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Abstract

In this study, a generalized nonlinear local fractional Lighthill-Whitham-Richards (LFLWR) model has been developed. The

local fractional variational iteration method (LFVIM) solves and analyzes the proposed model. Numerous works have been

described in past to address linear LWR and linear LFLWR models. This research highlighted on generalized nonlinear LFLWR

model and LFVIM is employed to derive non-differentiable solutions of the suggested model. The existence and uniqueness

of the resolution of LFLWR model have also been established. Furthermore, several exemplary instances are discussed to

demonstrate the success of implementing LFVIM to the proposed model. The numerical simulations for each of the cases have

also been shown. Additionally, the obtained solutions of the suggested model have been compared with the solutions of the

classical LWR model with non-differentiable conditions in few examples. The study demonstrates that the employed iterative

scheme is quite efficient and can be utilized for obtaining the non-differentiable solution to proposed generalized nonlinear

LFLWR model of traffic flow.
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A GENERALIZED LOCAL FRACTIONAL LWR MODEL OF
VEHICULAR TRAFFIC FLOW AND ITS SOLUTION

BHAWNA POKHRIYAL AND PRANAY GOSWAMI∗,†

Abstract. In this study, a generalized nonlinear local fractional Lighthill-
Whitham-Richards (LFLWR) model has been developed. The local fractional
variational iteration method (LFVIM) solves and analyzes the proposed model.
Numerous works have been described in past to address linear LWR and linear
LFLWR models. This research highlighted on generalized nonlinear LFLWR
model and LFVIM is employed to derive non-differentiable solutions of the sug-
gested model. The existence and uniqueness of the resolution of LFLWR model
have also been established. Furthermore, several exemplary instances are dis-
cussed to demonstrate the success of implementing LFVIM to the proposed
model. The numerical simulations for each of the cases have also been shown.
Additionally, the obtained solutions of the suggested model have been compared
with the solutions of the classical LWR model with non-differentiable conditions
in few examples. The study demonstrates that the employed iterative scheme
is quite efficient and can be utilized for obtaining the non-differentiable solution
to proposed generalized nonlinear LFLWR model of traffic flow.

1. Introduction

Controlling traffic on a network of roads to ease congestion and minimize un-
favorable side effects (pollution) is one of traffic engineering’s goals. It may be
necessary to rebuild the network’s traffic signs or the roads. An inductive tech-
nique termed traffic flow modeling examines patterns in the nature of drivers and
vehicles or overall structure of traffic flow. Using the continuum model and con-
tinuous functions, traffic flow is effectively depicted. The evolution of traffic states
is predicted using continuum models of traffic flow, which are hyperbolic systems
that depend only on the initial and boundary conditions. Since they can examine
the aggregate behavior of traffic flow using fluid-like state variables like density and
flow, these models are also known as macroscopic models. Relationships between
the three key variables—flow, density, and velocity, a fundamental characteristic
of traffic stream—are necessary for a more realistic depiction of traffic flow [1].
Numerous traffic flow models have been developed over the past few decades as
a result of significant research that has been published on the relationship among
various traffic flow characteristics.

†Corresponding Authors.
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2 B. POKHRIYAL AND P. GOSWAMI

Typically, traffic flow models investigate how traffic moves along transport net-
works. Traffic flow models can be classified as microscopic, mesoscopic, or macro-
scopic [2]. The visible model simulates traffic flow as a stream of fluid, with the
establishment of a flow function and density at every position along a network of
roads. In such a model, traffic flow behavior is considered on a global (average)
level [3]. At the same time, a microscopic model analyzes the motion of each
vehicle. Macroscopic models, called kinematic models, represent traffic flow as a
first-order or higher-order continuum like continuous fluid flow [1, 2]. To explain
the time-space structures of macroscopic traffic parameters such as vehicle flux,
density, and speed, continuum approximations of traffic flow are used [4].
This relates to the remarkable work of Lighthill, Whitham, and Richards, who
developed the Lighthill-Whitham-Richards (LWR) model. A macroscopic traf-
fic flow model was separately developed by Lighthill and Whitham(1955) and
Richards(1956) to represent the dynamic features of traffic on a homogeneous,
unidirectional highway. This model is now referred to as the LWR model in the
domain of traffic flow theory. The relationships between three aggregate vari-
ables—traffic density, flow rate, and space mean speed—are described in the LWR
model, also known as the simple continuum model. The conservation equation is
used in the LWR model in the following way:

(1)
∂

∂τ
Ψ(ε, τ) +

∂

∂ε
φ (Ψ) = 0,

where the quantity Ψ represents density in time τ and space ε and quantity φ
denotes the vehicle flux as a function of density, Ψ.
Due to its simplicity and potent ability to explain the qualitative behavior of road
traffic, the LWR model is still frequently employed to model traffic flow. However,
It neglects to investigate well-known aspects of traffic dynamics such as hystere-
sis, capacity loss, diffusion of platoons, relaxation, or spontaneity in obstruction,
for instance, waves like stop and go. A single assumption and two facts form the
basis of the LWR model. First, the number of vehicles on a homogeneous route
with no sources or sinks is conserved. The Second is the product of density, and
speed represents flux. And the underlying presumption is that speed and density
has a unique relationship [3, 4]. The PDE form of LWR is used to simulate how
queues and shockwaves spread. The LWR model offers a further static relation-
ship between density and flow in the traffic stream. Moreover, because it only
requires a small number of model variables, this model is also used for large-scale
simulations [5, 6, 7, 8, 9]. A numerical technique was recently used by Tower et
al. [10] to study discontinuous velocity version of LWR model. Bürger et al. [11]
more recently investigated LWR model with multiclasses that considering a dis-
continuous velocity function in this series.
Local fractional calculus currently seems a constructive field of applied mathe-
matics in order to investigate the characteristics of fractal space-based physical
models. It has been effectively used in several domains, including physics, signal
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processing, quantum mechanics, fluid dynamics, applied mathematics, and oth-
ers, to tackle fractal problems [1, 5]. As a result, this new approach to fractional
calculus has been applied by a large number of researchers to the simulation of nat-
ural phenomena.. Babakhani and Gejji [12] conducted extensive research on the
local fractional derivative, and Yang [13, 14] further developed and refined their
findings. Over the past decade, local fractional calculus has become a novel and
intriguing theory of fractional calculus that has gained prominence and acceptance
among scientists working in this popular branch. Some remarkable work can be
seen in references [15, 16, 17, 18]. In the modern era, many problems have been
described using local fractional derivatives and integrals, including diffusion and
heat equations involving local fractional operators [19], 2-D Burgers-type equations
with local fractional derivatives [20], nonlinear local fractional Riccati differential
equations [21] and local fractional Burgers equations [22]. References [23, 24, 25]
also provide some recent studies on the use of the local fractional natural trans-
form (LFNT) and local fractional Sumudu transform to examined a variety of
local fractional equations occurring in the physical sciences. A fractional approach
was proposed by Machado and Mata [26] for the bond graph modeling of global
economics. Nonlinear singular models were subjected to the stochastic numerical
computation technique by Sabir et al [25]. Jafari handled fractional diffusion-
wave equations with both linear and nonlinear behavior, and Seifi [27] using the
homotopy analysis method. Kumar et al. [28] use the local fractional homotopy
perturbation Sumudu transform method (LFHPSTM) to study the local fractional
LWR model.
Li et al. [29] used the local fractional Laplace variational iteration approach to
analyze the local fractal dynamical LWR model with a highway of finite-length,
while Zassim et al. [30] used the local fractional series expansion scheme and the
local fractional Laplace decomposition approach.
The standard classical conservation law is violated, rendering the classic LWR
model inapplicable when physical parameters such as speed or density in LWR
model of vehicle traffic flow are considered as a non-differentiable function in space
and time. Therefore, to address this issue, in light of local fractional calculus
[15, 16, 17, 18], Wang et al. [31] presented a fractal version of the dynamical LWR
model of vehicular traffic flow with local fractional derivatives (LFDs) under the
local fractional conservation laws, as stated below:

(2)
∂ρ

∂τ ρ
Ψ(ε, τ) +

∂ρ

∂ερ
φ (Ψ) = h (ε, τ) ,

subject to initial condition

(3) Ψ (ε, 0) = Ψo (ε) , −∞ < ε < ∞, τ > 0,

where the quantity Ψ represents density in time τ and space ε, φ denotes the
vehicle flux as function of density and h (ε, τ) denotes source term. The function
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Ψ(ε, τ) in this instance is a LFC non-differentiable function.
The Cauchy problem of fractal vehicular flow models using local fractional deriva-
tives in linear and nonlinear LWR models was initially examined by Wang et al.
[31]. In addition, Guo et al. [32] applied LFVIM to the fractal LWR model and
created the entropy criterion for it. The fractal theory provides more accurate es-
timations of performance measurements than classical derivatives. Consequently,
traffic flow for short-term durations can be better predicted using a fractal the-
ory. Following that, a variety of local fractional techniques, including LFVIM [29],
local fractional series expansion approach (LFSEA) [30], local fractional Laplace
decomposition method (LFLDM) [30], and a hybrid computational scheme [33]
has employed to investigate LFLWR model. The local fractional vehicular traffic
flow problem was solved by Kumar et al. [34] by combining the Sumudu transform
with the local fractional homotopy perturbation approach. All these schemes have
been implemented to linear fractional LWR model of vehicular traffic flow.
In this work, a local fractional LWR (LFLWR) model has been extended by con-
sidering a special generalized form of the nonlinear fractal LWR model, and the
presented nonlinear fractal LWR model with local fractional derivatives has been
solved and analyzed by local fractional variational iteration scheme.
The structure of the presented work is as follows: Section 2 gives some brief defi-
nitions of the local fractional calculus that are utilised in this work. A generalized
nonlinear LFLWR model is presented in Section 3. In Section 4, existence and
uniqueness of solution for proposed model is discussed. Section 5 includes an
approach of implementing local fractional vatiational iterative scheme and some
exemplary instances are discussed in Section 6. Conclusive remarks are covered in
Section 7 at the end.

2. Local Fractional Calculus and Properties

In this section, we emphasize the key ideas of the local fractional calculus that
is utilized in the presented work.

Definition 2.1. [28, 35, 36] A function Ω (ε), ε ∈ (µ, ν) is said to be local fractional
continuous (LFC) at ε = εo in (µ, ν) if,

(4) |Ω (ε)− Ω (εo) | < σρ, 0 < ρ ≤ 1,

provided, for σ, δ > 0, |ε − εo| < δ. And if this is so for all ε ∈ (µ, ν), then it is
LFC on (µ, ν) and denoted as Ω (ε) ∈ Cρ (µ, ν).

Definition 2.2. [35, 36] Let Ω (ε) ∈ Cρ (µ, ν), local fractional derivative of Ω (ε)
at ε = εo is defined by

(5) Dρ
εΩ (εo) = Ω(ρ) (εo) =

dρΩ (εo)

dερ
= lim

ε→εo

∆ρ (Ω (ε)− Ω (εo))

∆(ε− εo)
ρ ,

where

(6) ∆ρ (Ω (ε)− Ω (εo)) ∼= Γ (1 + ρ) Ω (ε)− Ω (εo) .
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Definition 2.3. [35, 36] Let the partition of interval [µ, ν] be (zp, zp+1) , p =
0, 1, · · · ,M − 1 and zM = ν with ∆zp = zp+1 − zp and ∆z = max {∆z0, ∆z1, ...}.
Then Local fractional integral of Ω (ε) in [µ, ν] is defined by

(7) µJ
ρ
νΩ (ε) =

1

Γ (1 + ρ)

ν∫
µ

Ω (z)(dz)ρ =
1

Γ (1 + ρ)
lim
∆z→0

M−1∑
p=0

Ω (zp)(∆zp)
ρ.

Definition 2.4. [37] Let g : ℜ → ℜ be a continuous function. Then integral of g
w.r.t (dt)ρ is defined as

(8)

τ∫
0

g (t) (dt)ρ =ρ

τ∫
0

(τ − t)ρ−1g (t) dt, 0 < ρ ≤ 1.

Definition 2.5. [35, 36] Let the function Ω : [µ, ν]×R
ρ → R

ρ
be LFC. Then Ω is

referred as Lipschitz continuous if ∃ 0 < λ < 1 such that for all ε ∈ [µ, ν],

(9) |Ω (ε, τ1)− Ω (ε, τ2) | ≤ λρ|τ1 − τ2|, 0 < ρ ≤ 1.

Definition 2.6. [35] Let B = Cρ be a generalized Banach space (GBS) and || · ||ρ
is a norm defined on space B. If a mapping ς : B → B satisfies ||ςυρ − υρ||ρ =
0, υρ ∈ B then υρ is said to be fixed point of ς. Moreover, if ς satisfies

(10) ||ςυρ − ςηρ||ρ ≤ σρ||υρ − ηρ||ρ, 0 < σ < 1,

for ηρ ∈ B, then ς is called a contraction mapping.

Theorem 2.1. [35] Let (B, ||.||ρ) be a complete GBS. For a mapping ς : B → B,
if ∃ γ ≥ 1 such that ςγ is contraction, then the mapping ς has a unique fixed point.

Theorem 2.2. [35] Let a function Ω : [µ, ν]×R
ρ → R

ρ
is LFC, then ς is Lipschitz

continuous.

Definition 2.7. The definition of Gamma function, Γ (κ), is given by

(11) Γ (κ) =

∞∫
0

εκ−1 exp (ε) , ℜ (κ) > 0.

Definition 2.8. [35, 36] The Mittage Leffler function, Sine function, Cosine func-
tion are defined in fractal space as

(12) Eρ (ε
ρ) =

∞∑
p=0

εpρ

Γ (1 + pρ)
, 0 < ρ ≤ 1,

(13) sinρ (ε
ρ) =

∞∑
p=0

(−1)p
ε(2p+1)ρ

Γ (1 + (2p+ 1) ρ)
, 0 < ρ ≤ 1,
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(14) cosρ (ε
ρ) =

∞∑
p=0

(−1)p
ε2pρ

Γ (1 + 2pρ)
, 0 < ρ ≤ 1,

Following are some significant results:

(15)
dρεpρ

dερ
=

Γ (1 + pρ)

Γ (1 + (p− 1) ρ)
ε(p−1)ρ,

(16)
dρEρ (ε

ρ)

dερ
= Eρ (ε

ρ) ,

(17)
dρEρ (Mερ)

dερ
= MEρ (Mερ) ,

(18) µJ
ρ
νEρ (ε

ρ) = Eρ (ν
ρ)− Eρ (µ

ρ) ,

(19) µJ
ρ
νΩ (ε) = Ω (ϑ)

(ν − µ)ρ

Γ (ρ+ 1)
, ϑ ∈ (µ, ν) ,

(20) µJ
ρ
ν 1 =

(ν − µ)ρ

Γ (ρ+ 1)
.

3. Nonlinear Local Fractal LWR model with special generalized
form

With reference to equations (2) and (3), consider φ (Ψ) of the form,

(21) φ (Ψ) = ao + a1Ψ
ρ (ε, τ) + a2Ψ

2ρ (ε, τ) + · · ·+ anΨ
nρ (ε, τ) ,

where ai, i = 1, 2, ..., n are constants. Substitute equation (21) in (2), we get,
(22)
∂ρ

∂τ ρ
Ψ(ε, τ) +

∂ρ

∂ερ
(
ao + a1Ψ

ρ (ε, τ) + a2Ψ
2ρ (ε, τ) + · · ·+ anΨ

nρ (ε, τ)
)
= h (ε, τ) .

This implies,

∂ρ

∂τ ρ
Ψ(ε, τ) + a1Γ (1 + ρ)

∂ρ

∂ερ
Ψ(ε, τ) + a2

Γ (1 + 2ρ)

Γ (1 + ρ)
Ψρ (ε, τ)

∂ρ

∂ερ
Ψ(ε, τ) + · · ·

+an
Γ (1 + nρ)

Γ (1 + (n− 1) ρ)
Ψ(n−1)ρ (ε, τ)

∂ρ

∂ερ
Ψ(ε, τ) = h (ε, τ) .

(23)

Thus, we have

∂ρ

∂τ ρ
Ψ(ε, τ) + η1

∂ρ

∂ερ
Ψ(ε, τ) + η2Ψ

ρ (ε, τ)
∂ρ

∂ερ
Ψ(ε, τ) + · · ·

+ηnΨ
(n−1)ρ (ε, τ)

∂ρ

∂ερ
Ψ(ε, τ) = h (ε, τ) ,

(24)
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where

(25) ηi = ai
Γ (1 + iρ)

Γ (1 + (i− 1) ρ)
, i = 1, 2, ..., n

Thus, Equation (24) represents the nonlinear fractal LWR model with local frac-
tional derivatives.

4. Existence and Uniqueness of Solution of nonlinear LFLWR
model

Consider the presented nonlinear LFLWR model in operator form as

(26) LρΨ(ε, τ) +NρΨ(ε, τ) = 0,

subject to the initial condition,

(27) Ψ (ε, 0) = Ψo (ε) , −∞ < ε < ∞, τ > 0,

where Lρ =
∂ρ

∂τρ
, a linear operator and

Nρ =
(
η1 + η2Ψ

ρ (ε, τ) + ....+ ηiΨ
(i−1)ρ (ε, τ)

)
∂ρ

∂ερ
, a nonlinear operator.

In view of (26), we have

(28) LρΨ(ε, τ) = Θ (Ψ (ε, τ)) ,

where

(29) Θ (Ψ (ε, τ)) = −
(
η1 + η2Ψ

ρ (ε, τ) + ....+ ηiΨ
(i−1)ρ (ε, τ)

) ∂ρ

∂ερ
Ψ(ε, τ) .

Theorem 4.1. Suppose that the function
Θ(Ψ (ε, τ)) = −

(
η1 + η2Ψ

ρ (ε, τ) + ....+ ηiΨ
(i−1)ρ (ε, τ)

)
∂ρ

∂ερ
Ψ(ε, τ) is LFC and

satisfies Lipschitz continuity, that is,
(30)
|Θ(Ψ1 (ε, τ))−Θ(Ψ2 (ε, τ)) | ≤ λρ|Ψ1 (ε, τ)−Ψ2 (ε, τ) |, 0 < ρ ≤ 1, 0 < λ < 1,

then the system
LρΨ(ε, τ) = Θ (Ψ (ε, τ)) ,

subject to initial condition
Ψ(ε, 0) = Ψo (ε) ,

has a unique solution in Cρ (µ, ν)

Proof. Let us define a mapping ζ : Cρ (µ, ν) → Cρ (µ, ν) as

(31) ζ (Ψ (ε, τ)) = Ψo (ε) +
1

Γ (1 + ρ)

ν∫
µ

Θ(Ψ (ε, θ))(dθ)ρ.

We will claim that for m = 1, 2, ...

(32) ∥ζm (Ψ1 (ε, τ))− ζm (Ψ2 (ε, τ))∥ρ ≤
λmρ|ν − µ|mρ

Γm (1 + ρ)
∥Ψ1 (ε, τ)−Ψ2 (ε, τ)∥ρ.
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For m = 1,

∥ζ (Ψ1 (ε, τ))− ζ (Ψ2 (ε, τ))∥ρ =

∣∣∣∣∣∣ 1

Γ (1 + ρ)

ν∫
µ

(Θ (Ψ1 (ε, θ))−Θ(Ψ2 (ε, θ)))(dθ)
ρ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

Γ (1 + ρ)

ν∫
µ

λρ |Ψ1 (ε, θ)−Ψ2 (ε, θ)|(dθ)ρ
∣∣∣∣∣∣

≤ λρ

Γ (1 + ρ)
|Ψ1 (ε, τ)−Ψ2 (ε, τ)| |ν − µ|ρ.

(33)

Thus, we have

(34) ∥ζ (Ψ1 (ε, τ))− ζ (Ψ2 (ε, τ))∥ρ ≤
λρ|ν − µ|ρ

Γ (1 + ρ)
∥Ψ1 (ε, τ)−Ψ2 (ε, τ)∥ρ.

Let us assume for m = k, that is,

(35)
∥∥ζk (Ψ1 (ε, τ))− ζk (Ψ2 (ε, τ))

∥∥
ρ
≤ λkρ|ν − µ|kρ

Γk (1 + ρ)
∥Ψ1 (ε, τ)−Ψ2 (ε, τ)∥ρ.

Now, for m = k + 1, we have

∣∣ζk+1 (Ψ1 (ε, τ))− ζk+1 (Ψ2 (ε, τ))
∣∣ ≤ 1

Γ (1 + ρ)

ν∫
µ

[
Θ
(
ζk (Ψ1 (ε, θ))

)
−Θ

(
ζk (Ψ2 (ε, θ))

)]
(dθ)ρ

≤ 1

Γ (1 + ρ)

ν∫
µ

λρ
∣∣ζk (Ψ1 (ε, θ))− ζk (Ψ2 (ε, θ))

∣∣(dθ)ρ
≤ λρ

Γ (1 + ρ)

∣∣ζk (Ψ1 (ε, τ))− ζk (Ψ2 (ε, τ))
∣∣ |ν − µ|ρ, τ ∈ (µ, ν)

≤ λ(k+1)ρ|ν − µ|(k+1)ρ

Γ(k+1) (1 + ρ)
∥Ψ1 (ε, τ)−Ψ2 (ε, τ)∥ρ.

(36)

This implies,
(37)∥∥ζk+1 (Ψ1 (ε, τ))− ζk+1 (Ψ2 (ε, τ))

∥∥
ρ
≤ λ(k+1)ρ|ν − µ|(k+1)ρ

Γ(k+1) (1 + ρ)
∥Ψ1 (ε, τ)−Ψ2 (ε, τ)∥ρ.

Thus, the assertion is proven, and we have

(38) ∥ζm (Ψ1 (ε, τ))− ζm (Ψ2 (ε, τ))∥ρ ≤
λmρ|ν − µ|mρ

Γm (1 + ρ)
∥Ψ1 (ε, τ)−Ψ2 (ε, τ)∥ρ.
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Therefore, the mapping ζ : Cρ (µ, ν) → Cρ (µ, ν) is a contraction. Hence, the
system has a unique solution in Cρ (µ, ν). □

5. LFVIM: an Approach

Consider the presented nonlinear LFLWR model

∂ρ

∂τ ρ
Ψ(ε, τ) + η1

∂ρ

∂ερ
Ψ(ε, τ) + η2Ψ

ρ (ε, τ)
∂ρ

∂ερ
Ψ(ε, τ) + · · ·

+ηnΨ
(n−1)ρ (ε, τ)

∂ρ

∂ερ
Ψ(ε, τ) = h (ε, τ) ,

(39)

subject to initial condition

(40) Ψ (ε, 0) = Ψo (ε) , −∞ < ε < ∞, τ > 0,

where h (ε, τ) is the non-differentiable source term. Two cases are taken into con-
sideration in this instance.
Case:1 When h (ε, τ) = 0. Then, According to LFVIM, the local fractional cor-
rection functional [14] corresponding to (39) is given as

Ψn+1 (ε, τ) = Ψn (ε, τ)+

0J
ρ
τ

{
ζρ (ε, θ)

(
∂ρ

∂θρ
Ψn + η1

∂ρ

∂ερ
Ψ̃n + η2Ψ

ρ
n

∂ρ

∂ερ
Ψ̃n + ....+ ηiΨ

(i−1)ρ
n

∂ρ

∂ερ
Ψ̃n

)}
,

(41)

where ζρ is defined as the Lagrange fractal multiplier and Ψ̃n is the restricted local

fractal variation, that is, δρΨ̃n = 0.
Now, taking local fractal variation of (41), we get
(42)

δρΨn+1 = δρΨn+0J
ρ
τ δ

ρ

{
ζρ (ε, θ)

(
∂ρ

∂θρ
Ψn + η1

∂ρ

∂ερ
Ψ̃n + η2Ψ

ρ
n

∂ρ

∂ερ
Ψ̃n + ....+ ηiΨ

(i−1)ρ
n

∂ρ

∂ερ
Ψ̃n

)}
.

The optimal condition of Ψn+1 is given by [14]

(43) δρΨn+1 = 0,

with reference to (43), we have

(44) 1 + ζρ (ε, θ) |θ=τ = 0,

(45) (ζρ)(ρ) = 0.

Thus, the fractal Lagrange multiplier is given as

(46) ζρ (ε, θ) = −1.

Therefore, the successive iteration formula is given as
(47)

Ψn+1 = Ψn − 0J
ρ
τ

{(
∂ρ

∂θρ
Ψn + η1

∂ρ

∂ερ
Ψ̃n + η2Ψ

ρ
n

∂ρ

∂ερ
Ψ̃n + ....+ ηiΨ

(i−1)ρ
n

∂ρ

∂ερ
Ψ̃n

)}
,
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along with the initial approximation

(48) Ψo (ε, τ) = Ψ (ε, 0) .

Hence, the solution is given by

(49) Ψ (ε, τ) = lim
n→∞

Ψn (ε, τ) .

Case 2: When h (ε, τ) is not zero. The successive iteration scheme is given by
(50)

Ψn+1 = Ψn−0J
ρ
τ

{(
∂ρ

∂θρ
Ψn + η1

∂ρ

∂ερ
Ψ̃n + η2Ψ

ρ
n

∂ρ

∂ερ
Ψ̃n + ....+ ηiΨ

(i−1)ρ
n

∂ρ

∂ερ
Ψ̃n − h (ε, θ)

)}
,

along with the initial approximation

(51) Ψo (ε, τ) = Ψ (ε, 0) .

Hence, the solution is given by

(52) Ψ (ε, τ) = lim
n→∞

Ψn (ε, τ) .

6. The Non-Differential Solutions of Non-Linear LFLWR Model

In this section, we illustrate several examples to obtain non-differential solutions
for the nonlinear LFLWR Model by LFVIM.

Example 6.1. Consider a nonlinear LFLWR Model

(53)
∂ρ

∂τ ρ
Ψ(ε, τ) +

∂ρ

∂ερ
(1 + Ψρ (ε, τ)) = 0, 0 < ρ ≤ 1,

subject to initial condition

(54) Ψ (ε, τ) = Eρ (ε
ρ) , −∞ < ε < ∞, τ > 0.

In view of (47), we have

(55) Ψn+1 (ε, τ) = Ψn (ε, τ)− 0J
ρ
τ

{(
∂ρ

∂θρ
Ψn + Γ (1 + ρ)

∂ρ

∂ερ
Ψn

)}
,

with initial approximation

(56) Ψo (ε, τ) = Eρ (ε
ρ) .

Now, first approximation is given as

Ψ1 (ε, τ) = Ψo (ε, τ)−
1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
Ψo (ε, θ) + Γ (1 + ρ)

∂ρ

∂ερ
Ψo (ε, θ)

)
(dθ)ρ

= Eρ (ε
ρ)− 1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
Eρ (ε

ρ) + Γ (1 + ρ)
∂ρ

∂ερ
Eρ (ε

ρ)

)
(dθ)ρ

= Eρ (ε
ρ) (1− τ ρ) .

(57)
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Second approximation is given as

Ψ2 (ε, τ) = Ψ1 (ε, τ)−
1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
Ψ1 (ε, θ) + Γ (1 + ρ)

∂ρ

∂ερ
Ψ1 (ε, θ)

)
(dθ)ρ

= Ψ1 (ε, τ)−
1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
Eρ (ε

ρ) (1− θρ) + Γ (1 + ρ)
∂ρ

∂ερ
Eρ (ε

ρ) (1− θρ)

)
(dθ)ρ

= Eρ (ε
ρ) (1− τ ρ) + Eρ (ε

ρ) τ ρ − Γ (1 + ρ)Eρ (ε
ρ)

[
τ ρ

Γ (1 + ρ)
− Γ (1 + ρ) τ 2ρ

Γ (1 + 2ρ)

]
= Eρ (ε

ρ)

(
1− τ ρ +

Γ2 (1 + ρ) τ 2ρ

Γ (1 + 2ρ)

)
.

(58)

Third approximation is given as

Ψ3 (ε, τ) = Ψ2 (ε, τ)−
1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
Ψ2 (ε, θ) + Γ (1 + ρ)

∂ρ

∂ερ
Ψ2 (ε, θ)

)
(dθ)ρ

= Ψ2 (ε, τ)−
1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
Eρ (ε

ρ)

(
1− θρ +

Γ2 (1 + ρ) θ2ρ

Γ (1 + 2ρ)

))
(dθ)ρ

− 1

Γ (1 + ρ)

τ∫
0

(
Γ (1 + ρ)

∂ρ

∂ερ
Eρ (ε

ρ)

(
1− θρ +

Γ2 (1 + ρ) θ2ρ

Γ (1 + 2ρ)

))
(dθ)ρ

= Eρ (ε
ρ)

(
1 +

Γ2 (1 + ρ) τ 2ρ

Γ (1 + 2ρ)
− τ ρ − Γ3 (1 + ρ) τ 3ρ

Γ (1 + 3ρ)

)
.

(59)

Proceeding in the same manner, we get

(60) Ψn (ε, τ) = Eρ (ε
ρ)

(
n∑

j=0

Γ2j (1 + ρ) τ 2jρ

Γ (1 + 2jρ)
−

n∑
j=0

Γ2j+1 (1 + ρ) τ (2j+1)ρ

Γ (1 + (2j + 1) ρ)

)
.

Therefore, the solution of (53) subject to (54) is given as

Ψ (ε, τ) = lim
n→∞

Ψn (ε, τ)

= Eρ (ε
ρ) (coshρ (Γ (1 + ρ) τ ρ)− sinhρ (Γ (1 + ρ) τ ρ)) ,

(61)

and the corresponding solution graph is represented by Figure 1 with parameter
ρ = ln2/ln3.
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Figure 1. Solution graph of (53) subject to(54) with parameter
ρ = ln2/ln3

Example 6.2. Consider a nonlinear LFLWR Model

(62)
∂ρ

∂τ ρ
Ψ(ε, τ)−Ψρ (ε, τ)

∂ρ

∂ερ
Ψ(ε, τ) = 2, 0 < ρ ≤ 1,

subject to initial condition

(63) Ψ (ε, 0) =
ερ

2
, −∞ < ε < ∞, τ > 0.

In view of (50), we have

(64) Ψn+1 = Ψn − 0J
ρ
τ

{(
∂ρ

∂θρ
Ψn −Ψn

ρ ∂ρ

∂ερ
Ψn − 2

)}
,

with initial approximation

(65) Ψo (ε, τ) =
ερ

2
.
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Using (64), first approximation is given as follows

(66)

Ψ1 = Ψo − 1
Γ(1+ρ)

τ∫
0

(
∂ρ

∂θρ
Ψo −Ψo

ρ ∂ρ

∂ερ
Ψo − 2

)
(dθ)ρ

= ερ

2
− 1

Γ(1+ρ)

τ∫
0

{
∂ρ

∂θρ

(
ερ

2

)
−
(
ερ

2

)ρ ∂ρ

∂ερ

(
ερ

2

)
− 2
}
(dθ)ρ

= ερ

2
− 1

Γ(1+ρ)

τ∫
0

(
−Γ(1+ρ)

2ρ+1 (ερ)ρ − 2
)
(dθ)ρ

= ερ

2
+ (ερ)ρτρ

2ρ+1 + 2τρ

Γ2(1+ρ)
.

Similarly, second approximation is given as

Ψ2 = Ψ1 −
1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
Ψ1 −Ψ1

ρ ∂ρ

∂ερ
Ψ1 − 2

)
(dθ)ρ

= Ψ1 −
1

Γ (1 + ρ)

τ∫
0

{
∂ρ

∂θρ

(
ερ

2
+

(ερ)ρ

2ρ+1
+

2θρ

Γ2 (1 + ρ)

)}
(dθ)ρ

− 1

Γ (1 + ρ)

τ∫
0

{(
ερ

2
+

(ερ)ρ

2ρ+1
+

2θρ

Γ2 (1 + ρ)

)ρ
∂ρ

∂ερ

(
ερ

2
+

(ερ)ρ

2ρ+1
+

2θρ

Γ2 (1 + ρ)

)
− 2

}
(dθ)ρ

= Ψ1 −
1

Γ (1 + ρ)

τ∫
0

{
2

Γ (1 + ρ)
− ρΓ (1 + ρ)

22ρ+1
(ερ)2ρ−1θρ − Γ (1 + ρ)

2ρ2+1
(ερ)ρ

2

(θρ)ρ
}
(dθ)ρ

− 1

Γ (1 + ρ)

τ∫
0

{
ρΓ (1 + ρ)

2ρ2+ρ+2
(ερ)ρ

2+ρ−1(θρ)ρ+1 − 2ρ−1

Γ2ρ−1 (1 + ρ)
(θρ)ρ

}
(dθ)ρ

− 1

Γ (1 + ρ)

τ∫
0

{
ρ

2 Γ2ρ−1 (1 + ρ)
(ερ)ρ−1(θρ)ρ+1 − 2

}
(dθ)ρ

=
ερ

2
+

(ερ)ρτ ρ

2ρ+1
+

ρΓ2 (1 + ρ)

22ρ+1Γ (1 + 2ρ)
(ερ)2ρ−1τ 2ρ +

B (ρ, ρ2 + 1)

2ρ2+2
(ερ)ρ

2

(τ ρ)ρ+1

+
ρ2Γ (1 + ρ) B (ρ, ρ2 + ρ+ 1)

2ρ2+ρ+2
(ερ)ρ

2+ρ−1(τ ρ)ρ+2 +
ρ 2ρ−1B (ρ, ρ2 + 1)

Γ2ρ−1 (1 + ρ)
(τ ρ)ρ+1

+
ρ2B (ρ, ρ2 + ρ+ 1)

2Γ2ρ−1 (1 + ρ)
(ερ)ρ−1(τ ρ)ρ+2 +

2

Γ (1 + ρ)
τ ρ,

(67)

where B (χ, ς) = Γ(χ)Γ(ς)
Γ(χ+ς)

with ℜ (χ) ,ℜ (ς) > 0 is the beta function.

Now, proceeding in a similar manner, we get the solution of (62) along with the
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condition (63) as

(68) Ψ (ε, τ) = lim
n→∞

Ψn (ε, τ) ,

and graphs for the above successive approximations are demonstrated by Figure
2 where parameter ρ = ln2/ln3. These graphical representations demonstrate the
dynamic evolution of the non-differentiable traffic density function Ψ (ε, τ) for the
nonlinear LFLWR model of traffic flow that has been stated in the preceding ex-
ample. It is clear from the presented graphs that these approximated iterations are
converging close to the surface of the solution. Bildik and Konuralp [38] consider
the classic case, that is, when ρ = 1, then the successive approximations converge
to its exact solution, which is given as the

(69) Ψ (ε, τ) =
τ 2 − 4τ − ε

τ − 2
.

Example 6.3. Consider a nonlinear LFLWR Model

(70)
∂ρ

∂τ ρ
Ψ(ε, τ)−Ψρ (ε, τ)

∂ρ

∂ερ
Ψ(ε, τ) = Γ (1 + ρ) (1− (ερ)ρ) , 0 < ρ ≤ 1,

subject to initial condition

(71) Ψ (ε, 0) = ερ, −∞ < ε < ∞, τ > 0.

In view of (50), we have

(72) Ψn+1 = Ψn − 0J
ρ
τ

{(
∂ρ

∂θρ
Ψn −Ψn

ρ ∂ρ

∂ερ
Ψn − Γ (1 + ρ) (1− (ερ)ρ)

)}
,

with initial approximation

(73) Ψo (ε, τ) = ερ.

Now, first approximation is given as

Ψ1 = Ψ0 −
1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
Ψo −Ψo

ρ ∂ρ

∂ερ
Ψo − Γ (1 + ρ) (1− (ερ)ρ)

)
(dθ)ρ

= ερ − 1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
ερ − (ερ)ρ

∂ρ

∂ερ
ερ − Γ (1 + ρ) (1− (ερ)ρ)

)
(dθ)ρ

= ερ − 1

Γ (1 + ρ)

τ∫
0

(−(ερ)ρΓ (1 + ρ)− Γ (1 + ρ) (1− (ερ)ρ))(dθ)ρ

= ερ + τ ρ.

(74)
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Figure 2. (A) and (B) represents first and second approximations
of (62) subject to (63) with parameter ρ = ln2/ln3

Second approximation is given as

Ψ2 = Ψ1 −
1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
Ψ1 −Ψ1

ρ ∂ρ

∂ερ
Ψ1 − Γ (1 + ρ) (1− (ερ)ρ)

)
(dθ)ρ

= Ψ1 (ε, τ)−
1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
(ερ + θρ)− (ερ + θρ)ρ

∂ρ

∂ερ
(ερ + θρ)

)
(dθ)ρ

+
1

Γ (1 + ρ)

τ∫
0

Γ (1 + ρ) (1− (ερ + θρ)ρ)(dθ)ρ

= ερ + τ ρ − 1

Γ (1 + ρ)

τ∫
0

(Γ (1 + ρ) ((ερ)ρ − (ερ + θρ)ρ))(dθ)ρ

= ερ + τ ρ − ρB
(
ρ, ρ2 + 1

)
(τ ρ)ρ+1,

(75)
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where B represents beta function.
Proceeding in the same way, we get the solution of (70) subject to (71) as

(76) Ψ (ε, τ) = lim
n→∞

Ψn (ε, τ) ,

and graphs for the above iterations are presented by Figure 3 with parameter
ρ = ln2/ln3.

Example 6.4. Consider a nonlinear LFLWR Model

(77)
∂ρ

∂τ ρ
Ψ(ε, τ) + Ψ2ρ (ε, τ)

∂ρ

∂ερ
Ψ(ε, τ) = Γ (1 + ρ)

(
(ερ)2ρ − 1

)
, 0 < ρ ≤ 1,

subject to initial condition

(78) Ψ (ε, 0) = ερ, −∞ < ε < ∞, τ > 0.

With reference to (50), we have

(79) Ψn+1 = Ψn − 0J
ρ
τ

{(
∂ρ

∂θρ
Ψn +Ψn

2ρ ∂ρ

∂ερ
Ψn − Γ (1 + ρ)

(
(ερ)2ρ − 1

))}
,

and initial approximation is given as

(80) Ψo (ε, τ) = ερ.

Now, successive approximations are evaluated as

Ψ1 = Ψo −
1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
Ψo +Ψo

2ρ ∂ρ

∂ερ
Ψo − Γ (1 + ρ)

(
(ερ)2ρ − 1

))
(dθ)ρ

= ερ − 1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
(ερ) + (ερ)2ρ

∂ρ

∂ερ
(ερ)− Γ (1 + ρ)

(
(ερ)2ρ − 1

))
(dθ)ρ

= ερ − τ ρ.

(81)
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Figure 3. (A) and (B) represents first and second approximations
of (70) subject to (71) with parameter ρ = ln2/ln3

Ψ2 = Ψ1 −
1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
Ψ1 +Ψ1

2ρ ∂ρ

∂ερ
Ψ1 − Γ (1 + ρ)

(
(ερ)2ρ − 1

))
(dθ)ρ

= Ψ1 −
1

Γ (1 + ρ)

τ∫
0

(
∂ρ

∂θρ
(ερ − θρ) + (ερ − θρ)2ρ

∂ρ

∂ερ
(ερ − θρ)

)
(dθ)ρ

+
1

Γ (1 + ρ)

τ∫
0

(
Γ (1 + ρ)

(
(ερ)2ρ − 1

))
(dθ)ρ

= ερ − τ ρ − 1

Γ (1 + ρ)

τ∫
0

{
Γ (1 + ρ)

[
(ερ − θρ)2ρ − (ερ)2ρ

]}
(dθ)ρ

= ερ − τ ρ + (ερ)2ρτ ρ +
1

2ρ+ 1
(ερ − τ ρ)2ρ+1 + (ερ)2ρ+1.

(82)
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Figure 4. (A) and (B) represents first and second approximations
of (77) and (78) with parameter ρ = ln2/ln3

Continuing in the same way, we get the solution of (77) subject to (78) as

(83) Ψ (ε, τ) = lim
n→∞

Ψn (ε, τ) .

The graphs for the aforementioned iterations are shown in Figure 4 with parameter
ρ = ln2/ln3 and demonstrate the dynamic evolution of the non-differentiable
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traffic density function Ψ (ε, τ) for the non-homogeneous nonlinear LFLWR model
of traffic flow described in the above example.

7. Conclusion

This research proposed a generalized nonlinear LFLWR model of fractal vehic-
ular traffic flow and non-differentiable solutions are examined by the implemen-
tation of LFVIM. Several studies have been conducted in the literature to solve
linear LWR and linear LFLWR models, however this research focused on the gen-
eralised nonlinear LFLWR model, making it novel. At the first, existence and
uniqueness of the solution of suggested model has been discussed. The success of
implementing LFVIM to proposed non linear LFLWR model is demonstrated by
some illustrative examples. Graphical representations of the successive approxi-
mations of solutions have also been shown to demonstrate the dynamic evolution
of the non-differentiable traffic density function Ψ (ε, τ) for the nonlinear LFLWR
model of vehicular traffic flow. Moreover, it is observed from the graphs that these
approximations are converging near the solution surface. The computational find-
ings show that the local fractional iterative scheme that has employed is successful
and efficient in deriving the non-differentiable solution for generalized nonlinear
LFLWR model. The proposed model can be extended to any nonlinear version of
LFLWR model of traffic flow as part of the future scope of work and examined
through several iterative approaches to uncover fresh insights and findings.
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