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Abstract

Purpose: Poly-medicated patients, especially those over 65, have increased. Multiple drug use and inappropriate prescribing

increase drug-drug interactions, adverse drug reactions, morbidity, and mortality. This issue was addressed with several CDSS

alerts. Health professionals have not followed these systems due to their poor alert quality and incomplete databases. Methods:

Recent research shows a growing interest in using Text Mining via NLP to extract drug-drug interactions from unstructured

data sources to support clinical prescribing decisions. NLP text mining and machine learning classifier training for drug relation

extraction were used in this process. Results: In this context, the proposed solution allows to develop an extraction system

for drug-drug interactions from unstructured data sources. The system produces structured information, which can be inserted

into a database that contains information acquired from three different data sources. Conclusion: The architecture outlined

for the drug-drug interaction extraction system is capable of receiving unstructured text, identifying drug entities sentence by

sentence, and determining whether or not there are interactions between them.
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Abstract

Purpose: Poly-medicated patients, especially those over 65,
have increased. Multiple drug use and inappropriate prescrib-
ing increase drug-drug interactions, adverse drug reactions,
morbidity, and mortality. This issue was addressed with sev-
eral CDSS alerts. Health professionals have not followed these
systems due to their poor alert quality and incomplete databases.
Methods: Recent research shows a growing interest in using
Text Mining via NLP to extract drug-drug interactions from
unstructured data sources to support clinical prescribing deci-
sions. NLP text mining and machine learning classifier train-
ing for drug relation extraction were used in this process.
Results: In this context, the proposed solution allows to
develop an extraction system for drug-drug interactions from
unstructured data sources. The system produces structured
information, which can be inserted into a database that
contains information acquired from three different data sources.
Conclusion: The architecture outlined for the drug-drug inter-
action extraction system is capable of receiving unstructured
text, identifying drug entities sentence by sentence, and deter-
mining whether or not there are interactions between them.

Keywords: Drug-Drug Interactions; Information Extraction; Natural
Language Processing; Text Mining
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1 Contextualization and Motivation

A drug-drug interaction (DDI) is a change in the impact of a drug due to
the presence of another medication, lowering or neutralizing a drug’s efficacy,
increasing toxicity, or even causing death[1]. Drug-drug interactions can be
classified by several criteria, which are based on the underlying mechanism (for
example type of interaction or interaction severity). They can be classified as
Pharmacokinetic or Pharmacodynamic [2]. Concerning severity, interactions
can be classified as minor, moderate, or severe/major, depending on their
impact on the body. In the minor case, they have minimal risk so, they will
often have no clinical relevance. In the moderate case, there must be increased
vigilance or a reduction in the dose may be necessary. In the severe/major
case, a change in therapy is mandatory because it’s a case of high clinical
significance that will probably lead to serious clinical outcomes [3].

In high-income countries, 40-50% of the elderly are poly-medicated taking
an average of seven drugs a day [4, 5]. The concomitant consumption of several
drugs and inappropriate prescription of medications potentiates the existence
of Adverse Drug Reactions (ADRs), and drug-drug interactions, resulting in a
high morbidity and mortality rate [6, 7]. According to the statistics from the
US Centers for Disease Control and Prevention, approximately 300,000 people
die of ADRs per year in the US and Europe [1, 8].

Thus, expanding our knowledge of interactions between drugs is impor-
tant to reduce public health safety incidents. Detecting DDIs has become an
essential part of public health safety policy because, with rich DDI knowledge,
patients can be prevented from harmful drug-drug interactions [1, 9]. However,
a large amount of the valuable information on DDIs is unstructured, written
in natural language, and hidden in biomedical literature [9, 10]. Hence, text
mining technologies that can automatically extract DDIs from unstructured
content are necessary to combat text information overload and the process of
converting text into machine-understandable knowledge [11–13]. Moreover, in
order to keep up with the expanding body of knowledge surrounding drug-drug
interactions, the development of automatic information extraction methods
is essential, because manual extraction is time-consuming and can lead to
outdated data. Recommendation systems have become an integral part of
numerous online platforms because they improve user engagement and enrich
the user experience [14].

The main goal of this work is to use text mining to develop an intelligent
drug-drug extraction system based on pharmacological and toxicological data.

2 DDI Extraction

2.1 Main Approaches

Text mining can be efficient solutions for analyzing biomedical corpora, such
as scientific articles, clinical records, and public databases, to support pharma-
covigilance and to reduce the time spent by healthcare professionals [15, 16].
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Therefore, the use of text mining techniques to extract DDIs from biomedi-
cal corpora and help construct drug databases has received attention [1, 17].
DDI extraction is the task of identifying drug-named entities and extracting
the potential interaction relations between drug entity pairs from text. It is
a special case of binary relation extraction where (subject, predicate, object)
triples are extracted from natural language text. Both the subject and object
are pharmacological substances, and the predicate is the type of interaction,
[18, 19]. Several methods for the extraction of DDIs have been proposed based
either on a single task, Drug Named Entity Recognition (DNER) or DDI
classification, or DDI extraction in an end-to-end approach [18].

DNER classification approaches aim to recognize drug entity mentions and
classify them into predefined categories. For example, [17] presented a feature-
based method that identifies and classifies drugs into four classes, achieving an
F-score of 57%, and [20] constructed a bi-directional Conditional Random Field
and Long Short-Term Memory architecture achieving an F-score of 79.26%,
both when evaluated on the DDI corpus. [21], formulated the problem for
DNER as a machine reading comprehension problem, achieving state-of-the-art
performance on the CHEMDNER corpus with an F-score of 92.92%.

DDI classification approaches focus merely on the task of classifying the
relation of drug pairs in biomedical texts. For that, datasets are used, where
each entity pair is labeled with the predefined relation types. The types advice,
mechanism, effect, åand int denote the types of interactions between two drugs
and correspond to the positive class. The type false indicates the absence of
interaction and corresponds to the negative class [18]. For the end-to-end DDI
extraction task, existing methods can be divided into two categories: one-stage
and two-stage. In one-stage, a multiclass classifier is built to directly classify
each candidate DDI instance into one of the four types. In other words, the
one-step technique detects and classifies DDIs concurrently. The two-stage
split the problem into two steps: first, a binary classifier is built to recognize
all candidate instances into positive or negative instances, and then only the
positive instances are considered to be classified into one of the four predefined
DDI types of the positive class [22, 23].

Several DDI extraction methods have been proposed in scholarly papers,
with the earliest methods essentially dividing into two groups: pattern-based
methods and machine learning-based methods. With the improvement in com-
puting power and the availability of large datasets, deep learning has emerged
as a promising approach and has become a dominant method for DDI extrac-
tion tasks [24, 25]. Existing deep learning models for DDI extraction are
all based on supervised approaches and although deep learning has many
basic architectures, the task of DDI extraction from the literature has mainly
used Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) [8].

Some works are only focused on the DDI extraction task where a binary
classifier is built to recognize all candidate instances into positive or negative
instances. That is, the model detects the expressions that indicate interactions
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between the mentioned drugs classifying each sentence as interacting or non-
interacting. For example, [26] proposed a DDI extraction model with a C4.5
decision tree classifier achieving an F-score of 76.9% when evaluated on the
DDI corpus. Also, [27] trained an SVM classifier for the extraction of DDIs
achieving an F-score of 83.48% and 59.17% when testing only on the DDI
corpus’s, DrugBank and Medline documents, respectively.

Alternatively BioBERT (Bidirectional Encoder Representations from
Transformers for Biomedical Text Mining) which is a domain-specific language
representation model for biomedical text mining pre-trained has been used on
large-scale biomedical corpora. With almost the same architecture across tasks,
BioBERT largely outperforms BERT (Bidirectional Encoder Representations
from Transformers) and previous workd in a variety of biomedical text min-
ing tasks such as Named Entity Recognition (NER) and Relation Extraction
(RE), which this domain-specific pre-trained model can be fine-tuned [28, 29].
For example, [30] approached the DDI extraction task using the BERT model
achieving an F-score of 81.97% when evaluated on the DDI corpus. Also, [31]
proposed a new model for extracting DDIs called Bio-ER-BERT, which com-
bines the BioBERT model and the R-BERT model for relationship extraction,
achieving an F-score of 83.88%.

2.2 Drug Knowledge Bases

DrugBank is a free-access online database containing information on drugs and
their mechanisms, interactions, and targets [32]. In total about 500000 drugs
are described. This database can identify the drug through the common name
(USAN), the chemical name (IUPAC), the trademark name, or through the
pharmacotherapeutic classifications (AHFS and ATC), among others [33]. The
rich, high-quality, primary-sourced content found in DrugBank has allowed
it to become one of the world’s most widely used reference drug resources
[32]. For non-commercial purposes, the DrugBank database is available free of
charge in XML format.

DDInter is a DDI database that contains about 240,000 DDI associations
connecting 2,051,833 approved drugs, each of them annotated with basic chem-
ical and pharmacological information and their interaction network. For each
DDI, the severity level (major, moderate, minor, and unknown), accepted
as suggested by DRUGDEX, mechanism description, strategies for managing
potential risks, and alternative medications based on the third level of the
Anatomical Therapeutic Chemical (ATC) code, are provided [2, 34].

Infomed is a Portuguese online platform provided by INFARMED, with
37531 drudgs, whose data are similar to those presented in the national drug
database but in a more accessible and user-friendly format for the user to search
for the desired information about the drugs. The information available can
be highlighted the therapeutic indications, contraindications, special warnings
and precautions for use, drug interactions and other forms of interaction, use
during pregnancy and lactation, and undesirable effects [].
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3 DDI Extraction Architecture Proposal

This section aims to present an architecture, illustrated in figure 1, designed
to be incorporated into DDI extraction-based systems.

The architecture has as input a text extracted from unstructured data (for
example, document files) that is first splitted into sentences using the Natural
Language Toolkit (NLTK) library’s sent tokenize function. Each sentence is
given as input to the DNER model, to extract drug/chemical entities that
appear in the sentence. Notice that one sentence can have more than two drug
mentions, so it is necessary to take all the possible drug pair combinations.

Following the text transformation pipeline, the feature extraction step takes
place, where all sentences are represented by a numerical vector as a result
of the combination of the following features: 1/0 BOW representation with
a 1-2-gram model, Word2Vec (CBOW), and custom features. Finally, each
sentence, now represented as a numerical vector, can be given as input to the
classifier model previously trained, classifying each sentence as interaction or
no interaction. At the end of the process, each sentence should be associated
with the following structure information, (pair of medical entities, classification
result), and the newly extracted DDI information can be inserted into the
database.
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Fig. 1 Architecture proposal: DDI Extraction System.

In next section, the phases will be described in detail.

3.1 Data Extraction

This section describes the datasets used in the development of the DDI extrac-
tion system in terms of their main characteristics, the information presented,
and statistics: the DDI and the CHEMDNER corpus.

NLP techniques rely mostly on the availability of annotated corpora so that
is possible to train models that can be used to extract information from raw
text [35]. Therefore, in [36] a manually annotated corpus of XML documents
is presented, the DDI corpus, with pharmacological substances as well as the
interactions between them. The corpus comprises 792 texts selected from the
DrugBank database and 233 Medline abstracts, and was developed for the
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SemEval DDIExtraction Challenge 2013, whose main goal was to provide a
common framework for the evaluation of information extraction techniques
applied to the recognition of pharmacological substances and the detection of
DDIs from biomedical texts [36, 37]. Four entity types were proposed to anno-
tate pharmacological substances: drug, brand, group and drug n. As regards
the relationships, five different types of DDI relationships are proposed [36]:
mechanism, effect, advice, int and false where an interaction between the two
drugs is not shown in the sentence. The DDI corpus comprises 905 XML doc-
uments with a total of 26,965 annotated drug relations for train, 3,194 of
them corresponding to actual DDIs, including both pharmacokinetic and phar-
macodynamic. For testing, the dataset has a total of 10,232 annotated drug
relations, 5,495 of them representing an interaction.

When developing supervised NER systems, the availability of a large, man-
ually annotated text corpus can be appropriated. The CHEMDNER corpus is
a public available collection of 10,000 PubMed abstracts that contain a total
of 84,355 chemical entity mentions corresponding to 19,805 unique chemical
name strings. Each of the chemical entity mentions was manually labelled by an
expert chemistry literature curators according to its structure-associated chem-
ical entity mention class: abbreviation, family, formula, identifier, multiple,
systematic, and trivial [38].

3.2 DDI Extraction System

The main goal of this study is the creation of a system that can extract drug-
drug interactions from unstructured text and insert them into a database, as
illustrated in Figure 1. In short, the development of the DDI extraction system
mainly comprised the:

1. Development of a relational database on drugs and their interactions;
2. Training of a Drug Named Entity Recognition model for the identification

of drug entities;
3. Training of a Machine Learning Classifier for Relation Extraction between

two drug entities.

A relation database on drugs and their interactions was created as a
result of the integration of three different sources of information: DrugBank,
DDInter and Infomed. This database contains information about ATC clas-
sification, pharmacological activity, synonyms, chemical identifiers, external
identifiers from other databases, and interactions with other active substances.
The database aggregates data on 4,031 active substances, 7,722 medicines,
and 1,341,086 drug-drug interactions, with 17,850 classified as major, 53,072
as moderate, 2,714 as minor, and 710,423 as unknown.

To train a DNER model for the identification of drug/chemical entities in
plain text, the chosen approach was to fine-tune a BioBERT model on the
CHEMDNER corpus. For that, was used the pre-trained BioBERT model by
Data Mining and Information Systems (DMIS) Laboratory (Korea University)
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from the Hugging Face Transformers library as the base and the Simple Trans-
formers library on top of it to make it possible to train the NER model with
just a few lines of code. The dataset used includes train, test, and validation
sets with 30,682, 26,364, and 30,639 sentences, respectively, annotated at the
token level in the CoNLL IOB-type format.

The task of identifying relationships between entities from unstructured
text is known as Relation Extraction, part of the larger task of Information
Extraction. Formally, the task receives an unstructured text and a set of enti-
ties as input and returns a set of triplets, each triplet taking the following
form: (First Entity, Second Entity, Relation Type).

In this approach, the focus is only on the DDI detection task, reducing it
to a binary classification problem of determining whether or not two drugs
present in a sentence are related. That is, train a machine learning classifier
to identify and distinguish whether the candidate entity pair has a semantic
relation, classifying each sentence as interaction (label 1) or no interaction
(label 0). It consists of a supervised training process on the labelled dataset,
the DDI corpus, already divided into train and test sets.

First, it was necessary to perform some cleaning transformations on the
DDI Corpus, such as (i) eliminating sentences that have discontinuous entities
and corresponding pairs; (ii) eliminating sentences that do not have labelled
entities; (iii) deleting empty XML documents; (iv) separate sentences labelled
as interaction from sentences labelled as no interaction.

After running the text transformation pipeline, all the sentences and respec-
tive labels are saved in a CSV file containing a total of 19,695 sentences for
training and 3,915 sentences for testing, which corresponds, to approximately,
67% of the data going to training and 33% going to testing. The test data has
682 sentences labelled as interaction (class 1) and 3,233 sentences labelled as
no interaction (class 0). In the training data, 2,845 sentences are labelled as
interaction and 16,850 labelled as no interaction. Being an unbalanced dataset
and the class no interaction the majority one, the training set underwent the
Random Undersampling process.

The feature extraction step comes next, in which a set of features is com-
puted for each sentence. The feature vectors are then used to train a machine
learning classifier. Eight different types of text vectorization techniques were
applied: 1/0 BOW representation with a 1-gram model, 1/0 BOW represen-
tation with a 2-gram model, 1/0 BOW representation with a 3-gram model,
1/0 BOW representation with a 1-2-gram model, TF-IDF, custom features,
Word2Vec and Doc2Vec.

The ContVectorizer function from scikit-learn was used for the 1-gram, 2-
gram, 3-gram, and 1-2-gram representations, with the ngram-range parameter
set to (1,1), (2,2), (3,3), and (1,2), respectively. The binary parameter was set
to True for all n-gram representations, while the other parameters were left
at their default values. As a result, each sentence was represented by a 3343,
18225, 33977, and 21568-dimensional vector for the 1-gram, 2-gram, 3-gram,
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and 1-2-gram representations, respectively. For the TF-IDF text vectoriza-
tion technique, was used the scikit-learn TF-IDF vectorizer implementation,
resulting in a 3343-dimensional vector representation.

In terms of word embeddings-based features, the Gensim library’s
Word2Vec (CBOW) and Doc2Vec (PV-DM) implementations were used by
proceeding with the generation of aggregated sentence vectors based on the
averaging of the word vectors for the sentences’ words. Each sentence was thus
represented by a 10-dimensional vector that can be easily fed into the classifier.

Custom features were defined using domain knowledge, where a represen-
tative set of features is computed for each sentence about a drug pair. An
11-dimensional feature vector was created for each sentence by combining the
following features:

F1 - number of positive keywords in the sentence;
F2 - positive keywords exist between drug names;
F3 - positive keywords exist within scope but not between names;
F4 - number of negative keywords in sentence;
F5 - negative keywords exist between drug names;
F6 - negative keywords exist within scope but not between drug names;
F7 - number of special keywords in the sentence;
F8 - number of words between drugs;
F9 - number of verbs between drugs;
F10 - drug keywords exist between drug names;
F11 - drug keywords exist within scope but not between names.

Features 1 to 9 were implemented by [26] in their work on extracting infor-
mation about drug-drug interactions from biomedical literature. Features 10
and 11 were added to encompass sentences containing more than two drug
entities. To extract those features was used the trigger list of positive (interact,
inhibit, not recommended simultaneously, contradict, influence, affect, have
effect, increase, enhance, decrease, diminish, carefully monitored, examined,
effect, effects, initiated, with), negative (no, not, without, neither, nor, lack,
cannot, absence, unchanged, unlikely), and special (concomitant, concomi-
tantly, concurrently, simultaneously, co-administration) tokens by [26]. Positive
and negative keywords refer to the most common words used to describe two
interacting and non-interacting drugs, respectively. By increasing the meaning
of positive keywords, the presence of special keywords in a sentence increases
the likelihood that it will present an interacting drug pair.

Once the text transformations and feature extraction are completed, the
next step is the selection and evaluation of the classification model, available
on Scikit Learning. For that, different combinations of features and classifiers
(Logistic Regression, Support Vector Machines, Decision Trees, Random For-
est, Näıve Bayes, and K-Nearest Neighbor) were tested to determine the best
model by comparing the values of the F1-score.
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4 Results and Discussion

Several features sets are tested, namely: (set 1) 1-gram; (set 2) 2-gram; (set
3) 3-gram; (set 4) 1-2-gram; (set 5) tf-idf; (set 6) custom features; (set 7)
word2vec; (set 8) doc2vec; (set 9) 1-2-gram + custom features; (set 10) 1-2-
gram + tf-idf; (set 11) 1-2-gram + word2vec; (set 12) 1-2-gram + doc2vec; (set
13) 1-2-gram + word2vec + custom features; (set 14) 1-2-gram + word2vec
+ tf-idf; (set 15) 1-2-gram + doc2vec + custom features; (set 16) 1-2-gram +
doc2vec + tf-idf.

The Precision, Recall, and F1-score values presented in the next tables
correspond to the Weighted Average value, evaluating the overall performance
of each model. The 1/0 BOW representation with a 1-gram, 2-gram, 3-gram,
and 1-2-gram model, corresponding to feature sets 1, 2, 3, and 4, was the first
vectorization technique tested. When comparing the performance of feature
sets 1, 2, 3, and 4 (table 1), it can be seen that the 1-2-gram representation (set
4) produces better results in terms of precision, recall, and F1-score, although
the difference is not very significant, especially when compared to the feature
set 2.

Table 1: Comparing the performance of feature sets 1, 2, 3, and 4

Features Algorithm Precision Recall F1-score

bow 1 gram

Logistic Regression 0.814072 0.657216 0.698321
SVM 0.810943 0.628097 0.672976
Decision Trees 0.788407 0.528991 0.580785
Random Forest 0.822825 0.675096 0.713797
Näıve Bayes 0.795321 0.496041 0.545506
K-Nearest Neighbor 0.777361 0.627842 0.672064

bow 2 gram

Logistic Regression 0.866947 0.763985 0.790186
SVM 0.861220 0.744317 0.773607
Decision Trees 0.835010 0.638059 0.681513
Random Forest 0.851284 0.631418 0.674869
Näıve Bayes 0.840125 0.662069 0.702861
K-Nearest Neighbor 0.788430 0.791571 0.789963

bow 3 gram

Logistic Regression 0.839111 0.514943 0.559706
SVM 0.840871 0.581354 0.627818
Decision Trees 0.814360 0.778289 0.792300
Random Forest 0.807536 0.785696 0.794988
Näıve Bayes 0.845926 0.653384 0.695080
K-Nearest Neighbor 0.749594 0.771137 0.759235

bow 1 2 gram

Logistic Regression 0.856963 0.785951 0.806675
SVM 0.851810 0.758621 0.784441
Decision Trees 0.840179 0.758621 0.783046
Random Forest 0.863307 0.732056 0.763514
Näıve Bayes 0.837579 0.666411 0.706666
K-Nearest Neighbor 0.772656 0.740485 0.754326
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Next, feature sets 5 and 6 (table 2) and 7 and 8 (table 3) were evaluated.
Comparing their performance reveals that sets 5 and 6 produce superior results
compared to the embeddings representations. Nonetheless, when compared to
the 1/0 BOW representation, both of the four text vectorization techniques
yield the worst results.

Table 2: Comparing the performance of feature sets 5 and 6

Features Algorithm Precision Recall F1-score

tf idf

Logistic Regression 0.820748 0.646999 0.689604
SVM 0.817280 0.638059 0.681749
Decision Trees 0.785395 0.596679 0.645299
Random Forest 0.808995 0.681992 0.718715
Näıve Bayes 0.791310 0.495530 0.545542
K-Nearest Neighbor 0.811956 0.482759 0.528369

custom features

Logistic Regression 0.839291 0.754534 0.779735
SVM 0.838158 0.754789 0.779785
Decision Trees 0.835848 0.749936 0.775689
Random Forest 0.836233 0.741507 0.769105
Näıve Bayes 0.835837 0.755045 0.779666
K-Nearest Neighbor 0.809527 0.793870 0.800770

Table 3: Comparing the performance of feature sets 7 and 8

Features Algorithm Precision Recall F1-score

word2vec

Logistic Regression 0.801749 0.627842 0.672754
SVM 0.797009 0.606641 0.654028
Decision Trees 0.776844 0.647254 0.687902
Random Forest 0.803672 0.672797 0.710809
Näıve Bayes 0.795198 0.568582 0.618973
K-Nearest Neighbor 0.784931 0.540230 0.592347

doc2vec

Logistic Regression 0.795897 0.576501 0.626415
SVM 0.793995 0.581609 0.631288
Decision Trees 0.763246 0.595658 0.644329
Random Forest 0.805750 0.696296 0.729891
Näıve Bayes 0.797898 0.573180 0.623163
K-Nearest Neighbor 0.787107 0.556833 0.608312

As a result, the 1-2-gram representation was combined with each of these
features (tf-idf, custom, word2vec, and doc2vec). Combinations of different 1/0
Bow representations were not carried out to avoid obtaining vectors with exces-
sively high dimensions. Looking at Table 4, some of the tested combinations
outperformed the 1/0 BOW 1-2-gram representation (F1-score = 0.806675).
The feature set 11 (1-2- gram + word2vec) with the Logistic Regression
classifier produced a higher F1-score value of 0.814581.
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Table 4: Some of the tested combinations

Features Algorithm Precision Recall F1-score

bow 1 2 gram +
custom features

Logistic Regression 0.869658 0.798723 0.818398
SVM 0.865656 0.786207 0.807983
Decision Trees 0.857392 0.785441 0.806335
Random Forest 0.871101 0.777778 0.801772
Näıve Bayes 0.837994 0.670243 0.710008
K-Nearest Neighbor 0.828374 0.592593 0.639639

bow 1 2 gram +
tf idf

Logistic Regression 0.857807 0.787739 0.808189
SVM 0.851068 0.762708 0.787618
Decision Trees 0.826623 0.744061 0.769852
Random Forest 0.841491 0.722095 0.753943
Näıve Bayes 0.830293 0.672031 0.711424
K-Nearest Neighbor 0.777274 0.656705 0.695470

bow 1 2 gram +
word2vec

Logistic Regression 0.858114 0.795913 0.814581
SVM 0.851736 0.768327 0.792149
Decision Trees 0.821093 0.592593 0.640103
Random Forest 0.854757 0.732567 0.763471
Näıve Bayes 0.837841 0.667688 0.707782
K-Nearest Neighbor 0.788252 0.625798 0.670768

bow 1 2 gram +
doc2vec

Logistic Regression 0.858147 0.795147 0.813994
SVM 0.852636 0.769349 0.793066
Decision Trees 0.824667 0.694253 0.729883
Random Forest 0.844646 0.704725 0.739688
Näıve Bayes 0.837894 0.667944 0.708005
K-Nearest Neighbor 0.802244 0.651341 0.692923

As the results obtained above (Table 4) are all relatively similar, com-
binations of three features were tested, with the 1-2-gram representation as
constant. The results are shown in Tables 5 and 6.

Table 5: Combinations of three features

Features Algorithm Precision Recall F1-score

bow 1 2 gram +
word2vec +
custom features

Logistic Regression 0.869411 0.809706 0.826990
SVM 0.864706 0.782886 0.805229
Decision Trees 0.852898 0.767050 0.791276
Random Forest 0.867064 0.768327 0.793735
Näıve Bayes 0.837994 0.670243 0.710008
K-Nearest Neighbor 0.827696 0.586718 0.634061

bow 1 2 gram +
word2vec +
tf idf

Logistic Regression 0.856483 0.794381 0.813145
SVM 0.852392 0.774713 0.797260
Decision Trees 0.805986 0.638059 0.681682
Random Forest 0.846337 0.719796 0.752369
Näıve Bayes 0.830406 0.672542 0.711865
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Table 5 continued from previous page
Features Algorithm Precision Recall F1-score

K-Nearest Neighbor 0.783563 0.597957 0.646460

Table 6: Combinations of three features

Features Algorithm Precision Recall F1-score

bow 1 2 gram +
doc2vec +
custom features

Logistic Regression 0.868438 0.805875 0.823859
SVM 0.864197 0.777778 0.801090
Decision Trees 0.861002 0.782631 0.804590
Random Forest 0.871101 0.777778 0.801772
Näıve Bayes 0.837994 0.670243 0.710008
K-Nearest Neighbor 0.826640 0.571648 0.619510

bow 1 2 gram +
doc2vec +
tf idf

Logistic Regression 0.856849 0.794636 0.813400
SVM 0.851789 0.772669 0.795577
Decision Trees 0.808146 0.676117 0.713850
Random Forest 0.845322 0.709323 0.743582
Näıve Bayes 0.830406 0.672542 0.711865
K-Nearest Neighbor 0.797973 0.619668 0.665580

The best result was obtained with the Logistic Regression classifier and
the feature set 13 (1-2- gram + word2vec + custom features) achieving an
F1-score of 0.826990 while ensuring acceptable values for precision and recall.

The main goal was to create a system capable of extracting drug-drug
interaction information from unstructured data. To that end, a model was
created that can read a sentence containing two or more drugs and determine
whether or not two drugs interact by examining all of the possible drug pair
combinations in the sentence. The proposed information extraction system
implied the training of a DNER model for identifying drug/chemical entities
and a machine learning classifier for relation extraction between two drug
entities.

The resulting NER model can identify drug/chemical entities in plain text
as B-Chemical and I-Chemical, achieving an F1-score, Precision and Recall of
89.32%, 88.53% and 90.13%, respectively.

Concerning the relation extraction model, it consists of an NLP and
machine learning-based DDI detection system. For the positive class, the model
achieved Precision, Recall, and F1-score of 45%, 80%, and 58%, respectively.
That is, of all sentences classified as positive only 45% represented an actual
drug-drug interaction, whereas 80% of all sentences representing a drug-drug
interaction were successfully predicted. Concerning the overall performance
of the classifier, the model achieved a Macro Average F1-score of 72% and a
Weighted Average F1-score of 82%.

By analyzing the contribution of each feature, it was noticed that from all
individual types of text vectorization techniques explored, the n-gram model
approach was the one to achieve better results as this approach maintains
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word order being able to capture the sentence’s semantic meaning. The word
embedding approaches, Word2Vec and Doc2Vec, did not perform as well as
expected, although they have the capability of capturing semantic and syntac-
tic relationships between words and also the context of words in a document,
preserving most of the relevant information about a text corpus. This can
be explained by the relatively small dataset size that was used to train the
embedding model. Thus, it would be more appropriate to use pre-trained word
embeddings like Google’s Word2Vec and Stanford’s Glove, as these are trained
on large datasets, saved, and then used for solving other tasks.

When comparing the obtained results with other works focused only on the
DDI detection task, the model achieved a close result, slightly lower than the
F1-score of 76.9% achieved by [26]. However, the authors only used sentences
with two drug mentions from the DDI corpus; thus, the dataset used for the
experiment was not the same. Also, in [27] a work where an SVM classifier
trained for the detection of DDIs achievied an F1-score of 83.48% and 59.17%,
when testing only on the DDI corpus’s DrugBank and MedLine documents,
respectively. Thus, the dataset used by the authors for the experiment was
also not the same, as in the context of this work was used the benchmark DDI
corpus with its original division for train and test.

5 Conclusions and Future Work

The severity of polypharmacy and the development of new drugs, combined
with a large amount of information on DDIs being unstructured, is the moti-
vation for developing a solution that allows keeping an up-to-date database
about drug-drug interactions. As a result, the information extraction system
developed is intended to keep up with the growing volume of knowledge sur-
rounding DDIs. The traditional manual extraction is time-consuming and can
result in outdated information.

We propose a system that intents to receive unstructured text, identify in
it, sentence by sentence, drug entities and then determine whether there are
interactions between them. This system has two major limitations. The first
one is in the input, it is only possible to introduce two drug names. Then, the
classification model will only provide a binary output identifying if it exists
interaction between the drugs, with an F1-score of 0.826990. This result was
obtained with a logistic regression classifier which corresponds to the best pre-
cision and recall values (cf. Table 5). This process involved the application
of text mining through NLP techniques and the training of a machine learn-
ing classifier for relation extraction between drugs. One of the challenges in
developing the classification model was the low number of sentences labeled
as interaction. Only about 30.5% of the annotated relations had an identified
interaction. The system generates structured data in the form (drug1, drug2,
label) that can be inserted into a database containing information acquired
from three distinct data sources (DrugBank, DDinter and Infomed). Following
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the DNER step, only the most recent occurrence of DRUG1 or DRUG2 is con-
sidered in sentences containing multiple references to these terms. Therefore,
we assume that this system can be incorporated into a recommendation sys-
tem that supports the Drugs Prescription Act in order to determine whether
or not there is an interaction between the two drugs.

Other text vectorization techniques, such as pre-trained word embeddings,
must be evaluated despite the model’s promising performance. Other methods,
including the application of deep learning models, specifically transformers
models, may also be explored.

We are developing a recommendation system with the intention of using it
to enhance a prescription software with the ability to identify interactions in
real time, which can be useful during the medical act.

Acknowledgments

This work has been supported by FCT—Fundação para a Ciência e Tecnologia
within the R&D Units Project Scope: UIDB/00319/2020

References

[1] Zhao, Z., Yang, Z., Luo, L., Lin, H., Wang, J.: Drug drug interaction
extraction from biomedical literature using syntax convolutional neural
network. Bioinformatics 32(22), 3444–3453 (2016)

[2] Xiong, G., Yang, Z., Yi, J., Wang, N., Wang, L., Zhu, H., Wu, C., Lu,
A., Chen, X., Liu, S., et al.: Ddinter: an online drug–drug interaction
database towards improving clinical decision-making and patient safety.
Nucleic acids research 50(D1), 1200–1207 (2022)

[3] Kaski, J.C., Kjeldsen, K.P.: The ESC Handbook on Cardiovascular Phar-
macotherapy. European Society of Cardiology. Oxford University Press,
??? (2019)
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