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Abstract

This work is devoted to the proposal and analysis of a new mathematical
study of the transmission dynamics of infectious diseases. First, a general-
ized SEIR epidemic model is presented that uses general nonlinear incidence
rates to describe the ”psychological” effect. Then, a rigorous mathematical
analysis is performed for the proposed SEIR model. We establish positiv-
ity and boundedness, calculate the basic reproduction number, determine
possible equilibrium points (disease-free and endemic), and investigate their
asymptotic stability properties of the SEIR model. The obtained results im-
prove and extend a SEIR model constructed in a recent work; moreover, the
proposed model is useful for studying the COVID-19 epidemic in particular
and other infectious diseases in general.

For the purpose of numerical simulation, the Mickens method is ap-
plied to construct a dynamically consistent non-standard finite difference
(NSFD) model for the proposed SEIR epidemic model. The constructed
NSFD scheme is able to provide reliable approximations that not only pre-
serve the dynamic properties of the SEIR model for all values of the step
size, but also are easy to implement.

Finally, a series of illustrative numerical experiments are performed to
support the theoretical findings and confirm the advantages of the NSFD

∗Corresponding author
∗∗Corresponding author
Email addresses: tuanhm14@fe.edu.vn; hmtuan01121990@gmail.com (Manh Tuan

Hoang), ehrhardt@uni-wuppertal.de (Matthias Ehrhardt)

Preprint submitted to Elsevier June 23, 2023



scheme over some well-known standard methods.

Keywords: Infectious diseases, COVID-19, Dynamical analysis, Basic
reproduction number, NSFD schemes
2010 MSC: 37M05, 37M15, 65L05, 65P99

1. Introduction

Mathematical modeling and analysis of infectious diseases has become a
fundamental and indispensable approach for discovering the characteristics
and mechanisms of epidemics as well as for predicting possible scenarios in
reality [7, 8, 42]. The study of mathematical models of infectious diseases5

can provide us with appropriate strategies for disease control and preven-
tion. This is of great benefit to public health and health care. For this
reason, in an effort to model the COVID-19 epidemic, many mathematicians
and epidemiologists have proposed and analyzed a large number of mathe-
matical models describing the transmission dynamics of COVID-19 (see, e.g.10

[2, 17, 31, 33, 47, 53, 48, 51, 58] and references therein). Measures to mitigate
and prevent COVID-19 outbreaks have been proposed as an important con-
sequence. Recently, we performed a mathematical study on the transmission
dynamics of SARS-CoV-2 with waning immunity [20].

We now adopt an accepted mathematical model of the 2019 coronavirus15

epidemic (COVID-19) proposed by Rohith and Devika [53]. The model is
represented by a system of nonlinear differential equations:

Ṡ = µ− β0SI

1 + αI2
− µS,

Ė =
β0SI

1 + αI2
− (σ + µ)E,

İ = σE − (γ + µ)I,

Ṙ = γI − µR.

(1)

In this model, the total population is divided into four classes according to the
status of individuals with respect to COVID-19, i.e., susceptible (S), exposed
(E), infected (I), and removed (R); the birth/death rate is represented by20

µ; γ is the recovery rate; and σ is the measure of the rate at which exposed
individuals become infected. We refer readers to [53] for more details of the
model (1). In [53], the bifurcation analysis and control problem for the model
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(1) were thoroughly studied. Although the (2) model was proposed to study
the transmission dynamics of the COVID-19 epidemic, it is also very useful25

for studying other infectious diseases.
Setting in the nonlinear incidence rate β0SI

1+αI2
, ψ(I) = 1+αI2, the denom-

inator ψ(I) satisfies the following properties

(H1) ψ(0) = 1;

(H2) ψ(I) > 0 for I > 0;30

(H3) ψ′(I) ≥ 0 for I ≥ 0.

Remark 1. The family of nonlinear incidence rates satisfying the conditions
(H1)–(H3) was proposed in [34]. These functions are not only biologically
motivated and can be used to interpret the ”psychological” effect, but also
include many well-known incidence functions [23, 34, 37, 38, 39, 59].35

In this paper we consider a generalized version of the model (1) by replac-
ing the function 1 + αI2 with general functions satisfying (H1)–(H3). More
precisely, we propose the following model

Ṡ = µ− β0SI

ψ(I)
− µS,

Ė =
β0SI

ψ(I)
− (σ + µ)E,

İ = σE − (γ + µ)I,

Ṙ = γI − µR,

(2)

where ψ(I) is any function satisfying (H1)–(H3). Note that if we set f(I) =
I/ψ(I), then40

(i) f(0) = 0, f(I) > 0 for I > 0;

(ii) f(I)/I is continuous and monotonously non-increasing for I > 0, and
limI→0+ f(I)/I exists, denoted by β, (0 < β <∞);

(iii)
∫ 1

0+

(
1/f(u)

)
du ≤

∫ 1

0+
(1/u) du = ∞.

Thus, the function f(I) also satisfies the properties given in [37]. This45

means that the model (2) is not only a generalization of the model (1), but
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also includes more epidemic scenarios. This is very useful both in theory
and in practice. For this reason, we consider the (1) model in the context of
general incidence rates.

In [38, 59], SEIRS in epidemiology with general nonlinear incidence have50

been considered. However, a key difference between the models (1), (2) and
the SEIRS models in [38, 59] is that the derivation of (1) and (2) is explained
based on the ”psychological” effect and they are proposed to mainly study
transmission dynamics of the COVID-19 epidemic.

In the first part of this paper, positivity, boundedness, the basic repro-55

duction number, possible equilibria, and asymptotic stability properties of
the model (2) are rigorously analyzed. Using Lyapunov stability theory, it is
proved that a unique disease-free equilibrium (DFE) point is globally asymp-
totically stable if the basic reproduction number R0 satisfies R0 < 1; and
the disease-endemic equilibrium (DEE) point exists and is locally asymptot-60

ically stable if R0 > 1. Consequently, the qualitative dynamic properties of
the model (2) are fully determined and mitigation and prevention measures
can be specified. Moreover, the results obtained improve and extend those
presented in the comparative work [53] (see Remark 3).

In the second part, we construct a reliable numerical scheme for the pur-65

pose of numerical simulation as well as for the construction of scientific com-
putational programs. To achieve this goal, we use the Mickens methodology
[43, 44, 45] to formulate a dynamically consistent nonstandard finite dif-
ference (NSFD) scheme for the model (2). It is well-known that the main
advantage of NSFD schemes over standard schemes is that they can pre-70

serve essential mathematical properties of differential equations independent
of the values of the step size [43, 44, 45]. Therefore, they are efficient
and suitable for simulating the behavior of dynamic differential equation
models over long periods of time. Nowadays, NSFD schemes have become
an efficient approach for numerically solving real-world problems (see, e.g.75

[12, 13, 22, 46]). More recently, we have developed the Mickens method to
construct NSFD schemes for mathematical models of phenomena and pro-
cesses in science and technology such as biology, ecology, or other natural
sciences [14, 15, 16, 11, 25, 26, 27, 28, 29, 30].

Through rigorous mathematical analysis, we prove that the constructed80

NSFD scheme can exactly preserve the positivity, boundedness, local asymp-
totic stability, and especially the global asymptotic stability of the model (2)
for all values of the step size. In other words, the NSFD scheme can repro-
duce the dynamics and therefore behaves similarly to the continuous model.
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This is useful for predicting transmission and for representing possible in-85

fectious disease scenarios. It is worthy noting that the constructed NSFD
scheme can be extended to obtain dynamically consistent NSFD schemes for
SEIR models introduced in [38, 59].

In the third part, a series of illustrative numerical experiments are per-
formed to support the theoretical results and demonstrate the advantages of90

the constructed NSFD scheme over some standard methods. The numerical
examples provide convincing evidence confirming the validity of the main
results of this work. It is proved that the standard Euler and second-order
Runge-Kutta (RK2) schemes can produce numerical approximations that are
negative and unstable for certain step sizes. This means that the dynamics95

of the model (2) cannot be obtained. However, with the NSFD method, the
dynamics of (2) is correctly preserved for the same step sizes.

The plan of this work is as follows. The dynamics of the model (2)
is studied in Section 2. The NSFD scheme is formulated and analyzed in
Section 3. Numerical experiments are performed in Section 4. A note on100

qualitative study and numerical simulation of generalized versions of the
proposed SEIR model is discussed in Section 5. Some remarks and open
problems are discussed in the last section.

2. Dynamics of the generalized SEIR model

We first establish the positivity and boundedness of the model (2).105

Lemma 1. The set Ω =
{
(S,E, I, R) ∈ R4|S,E, I, R ≥ 0, S+E+I+R = 1

}
is a positively invariant set of the model (2), that is,

(
S(t), E(t), I(t), R(t)

)
∈

Ω for t > 0 if
(
S(0), E(0), I(0), R(0)

)
∈ Ω.

Proof. First, it follows from the system (2) that

Ṡ
∣∣
S=0

= µ,

Ė
∣∣
E=0

=
β0SI

ψ(I)
,

İ
∣∣
I=0

= σE,

Ṙ
∣∣
R=0

= γI.

Therefore, from [54, Theorem B.7] we conclude that S(t), E(t), I(t), R(t) ≥ 0
for t > 0 whenever S(0), E(0), I(0), R(0) ≥ 0.110
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Next, we introduce the total population N(t) = S(t) +E(t) + I(t) +R(t)
for t ≥ 0. Then, from (2) we obtain

Ṅ = µ− µN, N(0) = 1, (3)

which follows that N(t) ≡ 1 for t ≥ 0. This is the desired conclusion and the
proof is complete.

As a direct consequence of the conservation property of the total popu-115

lation, Lemma 1, we can reduce the model (2) by one component, i.e. it is
sufficient to consider the following reduced model

Ṡ = µ− β0SI

ψ(I)
− µS,

Ė =
β0SI

ψ(I)
− (σ + µ)E,

İ = σE − (γ + µ)I

(4)

on its feasible set given by

Ω∗ =
{
(S, I, E) ∈ R3|S,E, I ≥ 0, S + E + I ≤ 1

}
. (5)

We now determine possible equilibrium points and calculate the basic
reproduction number of the model (4).120

Theorem 1 (Equilibria and basic reproduction number).

(i) The model (4) always possesses a disease-free equilibrium (DFE) point
Pf = (Sf , Ef , If ) = (1, 0, 0) for all the values of the parameters.

(ii) The basic reproduction number of the model (4) can be computed as

R0 =
β0σ

(σ + µ)(γ + µ)
.

(iii) The model (4) has a unique disease-endemic equilibrium (DEE) point
Pe = (Se, Ee, Ie) if and only if R0 > 1. Moreover, if existing Pe it is
given by

Ee =
γ + µ

σ
Ie, Se =

(σ + µ)(γ + µ)ψ(Ie)

σβ0
,

where Ie is the unique positive solution of the equation

F (I) = µ− µ
(σ + µ)(γ + µ)ψ(I)

σ
− (σ + µ)(γ + µ)

σ
I = 0.
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Proof. Proof of Part (i). Let (S∗, E∗, I∗) be any equilibrium point. To
determine the equilibrium points, we set the time derivatives in (4) to zero125

and thus consider the following system of algebraic equations

µ− β0S
∗I∗

ψ(I∗)
− µS∗ = 0,

β0S
∗I∗

ψ(I∗)
− (σ + µ)E∗ = 0,

σE∗ − (γ + µ)I∗ = 0.

(6)

The third equation of (6) yields

E∗ =
γ + µ

σ
I∗.

and inserting this in the second equation gives

I∗
[ β0S∗

ψ(I∗)
− (σ + µ)(γ + µ)

σ

]
= 0. (7)

Hence, the system (6) always possesses a trivial solution (Sf , Ef , If ) =
(1, 0, 0), which corresponds to a DFE point of the model (4).
Proof of Part (ii). We apply the method of van den Driessche and Wat-
mough [55] to compute the basic reproduction number R0. After reorder-
ing the variables in (4) as x = (E, I, S), the DFE point is transformed to
xf = (Ef , If , Sf ) and (4) can be written in the matrix form

ẋ = F(x)− V(x),

where

F(x) =


β0SI
ψ(I)

0

µ

 , V(x) =


(σ + µ)E,

−σE + (γ + µ)I

β0SI
ψ(I)

+ µS

 .

Consequently,

DF(xf ) =

0 β0 0

0 0 0

0 0 0

 , DV(xf ) =

σ + µ 0 0

−σ γ + µ 0

0 0 µ

 .
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Hence,

R0 = ρ(FV −1) =
β0σ

(σ + µ)(γ + µ)
.

Proof of Part (iii). Note that a DEE point is a trivial solution of (6).130

From the first and second equations of (6), we obtain

β0S
∗I∗

ψ(I∗)
= (σ + µ)E∗ =

(σ + µ)(γ + µ)

σ
I∗. (8)

On the other hand, it follows from (7) that

S∗ =
(σ + µ)(γ + µ)ψ(I∗)

σβ0
. (9)

Combining (8) and (9) with the first equation of the reduced model (6) leads
to an equation for I∗

F (I∗) = µ− µ
(σ + µ)(γ + µ)ψ(I∗)

σ
− (σ + µ)(γ + µ)

σ
I∗ = 0. (10)

It is easy to verify that

F (0) = µ
(
1− 1

R0

)
,

F (1) < 0,

F ′(I) < 0.

Therefore, if R0 > 1 then (10) has a unique positive solution Ie ∈ (0, 1),135

which corresponds to a unique DEE point. The proof is complete.

We now analyze local and global asymptotic stability of the model (4).

Theorem 2 (Local asymptotic stability). smallskip

(i) The DFE point Pf is locally asymptotically stable if R0 < 1 and unstable
if R0 > 1.140

(ii) The DEE point Pe is locally asymptotically stable if it exists (R0 > 1).

8



Proof. Proof of Part (i). The Jacobian matrix of the system (4) evaluated
at Pf is given by

J(Pf ) =

−µ 0 −β0
0 −(σ + µ) β0

0 σ −(γ + µ)

 .

Hence, one of the three eigenvalues of J(Pf ) is λ1 = −µ < 0 and the two
remaining eigenvalues are the ones of the sub-matrix

J0(Pf ) =

(
−(σ + µ) β0

σ −(γ + µ)

)
.

It is clear that

Tr(J0) < 0, det(J0) = (σ+ µ)(γ + µ)− β0σ = (σ+ µ)(γ + µ)(1−R0) > 0.

Using the Routh-Hurwitz criterion [3, Theorem 4.4], we conclude that all
eigenvalues of J(Pf ) are negative or have a negative real part. This confirms
the local asymptotic stability of Pf . Otherwise, if R0 > 1, then det(J0) < 0,
and thus Pf is unstable.145

Proof of Part (ii). Note that Pf exists if and only if R0 > 1. For the sake
of convenience, we denote f(I) = β0I/ψ(I). Then, the Jacobian matrix of
the system (4) evaluated at Pe is

J(Pe) =

−(µ+ f(Ie)) 0 −Sef ′(Ie)

f(Ie) −(σ + µ) Sef
′(Ie)

0 σ −(γ + µ)

 .

Hence, the characteristic polynomial of J(Pe) is given by

PJ(λ) = λ3 + a2λ
2 + a1λ+ a0,

where

a1 = f(Ie) + γ + 3µ+ σ,

a2 = (γ + µ)(f(Ie) + 2µ+ σ) + (f(Ie) + µ)(µ+ σ)− Sef
′(Ie)σ,

a3 = (f(Ie) + µ)(γ + µ)(µ+ σ)− Sf ′(Ie)µσ.

9



It follows from f(Ie) > 0 and f ′(Ie) < 0 that

a1 > 0, a2 > 0,

a1a2 − a3 = f 2(Ie)γ + 2f 2(Ie)µ+ f 2(Ie)σ + f(Ie)γ
2 + 6f(Ie)γµ+ 2f(Ie)γσ

+ 8f(Ie)µ
2 + 6f(Ie)µσ + f(Ie)σ

2 − Sef
′(Ie)f(Ie)σ + 2γ2µ+ γ2σ + 8γµ2

+ 6γµσ + γσ2 − Sef
′(Ie)γσ + 8µ3 + 8µ2σ + 2µσ2 − 2Sef

′(Ie)µσ − Sef
′(Ie)σ

2 > 0.

Therefore, we conclude from the Routh-Hurwitz criteria ([3, Theorem 4.4])
that Pf is locally asymptotically stable. The proof is thus complete.

Theorem 3 (Global asymptotic stability of the DFE point). The DFE point
Pf is not only locally asymptotically stable but also globally asymptotically150

stable with respect to Ω∗ when R0 < 1.

Proof. Consider a candidate Lyapunov function V : Ω∗ → R+ given by

V (S,E, I) =
(
S − Sf − Sf ln

S

Sf

)
+ E +

µ+ σ

σ
I.

The derivative of V along with solutions of the system (4) is

dV

dt
=

dV

dS

dS

dt
+

dV

dE

dE

dt
+

dV

dI

dI

dt

=
(
µ− β0SI

ψ(I)
− µS

)S − Sf
S

+
[β0SI
ψ(I)

− (σ + µ)E
]

+
σ + µ

σ

[
σE − (γ + µ)I

]
= −µ

S
(S − Sf )

2 + I
[ β0
ψ(I)

− (σ + µ)(γ + µ)

σ

]
≤ −µ

S
(S − Sf )

2 + I
[
β0 −

(σ + µ)(γ + µ)

σ

]
≤ −µ

S
(S − Sf )

2 +
(σ + µ)(γ + µ)

σ
(R0 − 1)I.

Since R0 < 1, dV/dt ≤ 0 for all S,E, I ≥ 0 and dV/dt = 0 if and only
if S = Sf and I = If . Consequently, it follows from LaSalle’s invariance
principle [35] that Pe is globally asymptotically stable. The proof is thus
complete.155

Remark 2. The Lyapunov function in the proof of Theorem 3 is different
from the one used in [38, Propostion 2.1].

10



Li and Muldowney [39] proposed a general criterion for the orbital sta-
bility of periodic orbits associated with higher-dimensional nonlinear au-
tonomous systems as well as with the theory of competing systems of differ-160

ential equations to study the global stability of a SEIR model similar to (4).
Thus, by applying this approach [39], we can obtain the global asymptotic
stability of Pe.

Proposition 1. The DEE point Pe is not only locally asymptotically sta-
ble but also globally asymptotically stable with respect to the interior of Ω∗

165

whenever R0 > 1.

Remark 3. In [53], only the local asymptotic stability of the DFE point of
the model (1) was studied. Therefore, the stability analysis of the model (2)
is an important improvement of the results constructed in [53]. On the other
hand, the global stability of the DFE points of the models (1) and (2) is very170

important because it means that infectious diseases can be eradicated (when
R0 < 1), and thus some mitigation and prevention measures can be proposed.

3. Construction of a dynamically consistent NSFD model

Our main goal in this section is to formulate an NSFD model that is
dynamically consistent with the model (2). To this end, we first consider the
model (2) on a time interval [0, T ] and partition this interval by a uniform
mesh

0 = t0 < t1 < · · · < tN−1 < TN = T,

where tn − tn−1 = ∆t for n ≥ 1. Let
(
Sn, En, In, Rn

)
denote the intended

approximation for
(
S(tn), E(tn), I(tn), R(tn)

)
. Using Mickens’ methodology175

[43, 44, 45], we approximate the differential equation model (2) with a dif-
ference equation model as follows:

Ṡ(tn) ≈
Sn+1 − Sn
ϕ(∆t)

, Ė(tn) ≈
En+1 − En
ϕ(∆t)

,

İ(tn) ≈
In+1 − In
ϕ(∆t)

, Ṙ(tn) ≈
Rn+1 −Rn

ϕ(∆t)
,

(11)

11



and

µ− β0S(tn)I(tn)

ψ(In)
− µS(tn) ≈ µ− β0Sn+1In

ψ(In)
− µSn+1,

β0S(tn)I(tn)

ψ(In)
− (σ + µ)E(tn) ≈

β0Sn+1In
ψ(In)

− (σ + µ)En+1,

σE(tn)− (γ + µ)I(tn) ≈ σEn+1 − (γ + µ)In+1,

γI(tn)− µR(tn) ≈ γIn+1 − µRn+1,

(12)

where ϕ(∆t) = ∆t+O(∆t2) as ∆t→ 0, which is called the nonstandard de-
nominator function. The approximations (11) and (12) lead to the following180

NSFD scheme

Sn+1 − Sn
ϕ(∆t)

= µ− β0Sn+1In
ψ(In)

− µSn+1,

En+1 − En
ϕ(∆t)

=
β0Sn+1In
ψ(In)

− (σ + µ)En+1,

In+1 − In
ϕ(∆t)

= σEn+1 − (γ + µ)In+1,

Rn+1 −Rn

ϕ(∆t)
= γIn+1 − µRn+1.

(13)

Our task is to analyze dynamics of the NSFD model (13). We will show
that (13) shares typical properties of the underlying continuous model (2) on
the discrete level and independently of the time step size ∆t.

Lemma 2. The set Ω =
{
(S,E, I, R) ∈ R4|S,E, I, R ≥ 0, S+E+I+R = 1

}
185

is a positively invariant set of the NSFD model (13), i.e.,
(
Sn, En, In, Rn

)
∈ Ω

for n ≥ 1 if
(
S(0), E(0), I(0), R(0)

)
∈ Ω.

Proof. The lemma is proved by mathematical induction. First, it is straight-
forward to convert the NSFD scheme (13) into a a form that can be evaluated

12



sequentially in an explicit way:190

Sn+1 =
Sn + ϕ(∆t)µ

1 + ϕ(∆t) β0In
ψ(In)

+ ϕ(∆t)µ
,

En+1 =
En + ϕ(∆t)β0InSn+1

ψ(In)

1 + ϕ(∆t)(σ + µ)
,

In+1 =
In + ϕ(∆t)σEn+1

1 + ϕ(∆t)(γ + µ)
,

Rn+1 =
Rn + ϕ(∆t)γIn+1

1 + ϕ(∆t)µ
,

(14)

which implies that Sn+1, En+1, In+1, Rn+1 ≥ 0 if Sn, En, In, Rn ≥ 0.
Next, setting Nn = Sn + EN + In +Rn for n ≥ 0 we obtain from (13)

Nn+1 −Nn

ϕ(∆t)
= µ− µNn+1, N0 = 1, (15)

cf. (3), or equivalently

Nn+1 =
Nn + ϕ(∆t)µ

1 + ϕ(∆t)µ
, N0 = 1.

It is easy to verify that {Nn}n∈N with Nn ≡ 1 is the unique solution of this
difference equation (15). The proof is complete.

As a direct consequence of Lemma 2, it suffices to consider the following195

reduced discrete model of (13).

Sn+1 − Sn
ϕ(∆t)

= µ− β0Sn+1In
ψ(In)

− µSn+1,

En+1 − En
ϕ(∆t)

=
β0Sn+1In
ψ(In)

− (σ + µ)En+1,

In+1 − In
ϕ(∆t)

= σEn+1 − (γ + µ)In+1

(16)

defined on the set Ω∗ given by (5).
We now compute the basic reproduction number R0 for the discrete

model (16) using the next generation matrix approach [4]. It is easy to verify
that (16) always has a unique DFE point P ∗

f = (S∗
f , E

∗
f , I

∗
f ) = (1, 0, 0) for all

13



values of the parameters. If we reorder the variables in (16) as (En, In, Sn),
then the DFE point is transformed into (0, 0, 1). The Jacobian matrix of
(16) at P ∗

f reads

J(P ∗
f ) =


1

1+ϕ(σ+µ)
ϕβ0

1+ϕ(σ+µ)
0

ϕσ[
1+ϕ(γ+µ)

][
1+ϕ(σ+µ)

] 1
1+ϕ(γ+µ)

+ ϕσ
1+ϕ(γ+µ)

0

0 ϕβ0
1+ϕµ

1
1+ϕµ

 .

Following the method of Allen and van den Driessche [4] we write J(P ∗
f ) in

the form

J(P ∗
f ) =

(
F + T 0

A C

)
,

where

F =

 0 0

ϕσ[
1+ϕ(γ+µ)

][
1+ϕ(σ+µ)

] ϕσ
1+ϕ(γ+µ)

 , A = 0,

T =

(
1

1+ϕ(σ+µ)
ϕβ0

1+ϕ(σ+µ)

0 1
1+ϕ(γ+µ)

)
, C =

1

1 + ϕµ
.

It is easy to verify that F and T are non-negative, F + T is irreducible, and
the matrices C and T satisfy

ρ(C) < 1, ρ(T ) < 1.

Therefore, the basic reproduction number R0 of the discrete model (16) can
be computed by the spectral radius

R0 = ρ
(
F (I − T )−1

)
=

β0σ

(σ + µ)(γ + µ)
.

This means that the basic reproduction numbers of (16) and (4) are identical.
The following assertion is a direct consequence of Theorem 2.1 in [4].

Corollary 1. The DFE point P ∗
f of the NSFD scheme (16) is locally asymp-200

totically stable if R0 < 1 and unstable if R0 > 1.

The global asymptotic stability of the DFE point P ∗
f of (16) is established

in the following theorem.
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Theorem 4 (Global stability of the DFE point). Assume that the denomi-
nator function ϕ(∆t) satisfies205

ϕ(∆t) <
σ + µ

β0σ
(1−R0) (17)

for all ∆t > 0. Then, the DFE point P ∗
f of the NSFD scheme (16) is not only

locally asymptotically stable but also globally asymptotically stable if R0 < 1.

Proof. Consider a candidate Lyapunov function L : Ω∗ → R+ defined by

L(S,E, I) = E +
σ + µ

σ
I. (18)

Note that 0 ≤ Sn ≤ 1 for n ≥ 0. On the other hand, it follows from the
properties (H1)–(H3) of the function ψ that ψ(I) ≥ 1 for I ≥ 0. Thus, from210

the last two equations of the system (16) we obtain

En+1 − En
ϕ(∆t)

=
β0Sn+1In
ψ(In)

− (σ + µ)En+1 ≤ β0In − (σ + µ)En+1,

In+1 − In
ϕ(∆t)

= σEn+1 − (γ + µ)In+1

= σEn+1 − (γ + µ)
In + ϕ(∆t)σEn+1

1 + ϕ(∆t)(γ + µ)

≤ σEn+1 −
(γ + µ)In

1 + ϕ(∆t)(γ + µ)
.

(19)

Here we used the third equation of the system (14) to obtain the final estimate
of (19). We derive from (18) and (19) that

∆L(Sn, En, In) = L(Sn+1, En+1, In+1)− L(Sn, En, In)

= (En+1 − En) +
σ + µ

σ
(In+1 − In)

≤
[
β0In − (σ + µ)En+1

]
+
σ + µ

σ

[
σEn+1 −

(γ + µ)In
1 + ϕ(∆t)(γ + µ)

]
=
[
β0 −

σ + µ

σ

γ + µ

1 + ϕ(∆t)(γ + µ)

]
In

=
(σ + µ)(γ + µ)(R0 − 1) + ϕ(∆t)β0σ(γ + µ)

σ + ϕ(∆t)σ(γ + µ)
In.
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Since ϕ(∆t) satisfies the condition (17), ∆L(Sn, En, In) ≤ 0 and ∆L(Sn, En, In) =
0 if and only if En = In = 0. Thus, by applying LaSalle’s invariance principle
[21, 36] we conclude that

lim
n→∞

(Sn, En, In) = (1, 0, 0).

Consequently, the global asymptotic stability of the DFE point is achieved.

Remark 4. It is possible to use the Lyapunov function candidate (18) to
determine the global asymptotic stability of the DFE point of the continuous215

model (2). This means that the NSFD scheme can preserve the Lyapunov
function for the model (2).

Similar to Theorem 1, it is easy to prove that the NSFD model (16) has
a unique DEE point P ∗

e = (S∗
e , E

∗
e , I

∗
e ) if and only if R0 > 1, where P ∗

e = Pe.
Using the approach proposed in [27], the local asymptotic stability of P ∗

e is220

determined as follows.

Proposition 2. Let us assume that R0 > 1. Then there is a positive number
ϕ∗ > 0 which depends only on the values of the parameters of the model (2)
and serves as a stability threshold for the NSFD model (16), i.e. P ∗

e is locally
asymptotically stable if

ϕ(∆t) < ϕ∗ for all ∆t > 0.

Remark 5. Similar to Theorem 3 in [27], we can verify that the NSFD
scheme (16) is convergent of order 1.

The results developed in this section lead to the following theorem.

Theorem 5. The NSFD scheme (13) is dynamically consistent with respect
to the positivity, boundedness, and asymptotic stability of the SEIR model (2)
if

ϕ(∆t) < τ ∗ for all ∆t > 0,

where

τ ∗ =

{
∞ if R0 < 1,

ϕ∗ if R0 > 1.
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Furthermore, if R0 < 1 and

ϕ(∆t) < ∆t∗GAS :=
σ + µ

β0σ
(1−R0) for all ∆t > 0,

then the NSFD scheme (13) is also dynamically consistent with respect to the225

global asymptotic stability of the DFE point of the model (2).

Remark 6.

(i) Using the approaches used in [12, 30], we can conclude that the NSFD
scheme (13) is convergent of order 1.

(ii) In the numerical experiments performed in the next section, we will use
the following denominator function for the NSFD scheme (16)

ϕ(∆t) =
1− eτ∆t

τ
, τ > max

{ 1

τ ∗
,

1

∆t∗GAS

}
.

(iii) The approach used to construct the NSFD scheme (13) can be extended230

to obtain dynamically consistent NSFD schemes for the SEIR models
considered in [38, 59].

4. Numerical experiments

In this section, we report some numerical examples to support the the-
oretical findings. As we will see later, these examples support the results235

constructed in Sections 2 and 3. All numerical examples use the function
ψ(I) = 1 + αI2 (see [53]) and the following data.

Example 1 (Numerical dynamics of the NSFD scheme and standard Runge-
Kutta schemes). We now compare the NSFD scheme (16) with two well-
known standard Runge-Kutta schemes, namely the Euler scheme and the
second-order Runge-Kutta (RK2) scheme (see [6]). Here, for the NSFD
scheme, we have ∆t∗GAS = 4; therefore, a suitable denominator function is

ϕ(∆t) =
1− e−0.25∆t

0.25
.

The numerical solutions obtained by the above methods for the initial data
(S(0), E(0), I(0)) = (0.7, 0.2, 0.1) are shown in Figures 1-9. From these fig-
ures, it can be seen that the Euler and RK2 methods produce not only negative240
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but also unstable approximations for the step size ∆t = 1.5. This destroys
the dynamic properties of the SEIR model. Conversely, the NSFD scheme
correctly preserves the dynamics of the SEIR model for the same step size.
Even when using a larger step size, namely ∆t = 2.0, the dynamics of the
SEIR model is preserved by the NSFD scheme (see Figure 9). This is ev-245

idence for the claim that the NSFD scheme preserves the dynamics of the
SEIR model for all finite step sizes.

Example 2 (Dynamics of the SEIR model when R0 < 1). We now consider
the dynamics and global asymptotic stability of the SEIR model by numerical
solutions using the parameters in Case 2 in Table 1. In this case, it is easy to
obtain that ∆t∗GAS = 3.3824; therefore, we can choose a suitable denominator
function given by

ϕ(∆t) =
1− e−0.30∆t

0.30
.

Figures 10-12 outline numerical solutions obtained with the NSFD scheme
over the time interval [0, 150] with different values of the step size. It is clear
that the DFE point is globally asymptotically stable when R0 < 1. Moreover,250

the numerical dynamics of the NSFD scheme does not depend on the values
of the chosen step size.

Example 3 (Dynamics of the SEIR model when R0 > 1). We now consider
the dynamics and global asymptotic stability of the SEIR model through nu-
merical solutions using the parameters in Case 3 in Table 1. Figures 13-15255

show numerical solutions obtained using the NSFD scheme over the time in-
terval [0, 150] with different values for the step size. Here the denominator
function is given by ϕ(∆t) = 1− e−∆t. It is clear that the DEE point is not
only locally asymptotically stable, but also globally asymptotically stable when
R0 > 1. Moreover, similar to Example 2, the numerical dynamics of the260

NSFD scheme does not depend on the values of the chosen step size. From
this example, it can be assumed that the NSFD scheme also preserves the
global asymptotic stability of the model (2).
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Figure 1: The S-component generated by the Euler scheme in Case 1 with ∆t = 1.5.
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Figure 2: The E-component generated by the Euler scheme in Case 1 with ∆t = 1.5.
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Figure 3: The I-component generated by the Euler scheme in Case 1 with ∆t = 1.5.
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Figure 4: The phase space generated by the Euler scheme in Case 1 with ∆t = 1.5.
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Figure 5: The S-component generated by the RK2 scheme in Case 1 with ∆t = 1.5.
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Figure 6: The E-component generated by the RK2 scheme in Case 1 with ∆t = 1.5.
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Figure 7: The I-component generated by the RK2 scheme in Case 1 with ∆t = 1.5.
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Figure 8: The phase spaces generated by the RK2 and NSFD schemes in Case 1 with
∆t = 1.5.
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Figure 9: The phase spaces generated by the NSFD scheme in Case 1 with ∆t = 2.0.
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Figure 10: The phase spaces generated by the NSFD scheme in Case 2 with ∆t = 2.0.
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Figure 11: The phase spaces generated by the NSFD scheme in Case 2 with ∆t = 1.0.
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Figure 12: The phase spaces generated by the NSFD scheme in Case 2 with ∆t = 10−3.
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Figure 13: The phase spaces generated by the NSFD scheme in Case 3 with ∆t = 2.0.
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Figure 14: The phase spaces generated by the NSFD scheme in Case 3 with ∆t = 1.0.
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Figure 15: The phase spaces generated by the NSFD scheme in Case 3 with ∆t = 10−3.

5. A note on the qualitative investigation and numerical simulation
of generalized versions of the proposed SEIR model265

In recent years, mathematical models based on fractional-order differ-
ential equations have been intensively studied and widely used to explore
complex systems arising in real-world applications due to their accuracy su-
perior compared to integer-order models (ODE) models (see, for example,
[5, 10, 24, 56]). Following this approach, we now consider the model (2) in270

the context of the Caputo fractional derivative

CDq
0+S(t) = µq − βq0SI

ψ(I)
− µqS,

CDq
0+E(t) =

βq0SI

ψ(I)
− (σq + µq)E,

CDq
0+I(t) = σqE − (γq + µq)I,

CDq
0+E(t) = γqI − µqR,

(20)
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where C0D
q
t f(t) and with q ∈ (0, 1) stands for the Caputo fractional derivative

of the function f(t) and is defined by [9, 18, 32, 52]

CDq
0+f(t) =

1

Γ(1− q)

∫ t

a

f ′(τ)

(t− τ)q
dτ.

When q = 1, the model (20) is reduced to the integer-order model (2); thus, it
is a generalization of (2). On the other hand, the appearance of the fractional
order α makes the model more flexible and can include time memory effects
to the model. This is very useful in the study of the parameter estimation275

problem.
Applying Lyapunov stability theory for fractional dynamical systems [1,

19, 40, 41, 56, 57] and the arguments used in Section 2, we obtain the fol-
lowing results for the dynamics of the fractional-order model (20)

Theorem 6. The following assertions are true for the fractional-order model280

(20):

(i) The system (20) admits the set Ω =
{
(S,E, I, R) ∈ R4|S,E, I, R ≥

0, S + E + I +R = 1
}
as a positively invariant set.

(ii) The model (20) always possesses a disease-free equilibrium (DFE) point
P F
f = (1, 0, 0, 0) for all the values of the parameters. Meanwhile, a

unique disease-endemic equilibrium (DEE) point P F
e = (SFe , E

F
e , I

F
e , R

F
e )

exists if and only if R0 > 1, where

Rq
0 =

βq0σ
q

(σq + µq)(γq + µq)
.

can be considered as a threshold value of the model (20) and P F
e is

determined similarly to the DFE point of the integer-order model (2).285

(iii) The DFE point P F
f is not only locally asymptotically stable but also

globally asymptotically stable with respect to Ω if Rq
0 < 1.

(iv) The DEE point P F
e is locally asymptotically stable if Rq

0 > 1.

Since all solutions of the model (20) are positive, we now introduce a
positivity-preserving NSFD scheme for the fractional-order model (20). A290

general family of NSFD schemes for fractional-order models can be found
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in [13]. Using the Grunwald-Letnikov definition for the Caputo fractional
derivative (see [52]), we obtain

CDq
0+z(t) = lim

∆t→0

1

∆tq
∆q

∆tz(t), (21)

where

1

∆tq
∆q

∆tz(t) =
1

∆tq

(
z(τn+1)−

n+1∑
ν=1

cqνz(τn+1−ν)
)
,

cqν = (−1)q−1

(
q

ν

)
,(

q

ν

)
:=

q(q − 1)(q − 2) . . . (q − ν + 1)

ν!
.

Next, by combining (21) with the non-local approximation (12), we obtain
the following NSFD scheme295

1

∆tq

(
Sn+1 −

n+1∑
ν=1

cqνSn+1−ν

)
= µq − βq0Sn+1In

ψ(In)
− µqSn+1,

1

∆tq

(
En+1 −

n+1∑
ν=1

cqνEn+1−ν

)
=
βq0Sn+1In
ψ(In)

− (σq + µq)En+1,

1

∆tq

(
In+1 −

n+1∑
ν=1

cqνIn+1−ν

)
= σqEn+1 − (γq + µq)In+1,

1

∆tq

(
Rn+1 −

n+1∑
ν=1

cqνRn+1−ν

)
= γqIn+1 − µqRn+1,

(22)

where (Sn, En, In, Rn) is the intended approximation for (S(tn), E(tn), I(tn),
R(tn)) (n ≥ 1). Then it is straightforward to prove the following result about
the positivity of the NSFD scheme (22) by mathematical induction.

Lemma 3. The NSFD scheme (22) preserves the positivity of the model (20)
for all values of the step size ∆t.300

Using a similar approach, we can analyze the dynamical properties and
construct NSFD schemes for the fractional versions of the model (2) un-
der other fractional-order derivatives, e.g., the Riemann-Liouville fractional
derivative operator [9, 18, 32, 52]. However, the analysis of the dynamical
properties of the proposed NSFD schemes is in general not an easy task.305
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6. Discussions and conclusions

As the main conclusion of this work, we provided a generalized SEIR
model to study the transmission dynamics of infectious diseases. The results
obtained improved and extended those presented in the reference work [53]
(see note 3). On the other hand, we constructed and analyzed a nonstan-310

dard numerical scheme capable of generating reliable approximations that
preserve the dynamic properties of the SEIR model regardless of the step
sizes chosen. Finally, a series of illustrative numerical experiments were also
performed to support and illustrate the theoretical findings. The numerical
results confirmed not only the validity of the theoretical findings, but also the315

advantages of the NSFD scheme over some well-known standard procedures.
Although the 2019 coronavirus disease pandemic (COVID-19) caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was con-
trolled and prevented, mathematical modeling and analysis of the transmis-
sion dynamics of COVID-19 continues to play an essential role, not only320

in the post-CoVID-19 era but also in infectious disease research. This is
an important basis for proposing effective disease control and public health
planning strategies and interventions. Therefore, the proposed SEIR model
will be useful in studying the COVID-19 epidemic in particular and other
infectious diseases in general.325

In the near future, we will investigate the generalized SEIR model (2) with
vaccination to determine the effects of vaccines. Fractional order versions and
parameter estimation problems with real life applications will also be studied.
On the other hand, attention will be given to the construction of dynamically
consistent high-order NSFD schemes for the SEIR model.330
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