolic method provides powerful and efficient means to introduce and to study certain new and
known special functions, for instance, the symbolic method is used to obtain certain lacunary generating
functions for the Laguerre polynomials by Dattoli [3]. Dattoli and his co-workers [3, 13] introduced a
symbolic operator ĉ, which operates on a vacuum function φz = 1

Γ(z+1) as [3, 13]:

ĉαφz =
1

Γ(z + α+ 1)
, (1.2)

which obviously satisfies the properties

ĉαĉβ = ĉα+β and (ĉα)r = ĉrα. (1.3)
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In view of equation (1.2), we have

ĉαφ0 =
1

Γ(z + α+ 1)

∣∣∣∣
z=0

=
1

Γ(1 + α)
. (1.4)

In view of equations (1.1) and (1.4), the Mittag-Leffler function can symbolically be defined as [12]:

Eα,β(x) = ĉβ−1 1

1− ĉαx
φ0. (1.5)

Also, Dattoli et al. [12] introduced another symbolic operator α,β d̂ (α, β ∈ R+), which operates on the
vacuum function ψ0 as:

α,β d̂
kψ0 =

Γ(k + 1)

Γ(αk + β)
(1.6)

Evidently, for k = 0, equation (1.6) gives

ψ0 =
1

Γ(β)
. (1.7)

In view of equations (1.1) and (1.6), the symbolic definition of Mittag-Leffler function in terms of α,β d̂
can be given as [12]:

Eα,β(x) = exα,β d̂ψ0. (1.8)

The special polynomials of two variables are important from the point of view of applications. These
polynomials allow the derivation of a number of useful identities in a fairly straightforward way and
help in introducing new families of special polynomials. For example, Bretti et al. [5] introduced general
classes of the Appell polynomials of two variables by using properties of an iterated isomorphism related
to the Laguerre-type exponentials. To extend this new and significant approach, the hybrid class of the
q-Sheffer-Appell polynomials are introduced in [32]. The two variable forms of the Hermite, Laguerre
and truncated exponential polynomials as well as their generalizations are studied by several researchers
[2, 6, 9, 16,20,24,29,30].
To solve the problems arising in many branches of mathematics, going from the theory of partial differ-
ential equations to abstract group theory, requirement of multi-index and multi-variable special functions
are realized. The theory of multi-index and multi-variable Hermite polynomials was initially developed
by Hermite [19]. The Hermite polynomials turn up in combinatorics, as an example of an Appell se-
quence, obeying the umbral calculus, in numerical analysis as Gaussian quadrature, in physics, where
they give rise to the eigen states of the quantum harmonic oscillator and also turn up in the solution of
the Schr̈odinger equation for the harmonic oscillator [33]. Recently Raza et al. studied the properties of
Hermite polynomials by using umbral method [27].

The Gould-Hopper polynomials can be realised as a generalization of 2-variable Hermite-Kampé de Fériet

polynomials. The Gould-Hopper polynomials (GHP) H
(m)
n (x, y) are defined by means of the following

generating function and series definition [18,22]:

∞∑
n=0

H(m)
n (x, y)

ξn

n!
= exξ+yξ

m

(1.9)

and

H(m)
n (x, y) = n!

[ nm ]∑
r=0

xn−mryr

(n−mr)!r!
, (1.10)

respectively, where m is positive integer.

The Gould-Hopper polynomials are the solutions of the generalized heat equation [7]:

∂

∂y
f(x, y) =

∂m

∂xm
f(x, y), (1.11)

with the initial condition f(x, 0) = xn.
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The Gould- Hopper polynomials are given by the following operational rule [7]:

H(m)
n (x, y) = exp (yDm

x ) {xn}, (1.12)

where

Dx :=
∂

∂x
. (1.13)

Gould and Hopper [18] used the notation gsn(x, y) for the Gould-Hopper polynomials, but due to their

direct link with the Hermite polynomials, in this paper, we use the notation H
(m)
n (x, y) for these polyno-

mials like some other researcher.

In particular, for m = 2, we note that

H(2)
n (x, y) = Hn(x, y), (1.14)

where Hn(x, y) denotes the 2-variable Hermite-Kampé de Fériet polynomials (2VHKdFP), defined by
the following generating function [2]:

∞∑
n=0

Hn(x, y)
tn

n!
= ext+yt

2

. (1.15)

Also, we note from [1,2] that
Hn(2x,−1) = Hn(x), (1.16)

where Hn(x) denotes the ordinary Hermite polynomials.

Many properties of conventional and generalised special polynomials have been shown to be derived,
in a straightforward way from [1, 2], within the operational framework which is a consequence of the
monomiality principle. The idea of the monomiality is based on the concept of poweroid suggested by
Steffensen [31]. It was reformulated and developed by Dattoli [6]. According to the monomiality principle,
a polynomial set {pn(x)}∞n=0 is called quasi-monomial, if there exist two operators, multiplicative operator
M̂ and derivative operator P̂ , respectively, such that [6]

M̂{pn(x)} = pn+1(x) (1.17)

and
P̂{pn(x)} = npn−1(x). (1.18)

Thus, the operators M̂ and P̂ display a weyl group structure [6]. Several characteristics of polynomial
pn(x) can be obtained by using the operators M̂ and P̂ . If M̂ and P̂ have differential realizations, then
the polynomial pn(x) satisfies the following differential equation:

M̂P̂{pn(x)} = npn(x). (1.19)

Assuming here and in the following p0(x) = 1, then pn(x) can be explicitly constructed as:

pn(x) = M̂n{1}. (1.20)

In view of equation (1.20), we have
M̂n
H{1} = H(m)

n (x, y). (1.21)

The multiplicative and derivative operators for the Gould-Hopper polynomials are as follows:

M̂g := x+myDm−1
x (1.22)

and
P̂g := Dx. (1.23)

There is continuous use of operational methods in research fields like quantum and classical optics.
In this paper, we use symbolic method to introduce and to study the Mittag-Leffler-Gould-Hopper poly-
nomials. In Section 2, the Mittag-Leffler-Gould-Hopper polynomials are introduced and their certain
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properties such as generating function, series definition and operational rule are derived. In Section 3,
an integral representation and certain summation formulae for Mittag-Leffler-Gould-Hopper polynomials
are obtained. In the Section 4, the monomiality property of these polynomials are investigated and their
multiplicative and derivative operators are obtained. Further, in Section 5, certain special cases of the
results established in this paper, are considered. In Section 6, the graphical interpretation of these poly-
nomials is presented. In the last Section, some concluding remarks are given.

2 Mittag-Leffler-Gould-Hopper Polynomials

In this section, we introduce and study the Mittag-Leffler-Gould-Hopper polynomials. In view of equation

(1.8), we define the Mittag-Leffler-Gould-Hopper polynomials (MLGHP) EH
(m)
n (x, y;α, β) as:

EH
(m)
n (x, y;α, β) = H(m)

n (x, yα,β d̂)ψ0. (2.1)

Now, we proceed to obtain the generating function and series definition of the Mittag-Leffler-Gould-
Hopper polynomials.

The following result gives the generating function of Mittag-Leffler-Gould-Hopper polynomials:

Theorem 2.1. The following generating function for the Mittag-Leffler-Gould-Hopper polynomials holds
true:

∞∑
n=0

ξn

n!
EH

(m)
n (x, y;α, β) = exξEα,β(yξm). (2.2)

Proof. Using equation (2.1), we have

∞∑
n=0

ξn

n!
EH

(m)
n (x, y;α, β) =

∞∑
n=0

ξn

n!
H(m)
n (x, yα,β d̂)ψ0, (2.3)

which on using (1.9) in the right hand side, it becomes

∞∑
n=0

ξn

n!
EH

(m)
n (x, y;α, β) = exξ+yα,β d̂ξ

m

ψ0. (2.4)

Since it is obvious that [xξ, yα,β d̂ξ
m] = 0. Therefore, using the Weyl decoupling identity [17]

eÂ+B̂ = eÂeB̂e
−k
2 , k = [Â, B̂] (k ∈ C), (2.5)

in the right hand side of equation (2.4) and then using equation (1.8) in the resultant equation, we get
assertion (2.2).

The following result gives the series definition of Mittag-Leffler-Gould-Hopper polynomials:

Theorem 2.2. The following series definition of the Mittag-Leffler-Gould-Hopper polynomials holds true:

EH
(m)
n (x, y;α, β) = n!

[ nm ]∑
r=0

xn−mryr

(n−mr)!Γ(αr + β)
(α, β ∈ R+,m ∈ N). (2.6)

Proof. In view of equations (1.10) and (2.1), we have

EH
(m)
n (x, y;α, β) = n!

[ nm ]∑
r=0

xn−mryr(α,β d̂)
r

(n−mr)!r!
ψ0, (2.7)

which on using equation (1.6), it gives assertion (2.6).

Now, we establish the following result for higher order partial derivatives of the Mittag-Leffler-Gould-
Hopper polynomials:
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Theorem 2.3. The higher order partial derivatives of the Mittag-Leffler-Gould-Hopper polynomials are
as follows:

Ds
x EH

(m)
n (x, y;α, β) =

n!

(n− s)! EH
(m)
n−s(x, y;α, β) (s ∈ N ∧ s ≤ n) (2.8)

and

Ds
y EH

(m)
n (x, y;α, β) =

n!

(n− sm)!
α,β d̂

s
EH

(m)
n−sm(x, y;α, β) (s ∈ N ∧ s ≤ n). (2.9)

Proof. Differentiating equation (2.4) partially with respect to x, we find

∞∑
n=0

ξn

n!
Dx EH

(m)
n (x, y;α, β) = ξexξ+yα,β d̂ξ

m

ψ0. (2.10)

Using equation (2.4) in the right hand side of above equation and then comparing the equal powers of ξ,
we have

Dx EH
(m)
n (x, y;α, β) = n EH

(m)
n−1(x, y;α, β). (2.11)

Thus, the result (2.8) holds true for s = 1. We assume that this result holds for s = k, i.e.

Dk
x EH

(m)
n (x, y;α, β) =

n!

(n− k)!
EH

(m)
n−k(x, y;α, β). (2.12)

Differentiating equation (2.12) partially with respect to x, we have

Dk+1
x EH

(m)
n (x, y;α, β) =

n!

(n− k)!
Dx EH

(m)
n−k(x, y;α, β), (2.13)

which on using equation (2.11) in the right hand side, becomes

Dk+1
x EH

(m)
n (x, y;α, β) =

n!

(n− (k + 1))!
EH

(m)
n−(k+1)(x, y;α, β), (2.14)

which proves that the result (2.8) holds true for s = k+ 1. Thus, by the method of mathematical induc-
tion, result (2.8) holds for all values of s ∈ N.

Similarly, differentiating equation (2.4) partially with respect to y, we find

∞∑
n=0

ξn

n!
Dy EH

(m)
n (x, y;α, β) = ξmα,β d̂ e

xξ+yα,β d̂ξ
m

ψ0. (2.15)

Using equation (2.4) in the right hand side of above equation and then comparing the equal powers of ξ,
we have

Dy EH
(m)
n (x, y;α, β) =

n!

(n−m)!
α,β d̂ EH

(m)
n−m(x, y;α, β). (2.16)

Thus, the result (2.9) holds true for s = 1. We assume that the result (2.9) holds for s = k, i.e.

Dk
y EH

(m)
n (x, y;α, β) =

n!

(n− km)!
α,β d̂

k
EH

(m)
n−km(x, y;α, β). (2.17)

Differentiating equation (2.17) partially with respect to y, we have

Dk+1
y EH

(m)
n (x, y;α, β) =

n!

(n− km)!
α,β d̂

kDy EH
(m)
n−km(x, y;α, β), (2.18)

which on using equation (2.16) in the right hand side, it becomes

Dk+1
y EH

(m)
n (x, y;α, β) =

n!

(n− (k + 1)m)!
α,β d̂

k+1
EH

(m)
n−(k+1)m(x, y;α, β), (2.19)

which proves that the result (2.9) holds true for s = k+1. Thus by the method of mathematical induction,
result (2.9) holds for all values of s ∈ N.
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Next, we establish the following result for partial differential equation satisfied by the Mittag-Leffler-
Gould-Hopper:

Theorem 2.4. The Mittag-Leffler-Gould-Hopper polynomials satisfy the following mth-order partial dif-
ferential equation:

α,β d̂ D
m
x EH

(m)
n (x, y;α, β) = Dy EH

(m)
n (x, y;α, β) (2.20)

with initial condition

EH
(m)
n (x, 0;α, β) =

xn

Γ(β)
. (2.21)

Proof. Taking s = m in equation (2.8) and then operating α,β d̂ on both sides of resultant equation, we
have

α,β d̂ D
m
x EH

(m)
n (x, y;α, β) =

n!

(n−m)!
α,β d̂ EH

(m)
n−m(x, y;α, β). (2.22)

Using equation (2.16) in the right hand side of above equation, we get assertion (2.20). Also, taking y = 0
in equation (2.6), we get the initial condition (2.21).

Further, we obtain the following result for operational definition of the Mittag-Leffler-Gould-Hopper
polynomials:

Theorem 2.5. The Mittag-Leffler-Gould-Hopper polynomials satisfy the following operational rule:

EH
(m)
n (x, y;α, β) = eyα,β d̂D

m
x {xnψ0}. (2.23)

Proof. The formal solution of equation (2.20) subject to the initial condition (2.21) is given by

EH
(m)
n (x, y;α, β) = eyα,β d̂D

m
x

{
xn

Γ(β)

}
, (2.24)

which on using equation (1.7), gives assertion (2.23).

Now, we establish the following symbolic definition of the Mittag-Leffler-Gould-Hopper polynomials:

Theorem 2.6. The symbolic definition of the Mittag-Leffler-Gould-Hopper polynomials, is as follows:

EH
(m)
n (x, y;α, β) = (x+myα,β d̂D

m−1
x )nψ0. (2.25)

Proof. In view of Crofton identity [17]:

eλD
m
x {f(x)} = f(x+mλDm−1

x )eλD
m
x (2.26)

and equation (2.23), we have

EH
(m)
n (x, y;α, β) = (x+myα,β d̂D

m−1
x )nψ0e

yα,β d̂D
m
x {1}. (2.27)

Since eα,β d̂D
m
x {1} = 1, therefore equation (2.27) gives assertion (2.25).

In the next section, we obtain an integral representation and certain summation formulae for the Mittag-
Leffler-Gould-Hopper polynomials.
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3 Integral representation and Summation formulae

In this section, we obtain an integral representation and certain summation formulae for the Mittag-
Leffler-Gould-Hopper polynomials.

For suitable substitutions for β and y, we obtain the following integral representation of the Mittag-
Leffler-Gould-Hopper polynomials:

Theorem 3.1. For β = 1 and y = tα, the Mittag-Leffler-Gould-Hopper polynomials satisfy the following
identity

EH
(m)
n (x, tα;α, 1) =

∫ ∞
0

nα(s, t)H(m)
n (x, s)ds, (3.1)

where nα(s, t) denotes the inverse one sided Lévy stable density and is given by

nα(s, t) =
1

α

t

s α
√
s
gα

(
t
α
√
s

)
, (3.2)

where gα(x) is the one sided Lévy stable distribution, whose Laplace transform x → u is ĝα(u) =
exp(−uα), recently obtained for α rational [4, 25].

Proof. For y = tα and β = 1 equation (2.2) gives

∞∑
n=0

ξn

n!
EH

(m)
n (x, tα;α, 1) = exξEα,1(tαξm), (3.3)

which on using equation (1.1) in the right hand side, becomes

∞∑
n=0

ξn

n!
EH

(m)
n (x, tα;α, 1) = exξ

∞∑
r=0

tαr

Γ(αr + 1)
ξmr, (3.4)

If nα(s, t) is given by equation (3.2), then [4] :∫ ∞
0

nα(s, t)
sr

r!
ds =

tαr

Γ(αr + 1)
(∀α ∈ R+,∀t ∈ R+

0 ). (3.5)

Using equation (3.5) in equation (3.4), we get

∞∑
n=0

ξn

n!
EH

(m)
n (x, tα;α, 1) = exξ

∞∑
r=0

∫ ∞
0

nα(s, t)
sr

r!
ξmrds,

which can also be written as

∞∑
n=0

ξn

n!
EH

(m)
n (x, tα;α, 1) =

∫ ∞
0

nα(s, t)exξ+sξ
m

ds. (3.6)

Using equation (1.9) in the right hand side and then comparing the equal powers of ξ, we get assertion
(3.1).

Now, we establish the following summation formulae for the Mittag-Leffler-Gould-Hopper polynomials:

Theorem 3.2. The following summation formula for the Mittag-Leffler-Gould-Hopper holds true:

EH
(m)
n (x+ v, y;α, β) =

n∑
k=0

(
n

k

)
vkEH

(m)
n−k(x, y;α, β). (3.7)

7



Proof. Replacing x by x+ v in the equation (2.4), we have

∞∑
n=0

EH
(m)
n (x+ v, y;α, β)

ξn

n!
= exp((x+ v)ξ + yα,β d̂ξ

m)ψ0

=exξ+yα,β d̂ξ
m

evξψ0.

(3.8)

Expanding the second exponential of right hand side of above equation and using equation (2.4), we have

∞∑
n=0

EH
(m)
n (x+ v, y;α, β)

ξn

n!
=

∞∑
n=0

∞∑
k=0

EH
(m)
n (x, y;α, β)

ξn

n!

vkξk

k!
. (3.9)

Using series re-arrangement formula, it gives

∞∑
n=0

EH
(m)
n (x+ v, y;α, β)

ξn

n!
=

∞∑
n=0

(
n∑
k=0

(
n

k

)
vk EH

(m)
n−k(x, y;α, β)

)
ξn

n!
, (3.10)

comparing the coefficients of like powers of ξ in above equation, we get assertion (3.7).

Theorem 3.3. The following summation formula for the Mittag-Leffler-Gould-Hopper polynomials holds
true:

EH
(m)
k+l (w, y;α, β) =

k,l∑
n,r=0

(
k

n

)(
l

r

)
(w − x)n+r

EH
(m)
k+l−n−r(x, y;α, β), (3.11)

where
∑k,l
n,r=0 :=

∑k
n=0

∑l
r=0 .

Proof. Replacing ξ by u+ ξ in (2.4) and then using the formula [28]

∞∑
n=0

f(n)
(x+ y)n

n!
=

∞∑
n,m=0

f(n+m)
xn

n!

ym

m!
(3.12)

in the resultant equation, we find the following generating function for the Mittag-Leffler-Gould-Hopper

polynomials EH
(m)
n (x, y;α, β):

exp (x(ξ + u) + yα,β d̂(ξ + u)m)ψ0 =

∞∑
k,l=0

ξkul

k!l!
EH

(m)
k+l (x, y;α, β), (3.13)

which can be written as

exp(yα,β d̂(ξ + u)m)ψ0 = exp(−x(ξ + u))

∞∑
k,l=0

ξkul

k!l!
EH

(m)
k+l (x, y;α, β). (3.14)

Multiply both sides of the above equation with expw(ξ + u) and then using equation (3.12) in the left
hand side of the resultant equation, we find

∞∑
k,l=0

ξkul

k!l!
EH

(m)
k+l (w, y;α, β) = exp ((w − x)(ξ + u))

∞∑
k,l=0

ξkul

k!l!
EH

(m)
k+l (x, y;α, β), (3.15)

or equivalently

∞∑
k,l=0

ξkul

k!l!
EH

(m)
k+l (w, y;α, β) =

∞∑
n=0

(w − x)n(ξ + u)n

n!

∞∑
k,l=0

ξkul

k!l!
EH

(m)
k+l (x, y;α, β), (3.16)

which on using equation (3.12) in the first summation on the right hand side, it gives

∞∑
k,l=0

ξkul

k!l!
EH

(m)
k+l (w, y;α, β) =

∞∑
n,r=0

(w − x)n+rξnur

n!r!

∞∑
k,l=0

ξkul

k!l!
EH

(m)
k+l (x, y;α, β). (3.17)
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Now, replacing k by k − n, l by l − r and using the following identity [28]:

∞∑
k=0

∞∑
n=0

A(n, k) =

∞∑
k=0

k∑
n=0

A(n, k − n), (3.18)

in the right hand side of equation (3.17), we find

∞∑
k,l=0

ξkul

k!l!
EH

(m)
k+l (w, y;α, β) =

∞∑
k,l=0

k,l∑
n,r=0

(w − x)n+rξkul

n!r!(k − n)!(l − r)!E
H

(m)
k+l−n−r(x, y;α, β). (3.19)

Finally, comparing the coefficients of like powers of ξ and u in equation (3.19), we get assertion (3.11).

Remark 3.1. For l = 0 and w = x+ v, equation (3.11) reduces to equation (3.7).

Theorem 3.4. The following symbolic operational identity for the Mittag-Leffler-Gould-Hopper polyno-
mials holds true:

EH
(m)
n (x+ v, y + w;α, β) =

n∑
k=0

(
n

k

)
H

(m)
n−k(x, yα,β d̂) EH

(m)
k (v, w;α, β). (3.20)

Proof. Replacing x by x+ v and y by y + w in generating function (2.4), we have

∞∑
n=0

EH
(m)
n (x+ v, y + w;α, β)

ξn

n!
= exp((x+ v)ξ + (y + w)α,β d̂ξ

m)ψ0, (3.21)

which on using Weyl decoupling identity (2.5), it gives

∞∑
n=0

EH
(m)
n (x+ v, y + w;α, β)

ξn

n!
= exξ+yα,β d̂ξ

m

evξ+wα,β d̂ξ
m

ψ0. (3.22)

Using equations (1.9) and (2.4) in the right hand side of above equation, we find

∞∑
n=0

EH
(m)
n (x+ v, y + w;α, β)

ξn

n!
=

∞∑
n=0

∞∑
k=0

H(m)
n (x, yα,β d̂) EH

(m)
k (v, w;α, β)

ξn

n!

ξk

k!
, (3.23)

which on using series re-arrangement gives

∞∑
n=0

EH
(m)
n (x+ v, y + w;α, β)

ξn

n!
=

∞∑
n=0

n∑
k=0

(
n

k

)
H

(m)
n−k(x, yα,β d̂) EH

(m)
k (v, w;α, β)

ξn

n!
.

Comparing equal powers of ξ from both sides of above equation, we get assertion (3.20).

In the next section, we discuss the quasi-monomialtiy property of the Mittag-Leffler-Gould-Hopper poly-
nomials.

4 Monomiality property

In order to frame the Mittag-Leffler-Gould-Hopper polynomials within the context of monomiality prin-
ciple, we obtain the following result:
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Theorem 4.1. The multiplicative and derivative operators for the Mittag-Leffler-Gould-Hopper polyno-
mials are as follows:

M̂ =

(
x+myα,β d̂D

m−1
x

)
(4.1)

and
P̂ = Dx. (4.2)

Proof. Differentiating equation (2.4) partially with respect to ξ, we have

∞∑
n=0

nξn−1

n!
EH

(m)
n (x, y;α, β) = (x+myα,β d̂ξ

m−1)exξ+yα,β d̂ξ
m

ψ0. (4.3)

Since,

Dx(exξ+yα,β d̂ξ
m

) = ξ(exξ+yα,β d̂ξ
m

). (4.4)

Therefore,

Dr
x(exξ+yα,β d̂ξ

m

) = ξr(exξ+yα,β d̂ξ
m

). (4.5)

In view of equations (4.3) and (4.5), we have

∞∑
n=1

ξn−1

(n− 1)!
EH

(m)
n (x, y;α, β) = (x+m yα,β d̂D

m−1
x )exξ+yα,β d̂ξ

m

ψ0,

which on using equation (2.4) in the right hand side, gives

∞∑
n=0

ξn

n!
EH

(m)
n+1(x, y;α, β) =

(
x+myα,β d̂D

m−1
x

) ∞∑
n=0

ξn

n!
EH

(m)
n (x, y;α, β).

Comparing equal powers of ξ from both sides of above equation, we have

EH
(m)
n+1(x, y;α, β) =

(
x+myα,β d̂D

m−1
x

)
EH

(m)
n (x, y;α, β). (4.6)

In view of equation (1.17) and (4.6), we get assertion (4.1).

Now, differentiating equation (2.4) partially with respect to x, we have

Dx

∞∑
n=0

ξn

n!
EH

(m)
n (x, y;α, β) = ξexξ+yα,β d̂ξ

m

ψ0,

which on using equation (2.4) in the right hand side, gives

∞∑
n=0

Dx
ξn

n!
EH

(m)
n (x, y;α, β) =

∞∑
n=0

ξn+1

n!
EH

(m)
n (x, y;α, β). (4.7)

Comparing equal powers of ξ from both sides of the equation (4.7), we find

DxEH
(m)
n (x, y;α, β) = nEH

(m)
n−1(x, y;α, β), (4.8)

which in view of equation (1.18), gives assertion (4.2).

Remark 4.1. An alternative proof of assertion (4.1) of Theorem 4.1 is as follows:
Replacing n by n + 1 in equation (2.25) and then again using equation (2.25) in the right hand side of
the resultant equation, we get equation (4.6), which in view of equation (1.17), gives assertion (4.1).
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Remark 4.2. (i) In view of equation (4.6) it can easily be verified that(
x+my α,β d̂ D

m−1
x

)r
EH

(m)
k (x, y;α, β) = EH

(m)
k+r(x, y;α, β). (4.9)

(ii) Since from equation (2.6), we have

EH
(m)
0 (x, y;α, β) =

1

Γ(β)
, (4.10)

therefore, in view of equation (1.7), for k = 0 and r = n equation (4.9), it gives equation (2.25).

Next, we establish the following recurrence relations for the Mittag-Leffler-Gould-Hopper polynomials.

Theorem 4.2. The Mittag-Leffler-Gould-Hopper polynomials satisfy the following symbolic and differ-
ential recurrence relations:

EH
(m)
n+1(x, y;α, β) = xEH

(m)
n (x, y;α, β) +my

n!

(n−m+ 1)!
α,β d̂ EH

(m)
n−m+1(x, y;α, β) (4.11)

and
(n+ 1)EH

(m)
n+1(x, y;α, β) = (n+ 1)xEH

(m)
n (x, y;α, β) +myDyEH

(m)
n+1(x, y;α, β), (4.12)

respectively.

Proof. Using equation (2.8) for s = m−1 in the right hand side of equation (4.6), we get assertion (4.11).

Also, replacing n by n+ 1 in equation (2.16) and then using the resultant equation in the right hand side
of equation (4.11), we get assertion (4.12).

Since, the multiplicative and derivative operators of the Mittag-Leffler-Gould-Hopper polynomials have
symbolic-differential realization, therefore we obtain the following result for the symbolic differential
equation of the Mittag-Leffler-Gould-Hopper polynomials:

Theorem 4.3. The Mittag-Leffler-Gould-Hopper polynomials are the solutions of following mth- order
symbolic-differential equation:(

myα,β d̂D
m
x + xDx − n

)
EH

(m)
n (x, y;α, β) = 0. (4.13)

Proof. In view of equation (1.19), equations (4.1) and (4.2) gives the assertion (4.13).

In the next section, we give some applications of the results obtained in this paper.

5 Special Cases

In this section, we consider certain special cases of the Mittag-Leffler-Gould-Hopper polynomials and
obtain some of their properties by substituting appropriate values for parameters m, α, β and variables
x, y in the results established in this paper.

I. Since, in view of equation (1.14) form = 2, the Mittag-Leffler-Gould-Hopper polynomials EH
(m)
n (x, y;α, β)

reduce to Mittag-Leffler-Hermite polynomials (MLHP) EHn(x, y;α, β), i.e.

EH
(2)
n (x, y;α, β) = EHn(x, y;α, β). (5.1)

Therefore, in view of equation (2.1), EHn(x, y;α, β) are defined as:

EHn(x, y;α, β) = Hn(x, yα,β d̂)ψ0. (5.2)
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Thus, taking m = 2 in equations (2.2), (2.6), (2.23), (2.25), (3.1), (3.7), (3.11), (3.20), (4.1), (4.2), (4.11),
(4.12) and (4.13), we get the respective properties of the Mittag-Leffler-Hermite polynomials, which are
listed in Table 5.1.

Table 5.1 Properties of the Mittag-Leffler-Hermite polynomials EHn(x, y;α, β):

S. No. Name of the properties Results

I. Generating function exξEα,β(yξ2)

II. Series definition n!
∑[n

2
]

r=0
xn−2ryr

(n−2r)!Γ(αr+β)

III. Symbolic operational identity e
yα,βd̂D

2
x{xnψ0}

IV. Symbolic definition (x + 2yα,βd̂Dx)nψ0

V. Integral representation
∫∞
0 nα(s, t)Hn(x, s)ds

VI. Summation formulae EHn(x + v, y;α, β) =
∑n
k=0

(
n
k

)
vkEHn−k(x, y;α, β)

EHk+l(w, y;α, β) =
∑k,l
n,r=0

(
k
n

)(
l
r

)
(w − x)n+r

EHk+l−n−r(x, y;α, β)

VII Symbolic operational identity EHn(x + v, y + w;α, β) =
∑n
k=0

(
n
k

)
Hn−k(x, yα,βd̂) EHk(v, w;α, β)

VIII. Multiplicative and derivative operator M̂1 = (x + 2 yα,βd̂Dx) and P̂1 = Dx.

IX. Symbolic and differential EHn+1(x, y;α, β) = xEHn(x, y;α, β) + 2ny α,βd̂ EHn−1(x, y;α, β)

recurrence relation (n + 1)EHn+1(x, y;α, β) = (n + 1)xEHn(x, y;α, β) + 2yDyEHn+1(x, y;α, β)

X. Symbolic differential equation
(
2yα,βd̂ D

2
x + xDx − n

)
EHn(x, y;α, β) = 0

II. Since from equation (1.1), it is clear that E1,1(x) = ex, therefore taking α = 1 and β = 1 in equation
(2.2), we get

∞∑
n=0

ξn

n!
EH

(m)
n (x, y; 1, 1) = exξ+yξ

m

, (5.3)

which in view of equation (1.9), gives

EH
(m)
n (x, y; 1, 1) = H(m)

n (x, y). (5.4)

Thus, keeping in view that 1,1d̂
kψ0 = 1 (k ∈ N) and taking α = 1, β = 1 in equations (2.2), (2.6), (2.23),

(2.25), (3.7), (3.11), (3.20), (4.1), (4.2), (4.11), (4.12), and (4.13), we get the respective properties of the
Gould-Hopper polynomials which are listed in Table 5.2.

Table 5.2 Properties of the Gould-Hopper polynomials H
(m)
n (x, y):

S. No. Name of the properties Results

I. Generating function exξ+yξ
m

[18]

II. Series definition n!
∑[ n
m

]

r=0
xn−mryr
(n−mr)!r! [18]

III. Operational identity e
yDmx {xn} [7]

IV. Operational definition (x +myDm−1
x )n{1} [7]

V. H
(m)
n (x + v, y) =

∑n
k=0

(
n
k

)
vkH

(m)
n−k(x, y) [22]

Summation formula H
(m)
k+l

(w, y) =
∑k,l
n,r=0

(
k
n

)(
l
r

)
(w − x)n+rH

(m)
k+l−n−r(x, y) [22]

H
(m)
n (x + v, y + w) =

∑n
k=0

(
n
k

)
Hn−k

(m)(x, y) H
(m)
k

(v, w) [22]

VI. Multiplicative and derivative operator M̂g = (x +myDm−1
x ) and P̂g = Dx [7]
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VII. Pure and differential H
(m)
n+1

(x, y) = xH
(m)
n (x, y) +my n!

(n−m+1)!
H

(m)
n−m+1

(x, y) [11]

recurrence relation (n + 1)H
(m)
n+1

(x, y) = (n + 1)xH
(m)
n (x, y) +myDyH

(m)
n+1

(x, y) [11]

VIII. Differential equation (myDmx + xDx − n)H
(m)
n (x, y) = 0 [7]

III. In view of equation (1.14), taking m = 2 in equation (5.4), we get

EH
(2)
n (x, y; 1, 1) = Hn(x, y). (5.5)

Thus, keeping in view that 1,1d̂
kψ0 = 1 (k ∈ N) and taking m = 2, α = 1, β = 1 in equations (2.2), (2.6),

(2.23), (2.25), (3.7), (3.11), (3.20), (4.1), (4.2), (4.11), (4.12) and (4.13), we get the respective properties
of the 2VHKdFP Hn(x, y), which are listed in Table 5.3.

Table 5.3 Properties of the 2VHKdFP Hn(x, y):

S. No. Name of the properties Results

I. Generating function exξ+yξ
2

[2]

II. Series definition n!
∑[n

2
]

r=0
xn−2ryr

(n−2r)!r!
[2]

III. Operational identity e
yD2

x{xn} [6]

IV. Operational definition (x + 2yDx)n{1} [6]

V. Hk(w, y) =
∑k
n=0

(
k
n

)
(w − x)nHk−n(x, y) [22]

Summation formula Hk+l(w, y) =
∑k,l
n,r=0

(
k
n

)(
l
r

)
(w − x)n+rHk+l−n−r(x, y) [22]

Hn(x + v, y + w) =
∑n
k=0

(
n
k

)
Hn−k(x, y) Hk(v, w) [22]

VI. Multiplicative and derivative operator M̂H = (x + 2yDx) and P̂H = Dx [6]

VII. Pure and differential Hn+1(x, y) = xHn(x, y) + 2nyHn−1(x, y) [11]

recurrence relation (n + 1)Hn+1(x, y) = (n + 1)xHn(x, y) + 2yDyHn+1(x, y) [11]

VIII. Differential equation (2yD2
x + xDx − n)Hn(x, y) = 0 [6]

IV. In view of equation (1.16), replacing x with 2x and y with −1 in equation (5.5), we get

EH
(2)
n (2x,−1; 1, 1) = Hn(x). (5.6)

Thus, keeping in view that 1,1d̂
kψ0 = 1 (k ∈ N) and taking m = 2, α = 1, β = 1, and replacing x with

2x and y with = −1 in equations (2.2), (2.6), (2.25), (3.7), (3.11), (3.20), (4.1), (4.2), (4.11) and (4.13),
we get the respective properties of the Hermite polynomials Hn(x), which are listed in Table 5.4.

Table 5.4 Properties of the Hermite polynomials Hn(x):

S. No. Name of the properties Results

I. Generating function e2xξ−ξ
2

[1,28]

II. Series definition n!
∑[n

2
]

r=0
(−1)r(2x)n−2r

(n−2r)!r!
[1, 28]

III. Operational definition (2x −Dx)n{1} [28]

IV. Hk(w) =
∑k
n=0

(
k
n

)(
2(w − x)

)nHk−n(x) [21]

Summation formula Hk+l(w) =
∑k,l
n,r=0

(
k
n

)(
l
r

)(
2(w − x)

)n+rHk+l−n−r(x) [21]

Hn(x + v) =
∑n
k=0

(
n
k

)
2kxkHn−k(v) [21]
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V. Multiplicative and derivative operator M̂H = (2x −Dx) and P̂H = 1
2
Dx [10]

VI. Pure recurrence relation Hn+1(x) = 2xHn(x) − 2nHn−1(x) [1]

VII. Differential equation (D2
x − 2xDx + 2n)Hn(x) = 0 [1]

V. In view of equations (1.16) and (5.2), the 1-variable Mittag-Leffler-Hermite polynomials (1VMLHP)

EHn(x;α, β) are defined as:

EHn(x;α, β) = Hn(2x,−α,β d̂) ψ0. (5.7)

Thus, taking m = 2 and replacing x with 2x and y with −1 in equations (2.2), (2.6), (2.25), (3.7), (3.11),
(4.1), (4.2), (4.11) and (4.13), we get the respective properties of the 1-variable Mittag-Leffler-Hermite
polynomials EHn(x;α, β), which are listed in Table 5.5.

Table 5.5 Properties of the 1-variable Mittag-Leffler-Hermite polynomials EHn(x;α, β):

S. No. Name of the properties Results

I. Generating function e2xξEα,β(−ξ2)

II. Series definition n!
∑[n

2
]

r=0
(−1)r(2x)n−2r

(n−2r)!Γ(αr+β)

III. symbolic definition (2x − α,βd̂ Dx)nψ0

IV. Summation formulae EHn(x + v;α, β) =
∑n
k=0

(
n
k

)
(2v)kEHn−k(x;α, β)

EHk+l(w;α, β) =
∑k,l
n,r=0

(
k
n

)(
l
r

)
(2(w − x))n+r

EHk+l−n−r(x;α, β)

V. Multiplicative and derivative operator M̂1 = (2x − α,βd̂Dx) and P̂1 = 1
2
Dx

VI. Symbolic recurrence relation EHn+1(x;α, β) = 2xEHn(x;α, β) − 2nα,βd̂EHn−1(x;α, β)

VII. Symbolic differential equation
(
α,βd̂ D

2
x − 2xDx + 2n

)
EHn(x;α, β) = 0

VI. In view of equations (5.1) and (5.7), the 1-variable Mittag-Leffler-Gould-Hopper polynomials (1VML-

GHP) EH
(m)
n (x;α, β) can be introduced as

EH
(m)
n (x;α, β) = H(m)

n (2x,−α,β d̂) ψ0. (5.8)

Since, in view of equation (2.1) and (5.8), it is clear that

EH
(m)
n (2x,−1;α, β) =E H(m)

n (x;α, β). (5.9)

Therefore, the respective properties of the 1-variable Mittag-Leffler-Gould-Hopper polynomials (1VML-

GHP) EH
(m)
n (x;α, β) can be obtained by replacing x with 2x and y with −1 in equations (2.2), (2.6),

(2.25), (3.7), (3.11), (3.20), (4.1), (4.2), (4.11) and (4.13), which are listed in Table 5.6.

Table 5.6 Properties of the 1-variable Mittag-Leffler-Gould-Hopper polynomials EH
(m)
n (x;α, β):

S. No. Name of the properties Results

I. Generating function e2xξEα,β(−ξm)

II. Series definition n!
∑[ n
m

]

r=0
(−1)r(2x)n−mr
(n−mr)!Γ(αr+β)

III. symbolic definition (2x −mα,βd̂ D
m−1
x )nψ0

IV. Summation formulae EH
(m)
n (x + v;α, β) =

∑n
k=0

(
n
k

)
(2v)kEH

(m)
n−k(x;α, β)

EH
(m)
k+l

(w;α, β) =
∑k,l
n,r=0

(
k
n

)(
l
r

)
(2(w − x))n+r

EH
(m)
k+l−n−r(x;α, β)

V. Multiplicative and derivative operator M̂1 = (2x −m α,βd̂D
m−1
x ) and P̂1 = 1

2
Dx
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VI. Symbolic recurrence relation EH
(m)
n+1

(x;α, β) = 2xEH
(m)
n (x;α, β) −mα,βd̂

n!
(n−m+1)!E

H
(m)
n−m+1

(x;α, β)

VII. Symbolic differential equation
(
mα,βd̂ D

m
x − 2xDx + 2n

)
EH

(m)
n (x;α, β) = 0

In the next section, we give graphical representations of the polynomials discussed in this paper.

6 Graphical representations

In this section, we obtain the graphical representations of the Mittag-Leffler-Gould-Hopper polynomials

EH
(m)
n (x, y;α, β), Mittag-Leffler-Hermite polynomials EHn(x, y;α, β), 1-variable Mittag-Leffler-Hermite

polynomials EHn(x;α, β) and 1-variable Mittag-Leffler-Gould-Hopper polynomials EH
(m)
n (x;α, β) by us-

ing their series expansions for suitable choices of parameters in the software MATLAB.

We assign the appropriate values to n and other parameters in the respective series expansions of these
polynomials given by equation (2.6), Tables 5.1 (II), 5.5 (II) and 5.6(II) to obtain the expressions, which
are required to plot their graphs by MATLAB.

Figures 1 and 2; Figures 3 and 4; Figure 5; Figures 6,7 and 8 show the following graphical representa-

tions of the Mittag-Leffler-Gould-Hopper polynomials EH
(m)
n (x, y;α, β), Mittag-Leffler-Hermite polyno-

mials EHn(x, y;α, β), 1-variable Mittag-Leffler-Hermite polynomials EHn(x;α, β) and 1-variable Mittag-

Leffler-Gould-Hopper polynomials EH
(m)
n (x;α, β), respectively.
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Figure 3: MLHP EH5(x, y; 3/2, 3)
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Figure 4: MLHP EH4(x, y; 1/2, 3/2)
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Figure 5: 1VMLHP EH4(x; 1/2, 3/2)
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Figure 7: 1VMLGHP EH
(1)
5 (x; 3/2, 3)
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Figure 8: 1VMLGHP EH
(3)
7 (x; 3/2, 1/2)

7 Concluding remarks

In view of Weyl decoupling identity (2.5), we have

∞∑
n=0

ξn

n!
(x+ 2yα,β d̂Dx)n = exξeyα,β d̂ξ

2

e2ξ yα,β d̂Dx , (7.1)

which on using equation (1.15), becomes

∞∑
n=0

ξn

n!
(x+ 2yα,β d̂Dx)n =

∞∑
n=0

∞∑
s=0

ξn

n!s!
Hn(x, yα,β d̂)(2ξyα,β d̂Dx)

s
. (7.2)

Comparing the equal powers of ξ from both sides of the above equation, we have

(x+ 2yα,β d̂Dx)n = n!

n∑
s=0

Hn−s(x, yα,β d̂)(2yα,β d̂Dx)s

s!(n− s)!
. (7.3)

For any function f(x, y;ψ0), we get the following result:

(x+ 2yα,β d̂Dx)nf(x, y;ψ0) = n!

n∑
s=0

Hn−s(x, yα,β d̂)(2yα,β d̂)s

s!(n− s)!
fsx(x, y;ψ0), (7.4)

where fsx(x, y;ψ0) := Ds
xf(x, y;ψ0).

For f(x, y;ψ0) = EH
(m)
k (x, y;α, β) equation (7.4), gives

(x+ 2yα,β d̂Dx)nEH
(m)
k (x, y;α, β) = n!

n∑
s=0

Hn−s(x, yα,β d̂)(2yα,β d̂Dx)s

s!(n− s)! EH
(m)
k (x, y;α, β), (7.5)
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which on using equation (4.9) in the left hand side and equation (2.8) in the right hand side, gives the
following identity:

EH
(m)
k+n(x, y;α, β) =

n∑
s=0

(
n

s

)
k!Hn−s(x, yα,β d̂)(2yα,β d̂)sEH

(m)
k−s(x, y;α, β)

(k − s)!
, (7.6)

If we take α = 1 and β = 1 in equation (7.3), we get the Burchnall identity [17]:

(x+ 2yDx)n =

n∑
s=0

(
n

s

)
Hn−s(x, y)(2y)sDs

x. (7.7)

Again, since, [2ξyα,β d̂Dx, yα,β d̂ξ
2] = 0, therefore, equation (7.1) can be written as

∞∑
n=0

ξn

n!
(x+ 2yα,β d̂Dx)n = exξe2ξ yα,β d̂Dxeyα,β d̂ξ

2

, (7.8)

which on using equation (1.15), gives

∞∑
n=0

ξn

n!
(x+ 2yα,β d̂Dx)n = exξ

∞∑
n=0

ξn

n!
Hn(2yα,β d̂Dx, yα,β d̂). (7.9)

Expanding the exponential in the right hand side of equation (7.9), we find

∞∑
n=0

ξn

n!
(x+ 2yα,β d̂Dx)n =

∞∑
n=0

( ∞∑
s=0

xsξs

s!

)
ξn

n!
Hn(2yα,β d̂Dx, yα,β d̂), (7.10)

which on using equation (3.18), in the right hand side gives

∞∑
n=0

ξn

n!
(x+ 2yα,β d̂Dx)n =

∞∑
n=0

( n∑
s=0

xs

(n− s)!s!

)
Hn−s(2yα,β d̂Dx, yα,β d̂)ξn. (7.11)

Comparing the equal powers of ξ from both sides of the above equation, we get the following result:

(x+ 2yα,β d̂Dx)n = n!

n∑
s=0

xs

(n− s)!s!
Hn−s(2yα,β d̂Dx, yα,β d̂). (7.12)

From equation (7.12), we have

(x+ 2yα,β d̂Dx)nEHk(x, y;α, β) = n!

n∑
s=0

xs

(n− s)!s!
Hn−s(2yα,β d̂Dx, yα,β d̂)EHk(x, y;α, β), (7.13)

which on using equation (4.9) for m = 2 in the left hand side gives the following identity:

EHn+k(x, y;α, β) = n!

n∑
s=0

xs

(n− s)!s!
Hn−s(2yα,β d̂ Dx, yα,β d̂)EHk(x, y;α, β). (7.14)

Further, since in view of equation (1.7), for β = 1, we have ψ0 = 1 and [xξ,α,1 d̂ yξ
m] = 0. Therefore, we

have
e−yα,1d̂ξ

m

(exξ+yα,1d̂ξ
m

){1} = exξ, (7.15)

which in view of equation (2.4), gives

e−yα,1d̂ξ
m
∞∑
n=0

ξn

n!
EH

(m)
n (x, y;α, 1) = exp(xξ), (7.16)

or equivalently,
∞∑
n=0

∞∑
k=0

(−y α,1d̂)kEH
(m)
n (x, y;α, 1)

ξn+mk

n!k!
=

∞∑
n=0

xnξn

n!
. (7.17)
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Using identity [28]:
∞∑
n=0

∞∑
k=0

A(n+mk, k) =

∞∑
n=0

[ nm ]∑
k=0

A(n−mk, k) (7.18)

in the left hand side of equation (7.17) and then comparing equal powers of ξ, we get

n!

[ nm ]∑
k=0

(−yα,1d̂)
k

k!(n−mk)!
EH

(m)
n−mk(x, y;α, 1) = xn. (7.19)

The Mittag-Leffler function [12] plays a central role in the theory of fractional derivatives [26]. It has
been thoroughly investigated [26] but the increasing interest for fractional derivatives in applications
demands for further studies [23], eventually leading to further properties or to more efficient methods of
computation and analysis.
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