Cellular redox state affects biofilm formation by a surfactin -dependent manner in Bacillus amyloliquefaciens?

Huiwan Sun¹, Fengmei Si², Xiuyun Zhao², and Gaofu Qi²

¹Huazhong Agricultural University ²Affiliation not available

February 10, 2023

Abstract

Surfactin is a signal to trigger biofilm formation against harsh environments. Generally, harsh environments can result in change of the cellular redox state to induce biofilm formation, but we know little about whether the cellular redox state influences biofilm formation via surfactin. Here, the reductant glucose could reduce surfactin and enhance biofilm formation by a surfactinindependent way. The oxidant H2O2 led to a decrease of surfactin accompanying with weakened biofilm formation. Spx and PerR were both necessary for surfactin production and biofilm formation. H2O2 improved surfactin production but inhibited biofilm formation by a surfactin-independent manner in Δ spx, while it reduced surfactin production without obvious influence on biofilm formation in Δ perR. The ability against H2O2 stress was enhanced in Δ spx, but weakened in Δ perR. Thereby, PerR was favorable for resisting oxidative stress, while Spx played a negative role in this action. Knockout and compensation of rex also supported that the cells could form biofilm by a surfactin-independent way. Collectively, surfactin is not a unique signal to trigger biofilm formation, and the cellular redox state can influence biofilm formation by a surfactin- dependent or independent way in B. amyloliquefaciens.

Cellular redox state affects biofilm formation by a surfactin - dependent manner in *Bacillus amyloliquefaciens*?

Running title: Redox state, surfactin and biofilm

Huiwan Sun, Fengmei Si, Xiuyun Zhao, Gaofu Qi^{*}

College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China

Abbreviation

NADH/NAD+ (Nicotinamide adenine dinucleotide)

IPTG (Isopropyl -D-Thiogalactoside)

* Corresponding author.

Address: Huazhong Agricultural University, Wuhan 430070, China

Tel: +86-15387157411

Email: qigaofu@mail.hzau.edu.cn

Abstract

Surfactin is a signal to trigger biofilm formation against harsh environments. Generally, harsh environments can result in change of the cellular redox state to induce biofilm formation, but we know little about whether the cellular redox state influences biofilm formation via surfactin. Here, the reductant glucose could reduce surfactin and enhance biofilm formation by a surfactin-independent way. The oxidant H_2O_2 led to a decrease of surfactin accompanying with weakened biofilm formation. Spx and PerR were both necessary for surfactin production and biofilm formation. H_2O_2 improved surfactin production but inhibited biofilm formation by a surfactin-independent manner in Δspx , while it reduced surfactin production without obvious influence on biofilm formation in $\Delta perR$. The ability against H_2O_2 stress was enhanced in Δspx , but weakened in $\Delta perR$. Thereby, PerR was favorable for resisting oxidative stress, while Spx played a negative role in this action. Knockout and compensation of rex also supported that the cells could form biofilm by a surfactin-independent way. Collectively, surfactin is not a unique signal to trigger biofilm formation, and the cellular redox state can influence biofilm formation by a surfactin- dependent or independent way in B.amyloliquefaciens.

Keywords: Bacillus amyloliquefaciens, redox, surfactin, biofilm, Spx, PerR.

1 Introduction

Bacillus species like B. subtilis, B. amyloliquefaciens, B. licheniformis, are Gram-positive, spore-forming bacteria widely distributed in soil, water, air, etc. During times of environmental insult such as poor nutrient, the bacteria undergo developmental changes leading to quorum sensing responses, by which the cells form multicellular communities known as biofilm [1,2]. Now it is known that upon harsh environment, the cells produce a secondary metabolite called surfactin, which is a nonribosomal lipopeptide biosynthesized by a multienzyme system encoded by the gene cluster srfA [3-5], as a signal to trigger biofilm formation [6-8].

Generally, harsh environments lead to a change of cellular redox state, which is an important parameter to affect surfactin production and biofilm formation [9]. For example, *B. subtilis* can switch from an unicellular state of biofilm via responding to a redox switch¹. The NADH/NAD⁺ ratio, or another indicator of the cellular redox potential, is sensed by regulatory pathways to control features of colony wrinkling. Also, colony development can both respond to and affect redox homeostasis [9]. For instance, isocitrate dehydrogenase is capable of regulating biofilm formation by modulating intracellular redox homeostasis [10]. Also, the cells are capable of transferring glucose to acetoin as a response to enough carbon source and reducing power, which are essential for robust biofilm growth and conserving redox balance [11,12].

Despite importance of redox, we know little about how the shifts in redox state regulates biosynthesis of surfactin for triggering biofilm formation. Surfactin production can be regulated by the cellular redox status via some regulatory proteins such as Spx and PerR. Spx interacts with RNA polymerase to control transcription in response to oxidative stress [13,14], which plays a key role in maintaining the redox homeostasis exposed to disulfide stress, ensuring an immediate response to oxidative stress [15]. The redox state of cytoplasm is the major effector driving Spx activation, which activity is enhanced by reversible formation of a disulfide bond and thereby directly modulated by the intracellular redox status [16]. The transcription of spx is negatively regulated by the repressor PerR and is positively regulated by a sigma factor of SigB [15]. SigB is a general stress response transcription factor [17], and PerR senses H_2O_2 to mediate adaptation to peroxide stress. PerR also represses oxidative stress resistance genes including the catalase katA, alkylhydroperoxide reductase ahpC, iron uptake repressor (fur), and perR itself [18,19]. After oxidation PerR is inactivated, so the oxidative response genes including spx are capable of being successfully expressed. Thereby, PerR plays an auxiliary role in coordinating the disulfide stress responses [19].

Previously, we reported that mutation of *srfA* resulted in a very seriously defective growth and biofilm formation but could be restored by glucose in *B. amyloliquefaciens* WH1 [20]. Glucose an its intermediate metabolites such as NADH are reductive substances, we hypothesized that these reductants might influence biofilm formation via some regulators such as Spx and PerR to regulate surfactin production as a response to the change of ceullular redox homeostasis. In this study, we characterized the interplay among redox

state, surfactin production and biofilm formation, and found the redox status influenced by oxidants and reductants could affect biofilm formation via regulation of surfactin production in B. amyloliquefaciens. Moreover, some reductants such as glucose could also influence biofilm formation by a surfactin-independent way in this bacterium.

2 Materials and Methods

2.1 Ethics statement

In vivo experiments with Balb/C mice were carried out according to guidelines approved by Huazhong Agricultural University.

2.2 Bacterial strains, animals and materials

Experiments were performed with the strains listed in Table S2 (Supplementary materials). Materials for DNA manipulation were purchased from Takara Bio (China). Other chemicals were of analytical grade supplied by Sinopharm Chemical Reagent (China). Mice (Balb/C, male, 6-weeks old) were purchased from the Laboratory animal center in our University, Wuhan, China.

2.3 Construction of mutant and complementary strains

The gene spx, perR, aphC, sodA, sigB and rex was deleted by double crossover homologous recombination, respectively [35]. The detailed method to construct mutant strains were described in the supplementary materials. The plasmids were constructed for compensation of spx, perR and rex, respectively. Briefly, the gene spx, perR and rex with their own promoters and terminators were amplified from the genomic DNA by PCR with the primers listed in Table S3 (Supplementary materials), cloned into T2(2)-ori joined by BamHI and XbaI restriction sites, then the constructed plasmids were used for transformation of Δspx , $\Delta perR$ and Δrex for construction of the complementary strain C- Δspx , C- $\Delta perR$ and C- Δrex respectively.

2.4 Determining growth

Strains were cultured in 5 ml LB medium at 37 °C and 180 rpm overnight, then 2 μ l broth of different strains were used for inoculating 200 μ l fresh LB medium, or LB medium added with different concentrations of glucose (0, 2, 5, 10 and 20 g/L) in 96-well microplates. The microplates were cultured at 37 °C and 180 rpm, and the growth curve of strains were recorded with an automatic growth curve analyzer (Bioscreen Cpro, Finland).

2.5 Analysis of hemolytic activity

The hemolytic activity in WH1 and $\Delta srfA$ were determined with agar plates containing sheep blood cells. Briefly, 1 µL fresh broth of WH1 or $\Delta srfA$ was used for inoculation of agar plates containing sheep blood cells, incubated at 37 °C for 48 h, then the hemolytic activity was determined to evaluate surfactin production in the strains [20].

The hemolytic activity of broth was also used to assay surfactin production in different strains [36]. The blood was collected from mice, added into 10 ml Alsever's solution (glucose 2.05 g, sodium citrate 0.8 g, NaCl 0.42 g and citric acid 0.055 g in 100 ml water, pH 6.1), then centrifuged at 300 g for 8 min. The blood cells were collected, washed once with 10 ml Alsever's Solution, then suspended with saline solution to 2% (v/v). The broth of different strains were centrifuged at 12,000 rpm for 5 min, then the supernatant was collected and mixed with the same volume of 2% red blood cells after serial dilution. After incubation at 37 °C for 1 h, the mixture was centrifuged at 300 g for 2 min, then the supernatant was collected for determining the OD₅₄₀ value. 2% red blood cells were incubated with pure water as positive control, and incubated with the relative medium for culturing bacterial strains as negative control. The hemolytic rate was calculated to assess surfactin production in different strains as the following formula: the hemolytic rate = (OD₅₄₀s-OD₅₄₀n)/OD₅₄₀p x 100%. OD₅₄₀s: the OD₅₄₀ value of sample; OD₅₄₀n: the OD₅₄₀ value of negative control; OD₅₄₀p: the OD₅₄₀value of positive control.

2.6 Detection of biofilm

WH1, mutant strains and complementary strains were cultured on LB agar plates, then the morphology of colonies were observed by microscope. Robust pellicles (floating biofilms) were determined in multiwell (24-well) plates with 2 ml LB medium each well [37]. Briefly, 20 μ L of the fresh broth of each strain was used for inoculating 2 ml LB medium, or LB medium containing glucose (0, 2, 5, 10 and 20 g/L)or H₂O₂ (0, 0.2, 0.5, 1.0, 2.0 and 4.0 mM) in each well of Multiwell (24-well) plates, then cultured at 28°C for 48 h to allow float biofilms formation.

2.7 qRT-PCR

The genes correlated with biosynthesis of surfactin, including srfA, sfp, spx and perR were analyzed by qRT-PCR. Single colony of each strain was selected for inoculating LB medium and cultured at 37 °C overnight, then the broth was transferred into fresh LB medium, or LB medium added with glucose (10 g/L) or H₂O₂ (2.0 mM) at a ratio of 1% (v/v). After incubation at 37 °C for 24 h, the broth was collected for isolating mRNA with RNeasy Mini Kit (Qiagen, German). cDNA was produced by reverse transcription with 1 µg RNA, iScript Select cDNA Synthesis Kit and random oligonucleotide primers. qRT-PCR was performed with cDNA, SsoAdvanced Universal SYBR Green Supermix (Bio-Rad) and target-specific primers in Table S4 (Supplementary materials) in CF96 Real-Time System (Bio-Rad) as following: 1 cycle of 95 °C for 5 min, 40 cycles of 95°C for 10 s, 45 °C for 20 s and 70°C for 30 s. All expression data were normalized to the copy number of 16S rRNA in each sample [38].

2.8 Western blot analysis

The *perR* gene was amplified by PCR with primers *perR* -F (CG*GGATCC* ATGGCTGCACAT - GAATTAAA) and *perR* -R (CC*CTCGAG* GTGGTTCTCTTTTTGGAAC), subcloned into the pET28a vector, then the recombinant plasmid was transformed into *Escherichia coli* BL21. The expression of PerR was induced by IPTG (2 mM), purified by Ni-NAT column (Qiagen, German), then used for intraperitoneal immunization of mice at 50 μ g/mouse for 3 dosages after emulsification with Freund's adjuvant (Sigma, USA) [38]. After one week, the sera were collected for the following Western blot assay.

The cell pellets were prepared as the method described above for isolating mRNA. The cell pellets were lyzed by ultrasonification, then the total proteins concentration of each sample was adjusted to 10 μ g/ μ L. After being mixed with sample buffer, 10 μ L of each protein sample was separated by 15% SDS-PAGE gel, transferred onto the polyvinylidene fluoride (PVDF) membrane (Millipore, USA), then incubated with the antisera at a dilution of 400 x for 1 h. After extensive wash, the membrane was incubated with goat anti-mouse IgG labeled with Horseradish Peroxidase (HRP) (Boster Biological Technology, China) at a dilution of 5,000 x for 30 min. After that, the membrane was washed, reacted with BeyoECL Star (Beyotime Biotechnology, China), then scanned by Monad QuickChemi 5100 (Zhuhai, China) [38].

2.9 Statistical analysis

All experiments were repeated in triplicates. Data between two groups were compared by a student t-test. Differences among multiple groups were analyzed by Analysis of Variance (ANOVA). * and ** mean a significant and very significant difference between two groups, respectively. Different capital letters indicate significant differences among different groups.

3 Results

3.1 Hemolytic activity of surfactin

Surfactin has strong hemolytic activity [20]. We detected the hemolytic activity of surfactin using the agar plates containing sheep blood cells, and found WH1 showed obvious hemolytic activity around the colony, but the mutant strain $\Delta srfA$ without surfactin production lost this ability. We further determined the hemolytic activity in broth, and found it was also disappeared in $\Delta srfA$ (Fig. S1 in supplementary materials). Thereby, the hemolytic activity could be used for representation of the surfactin production in different strains.

3.2 Effects of reductants on surfactin production and biofilm formation in WH1

Glucose at high concentrations (e.g. 10 or 20 g/L) significantly increased the biomass in 24 h, while it significantly delayed and reduced the surfactin production in a concentration-dependent effect (Fig. 1A). We detected the genes transcription related with surfactin production in different strains using qRT-PCR. With glucose, the transcription of genes including srfAB, sfp that encodes 4'-phosphopantetheinyl transferase, spx and perR, were all significantly down-regulated (Fig. 1B), consistent with the result that these reductants led to a significant decrease of surfactin production in WH1.

The *perR* gene was amplified from WH1, then ligated into pET28a for expression. After induction with IPTG, the recombinant PerR in *E. coli* was purified by Ni-NTA column (Fig. S2 in supplementary materials). The purified rPerR was used for immunization of mice for producing antibodies, then the antisera were collected for Western blotting assay. The cells were collected after being cultured for 24 h, lyzed by ultrasonication, then the total cell proteins were adjusted to the same concentration for Western blotting assay. The result showed the content of PerR was decreased in the group added with 10 g/L glucose compared to WH1, consistent with the *perR* transcription described above (Fig. 1B). rPerR was used as control, which showed a higher molecular weight because it includes an extra sequence containing His-tag from the vector.

Glucose was capable of enhancing biofilm formation in a concentration-dependent manner (Fig. 1C). Interestingly, glucose could also restore and enhance biofilm formation in the strain $\Delta srfA$ (Fig. 1D), which had no surfactin production at all as described above.

3.3 Effects of oxidants on surfactin production and biofilm formation in WH1

 H_2O_2 at high concentrations had negative influences on the cell growth. Consistently, H_2O_2 led to a decrease of surfactin production in a dose-dependent manner (Fig. 2A). Accompanying with reduced surfactin production, biofilm formation was also delayed and weakened. At 24 h, float biofilm was unobserved in all groups added with H_2O_2 . At 36 h, the group added with 0.2 or 0.5 mM H_2O_2 was observed with growing biofilm. At 48 h, float pellicle was still unobserved in the group added with 2.0 or 4.0 mM H_2O_2 (Fig. 2B). However, H_2O_2 had no obvious influence on biofilm formation in $\Delta srfA$ because this strain lost the ability to produce biofilm in a surfactin-dependent manner (Fig. 2C).

With H_2O_2 , the transcription of srfAB, sfp, spx and perR were all significantly down-regulated (Fig. 2D), consistent with the result that H_2O_2 led to a significant decrease of surfactin production in WH1. Western blot analysis showed that the content of PerR was decreased in the group added with 2 mM H_2O_2 (Fig. 2E), also consistent with the result of perR transcription level described above.

3.4 Effects of reductants on surfactin production and biofilm formation in Δspx

The spx knockout strain (Δspx) was constructed (Fig. S3 in supplementary materials). Δspx showed a colony morphology with less wrinkles, and displayed a weaker floating pellicle with less wrinkles than WH1 (Fig. 3A). Δspx showed a slightly weaker growth but a significant decrease of surfactin production compared to WH1 (Fig. 3B). The weakened ability to form biofilm in Δspx could be partially restored by compensation of spx, and the reduced surfactin production was also restored in the complementary strain (C- Δspx) (Fig. 3A&B). The transcription of srfAB was significantly decreased in Δspx compared to WH1. The PerR protein was slightly decreased in Δspx compared to WH1, consistent with the transcription level of perR in Δspx (Fig. 3C).

Just like that in WH1, glucose at high concentrations (e.g. 10 or 20 g/L) significantly improved the cell growth but significantly inhibited the surfactin production in Δspx (Fig. 3D). qRT-PCR showed that glucose resulted in a significant down-regulation of genes transcription like srfAB, sfp and perR. Western blot analysis showed that glucose could slightly increase the content of PerR in Δspx (Fig. 3G).

Like that in WH1, glucose was favorable for forming a robuster floating pellicle with more wrinkles in Δspx (Fig. 3F). Thereby, glucose affected the biofilm formation by a surfactin-independent manner.

3.5 Effects of oxidants on surfactin production and biofilm formation in Δspx

 H_2O_2 had no significant influence on the cell growth, but significantly improved the surfactin production in Δspx (Fig. 4A), very different from that in WH1. qRT-PCR showed that H_2O_2 could up-regulate the transcription of *sfp* and *perR*. *C* onsistent with the result that these two oxidants were able to improve the surfactin production in Δspx . Western blot assay also showed that H_2O_2 could slightly increase the PerR protein in Δspx (Fig. 4B&D).

The biofilm formation in Δspx was inhibited by H_2O_2 in a dose-dependent manner, just like that in WH1 (Fig. 4C).

3.6 Effects of reductants on surfactin production and biofilm formation in $\Delta perR$

The *perR* gene knockout strain ($\Delta perR$) was constructed (Fig. S3 in supplementary materials). $\Delta perR$ displayed a flat colony morphology and defective floating pellicle without wrinkles (Fig. 5A). $\Delta perR$ showed a weaker growth than WH1, and surfactin production was significantly decreased in $\Delta perR$ but could be partially restored by compensation of *perR* (Fig. 5B). However, the colony morphology and float pellicle could not be well restored in the complementary strain (C- $\Delta perR$) (Fig. 5A). Consistently, qRT-PCR showed that knockout of *perR* led to a significant decrease of *srfAB* transcription (Fig. 5B).

Glucose had obvious influence on the cell growth in $\Delta perR$. In 12 h, glucose promoted the cell growth at all concentrations used here. At 24 h, only 10 or 20 g/L glucose improved the cell growth. Similar to WH1, glucose reduced the surfactin production by a dose-dependent manner in $\Delta perR$ (Fig. 5C).Just like that in WH1 and Δspx . Unexpectedly, the transcription of srfAB was significantly up-regulated in the group added with glucose(Fig. 5D). Glucose was favorable for forming a robuster floating pellicle with more wrinkles in $\Delta perR$ (Fig. 5E), consistent with that in WH1 and Δspx .

3.7 Effects of oxidants on surfactin production and biofilm formation in $\Delta perR$

 H_2O_2 at 2 mM or 4 mM significantly inhibited the cell growth in $\Delta perR$, non-consistent with that in WH1 or Δspx . Similar to WH1 but different from Δspx , H_2O_2 at 2 mM or 4 mM significantly reduced the surfactin production in $\Delta perR$ (Fig. 6A). H_2O_2 significantly up-regulated the transcription of srfAB, sfp and spx, while FeCl₃ mainly increased the transcription of srfAB in $\Delta perR$ (Fig. 6B). H_2O_2 obviously inhibited the biofilm formation (Fig. 6C).

3.8 Roles of aphC and sodA in surfactin production and biofilm formation

The aphC and sodA gene knockout strains were constructed, respectively (Fig. S3 in supplementary materials). Deletion of aphC and sodA had no significant influence on the cell growth, as well as the surfactin production at most of time points except for 48 h. At this time point, $\Delta sodA$ showed a significant decrease of surfactin production compared to WH1. The colony morphology and biofilm formation in $\Delta aphC$ and $\Delta sodA$ were both similar to WH1 (Fig. S4 in supplementary materials).

3.9 Influence of rex and sigB on surfactin production and biofilm formation

We further deleted the genes for globally regulating anti-oxidation reactions such as *rex* and *sigB* in WH1 (Fig. S3 in supplementary materials). The colony morphology and biofilm in Δrex and $\Delta sigB$ were both similar to WH1 (Fig. 7A). The growth of $\Delta sigB$ was also similar to WH1, but the growth of Δrex was obviously weaker than WH1 (Fig. 7B).

Deletion of *rex* resulted in a significant decrease of surfactin production when compared to WH1 at all time points. At 12 h, the biomass of Δrex was similar to WH1, but the surfactin production was significantly lower than WH1 (Fig. 7C). Knockout of *sigB* also led to a significant decrease of surfactin production at 36 and 48 h when compared to WH1 (Fig. 7C). The transcription of *perR* was significantly increased in Δrex , while the transcription of *srfAB* and *perR* were both significantly increased and the transcription of *spx* was significantly decreased in $\Delta sigB$ compared to WH1 (Fig. 7D). Western blot analysis also showed that the protein PerR was slightly increased in Δrex and $\Delta sigB$ when compared to WH1 (Fig. 7D).

We constructed the rex complementary strain C- Δrex (Fig. S3 in supplementary materials), and found it

could form a robuster biofilm than Δrex and WH1 (Fig. 7A), but unfortunately the surfactin production was not well restored in C- Δrex when compared to WH1 (Fig. 7C). This result also confirmed that the signal to trigger biofilm formation is not always dependent on surfactin in *B. amyloliquefaciens*.

4 Discussion

In the environment, the cells undergo constant shifts in redox state [12]. It has been revealed that the redox balance influences the community structural development in biofilms [10,21]. Glucose is not only a carbon source but also a reductant for microorganisms. Here, we found that glucose significantly increased the biomass but reduced the surfactin production in *B. amyloliquefaciens* WH1 and its mutant strains like Δspx and $\Delta perR$, consistent with previous report [22]. If glucose is enough, the metabolism of glucose to produce NADH is vigorous to keep the cytoplasm in a reductive state [23,24]. In this study, although glucose was negatively correlated with surfactin production, it was positively correlated with biofilm formation by a dose-effect manner for WH1, Δspx and $\Delta perR$, suggesting that glucose can affect biofilm formation by a surfactin-independent pathway in *B. amyloliquefaciens*. This could also be verified by the result that $\Delta srfA$ was also able to form a robuster float pellicle in the presence of glucose although it was unable to produce surfactin. In the presence of enough glucose, the cells grew vigorously, and a substantial increase in biomass robustness was correlated with an increase of genes expression for producing matrix [2,9,25,26]. As a result, the biofilms exhibited a strikingly wrinkled appearance, which is thought to maximize access to oxygen by increasing the surface to volume ratio [12,27].

 H_2O_2 is an oxidant containing reactive oxygen, which can derepress the *perR* regulon including *srfA* to promote surfactin production [19,28]. However, H_2O_2 led to a significant decrease of surfactin accompanying with a decrease of genes transcription including *srfAB*, *sfp*, *spx* and *perR* in WH1. Consistently, the biofilm formation was delayed and weakened in the presence of H_2O_2 [1].

Spx controls the genes transcription responded to oxidative stress, playing a key role in maintaining the cellular redox homeostasis exposed to disulfide stress [14-16]. Also, Spx has been reported to repress the transcription of srfA in *B. subtilis* [4,15]. Here, knockout of spx resulted in a significant decrease of surfactin accompanying with a decrease of srfAB transcription. This result suggested that spx plays a positive role in biosynthesis of surfactin, different from previous report [15]. Δspx showed a similar response to reductants, but displayed a very different response to oxidants from WH1, implying that Spx mainly responses to oxidative rather than reductive stress [16]. Δspx was more resistant to H₂O₂ stress than WH1. Perhaps, Spx repressed some anti-oxidation genes for antagonizing H₂O₂ [4,15], so deletion of spx was favorable for expression of the anti-oxidation enzymes in *B. amyloliquefaciens*. Moreover, H₂O₂ led to a significant decrease of srfAB in Spx and perR in WH1, but resulted in a significant increase of surfactin accompanying with up-regulation of the transcription of sfp and perR in Δspx . This could be explained that the principal regulator for biosynthesis of surfactin is ComA, and Spx plays a role in fine-tuning[3,4,28]. For this reason, although deletion of spx reduced the srfA transcription, H₂O₂ could improve ComA or other regulators to increase the surfactin production in Δspx .

Spx has been reported to inhibit biofilm formation [30], and inactivation of spx can enhance the biofilm formation in *B. subtilis* [31]. However, Δspx showed a colony morphology and biofilm with less wrinkles but could be partially restored by compensation of spx, indicating that spx plays a positive role in the biofilm formation here. Unexpectedly, H_2O_2 significantly increased surfactin production but inhibited biofilm formation in Δspx . H_2O_2 can be catalyzed to O_2 , which suppresses production of extracellular matrix [1]. Thereby, the biofilm formation in Δspx was dependent on oxygen rather than surfactin. This was also supported by the result that glucose could enhance biofilm formation although it inhibited surfactin production in Δspx . The key factor was O_2 , which was rich in the presence of enough H_2O_2 and was poor with enough glucose.

PerR senses H_2O_2 by Fe-mediated histidine oxidation resulting in an inactive style [29,32]. Here, $\Delta perR$ showed a different colony morphology, defective floating pellicle without wrinkles, and weaker growth com-

pared to WH1, consistent with previous report [19]. Knockout of perR led to Spx accumulation [15], resulting in a failure to produce surfactin in *B. subtilis* [16]. Here, surfactin was decreased in $\Delta perR$, but could be partially restored by compensation of *perR*. The results confirmed that *perR* was positive for surfactin production in *B. amyloliquefaciens* [28]. Interestingly, compensation of *perR* could not restore colony morphology and float biofilm.

 $\Delta perR \ s$ howed a similar response to reductants, but displayed a very different response to oxidants from WH1 and Δspx , suggesting that PerR mainly responded to oxidative rather than reductive stress [16]. H₂O₂ inhibited the growth of $\Delta perR$, non-consistent with WH1 and Δspx . WH1 was only sensitive to 4 mM H₂O₂, while Δspx was not sensitive to H₂O₂ at all concentrations used here. Thereby, Δspx was more resistant, while $\Delta perR$ was more sensitive to H₂O₂ stress. Possibly, deletion of spx was favorable for expression of the anti-oxidation genes like katA, aphC, sodA, etc, but deletion of perR was unfavourable for these genes transcription. However, it has been reported that the perR null strain of B. subtilis is resistant to H₂O₂ [17-19], different from our results. Also, H₂O₂ improved surfactin production in Δspx , while reduced it in $\Delta perR$. The float biofilm in $\Delta perR$ was impaired so it could not respond to H₂O₂ via a surfactin-dependent manner. All of the above results suggested that the biofilm formation in $\Delta perR$ was not dependent on surfactin.

Rex senses variation of NAD⁺/NADH to balance the intracellular redox reactions [33]. Here, Δrex grew significantly weaker, and showed a significant decrease of surfactin production than WH1. Compensation of *rex* could form a robuster biofilm, but could not efficiently restore the surfactin production compared to WH1. This result also suggested that *B.amyloliquefaciens* could form biofilm by a surfactin-independent way. The *spx* transcription is positively regulated by SigB [15,34]. Here, knockout of *sigB* also led to a significant decrease of *spx* transcription and surfactin production in *B. amyloliquefaciens*.

In *B. amyloliquefaciens*, the reductant glucose could reduce surfactin and enhance biofilm formation by a surfactin-independent way. The oxidant H_2O_2 led to a decrease of surfactin accompanying with weakened biofilm formation. H_2O_2 improved surfactin production but inhibited biofilm formation by a surfactin-independent manner in Δspx . Moreover, Δspx was more tolerant to H_2O_2 stress than WH1. PerR was essential for surfactin production and biofilm formation, and knockout of *perR* led to a significant decrease of surfactin and very defective biofilm thus it could not respond to H_2O_2 via a surfactin-dependent manner. Contrary to Δspx , H_2O_2 reduced surfactin production, and the ability against H_2O_2 stress was weakened in $\Delta perR$. Collectively, PerR is favorable for resisting oxidative stress, while Spx plays a negative role in this action. Surfactin is not a unique signal to trigger biofilm formation, and the cellular redox state can influence biofilm formation by a surfactin - dependent or - independent way in *B. amyloliquefaciens*.

Acknowledgments

Project 31870030 supported by National Natural Science Foundation of China.

AUTHOR CONTRIBUTIONS

F.S. and H.S. performed experiments and analysed data. X.Z. analysed data. G.Q. designed experiments, analysed data and wrote the paper.

COMPETING INTERESTS

The authors declare no competing interests.

Data availability

All relevant data are provided in the article, Supplementary information, or available from the corresponding author upon reasonable request.

Reference

[1] Kolodkin-Gal, I. et al. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase. Genes Dev. 27, 887-99 (2013).

[2] Arnaouteli, S. et al. Bifunctionality of a biofilm matrix protein controlled by redox state. Proc. Natl Acad. Sci. USA 114, E6184-E6191 (2017).

[3] Stefanic, P. & Mandic-Mulec, I. Social interactions and distribution of *Bacillus subtilis* pherotypes at microscale. J. Bacteriol. 191, 1756-1764 (2009).

[4] Oslizlo, A., Stefanic, P., Dogsa, I. & Mandic-Mulec, I. Private link between signal and response in Bacillus subtilis quorum sensing. Proc. Natl Acad. Sci. USA 111, 1586-1591 (2014).

[5] Qin, Y. et al. Heterogeneity in respiratory electron transfer and adaptive iron utilization in a bacterial biofilm. Nat. Commun. 10, 3702 (2019).

[6] Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. & Kolter, R. Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 11, 157-168 (2013).

[7] Even-Tov, E. et al. Social evolution selects for redundancy in bacterial quorum sensing. PLoS Biol. 14, e1002386 (2016).

[8] Pollak, S. et al. Facultative cheating supports the coexistence of diverse quorum-sensing alleles. Proc. Natl Acad. Sci. USA 113, 2152-2157 (2016).

[9] Okegbe, C., Price-Whelan, A. & Dietrich, L.E. Redox-driven regulation of microbial community morphogenesis. Curr. Opin. Microbiol. 18, 39-45 (2014).

[10] Zhao, L. et al. Isocitrate dehydrogenase of Bacillus cereus is involved in biofilm formation. World J. Microbiol. Biotechnol. 37, 207 (2021).

[11] Pisithkul, T. et al. Metabolic Remodeling during Biofilm Development of Bacillus subtilis. mBio. 10, e00623-19 (2019).

[12] Arjes, H.A. et al. Biosurfactant-mediated membrane depolarization maintains viability during oxygen depletion in Bacillus subtilis. Curr. Biol. 30, 1011-1022.e6 (2020).

[13] Lin, A.A. & Zuber, P. Evidence that a single monomer of Spx can productively interact with RNA polymerase in Bacillus subtilis. J. Bacteriol. 194, 1697-707 (2012).

[14] Lin, A.A., Walthers, D. & Zuber, P. Residue substitutions near the redox center of Bacillus subtilis Spx affect RNA polymerase interaction, redox control, and Spx-DNA contact at a conserved cis-acting element. J. Bacteriol. 195, 3967-78 (2013).

[15] Rochat, T. et al. Genome-wide identification of genes directly regulated by the pleiotropic transcription factor Spx in Bacillus subtilis. Nucleic Acids Res. 40, 9571-83 (2012).

[16] Schäfer, H. & Turgay, K. Spx, a versatile regulator of the Bacillus subtilis stress response. Curr. Genet. 65, 871-876 (2019).

[17] Duarte, V. & Latour, J.M. PerR vs OhrR: selective peroxide sensing in Bacillus subtilis. Mol. Biosyst. 6, 316-23 (2010).

[18] Ma, Z., Lee, J.W. & Helmann, J.D. Identification of altered function alleles that affect Bacillus subtilis PerR metal ion selectivity. Nucleic Acids Res. 39, 5036-44 (2011).

[19] Faulkner, M.J., Ma, Z., Fuangthong, M. & Helmann, J.D. Derepression of the Bacillus subtilis PerR peroxide stress response leads to iron deficiency. J. Bacteriol. 194, 1226-35 (2012).

[20] Chen, B., Wen, J., Zhao, X., Ding, J. & Qi, G. Surfactin: A quorum-sensing signal molecule to relieve CCR in *Bacillus amyloliquefaciens*. Front. Microbiol. 11, 631 (2020).

[21] Xu, Z. et al. Antibiotic Bacillomycin D Affects Iron Acquisition and Biofilm Formation in Bacillus velezensis through a Btr-Mediated FeuABC-Dependent Pathway. Cell Rep. 29, 1192-1202.e5 (2019).

[22] Ghribi, D. & Ellouze-Chaabouni, S. Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol. Res. Int. 2011, 653654 (2011).

[23] Bao, T. et al. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3butanediol proportion in Bacillus subtilis. Biotechnol. J. 10, 1298-306 (2015).

[24] Yang, T. et al. Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3butanediol by manipulating NADH levels. Biotechnol. Biofuels 8, 129 (2015).

[25] Dietrich, L.E. et al. Bacterial community morphogenesis is intimately linked to the intracellular redox state. J. Bacteriol. 195, 1371-80 (2013).

[26] Otto, S.B. et al. Privatization of Biofilm Matrix in Structurally Heterogeneous Biofilms. mSystems 5, e00425-20 (2020).

[27] Liu, Y. et al. Root-secreted spermine binds to Bacillus amyloliquefaciens SQR9 histidine kinase KinD and modulates biofilm formation. Mol. Plant Microbe Interact. 33, 423-432 (2020).

[28] Ohsawa, T., Tsukahara, K., Sato, T. & Ogura, M. Superoxide stress decreases expression of srfA through inhibition of transcription of the comQXP quorum-sensing locus in Bacillus subtilis. J. Biochem. 139, 203-11 (2006).

[29] Kim, J.H. et al. The difference in in vivo sensitivity between Bacillus licheniformis PerR and Bacillus subtilis PerR is due to the different cellular environments. Biochem. Biophys. Res. Commun. 484, 125-131 (2017).

[30] Kobayashi, K. Inactivation of cysL Inhibits Biofilm Formation by Activating the Disulfide Stress Regulator Spx in Bacillus subtilis. J. Bacteriol. 201, e00712-18 (2019).

[31] Pamp, S.J., Frees, D., Engelmann, S., Hecker, M. & Ingmer, H. Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococcus aureus. J. Bacteriol. 188, 4861-70 (2006).

[32] Ahn, B.E., Baker, T.A. Oxidization without substrate unfolding triggers proteolysis of the peroxidesensor, PerR. Proc. Natl Acad. Sci. USA 113, E23-31(2016).

[33] Brekasis, D. & Paget, M.S. A novel sensor of NADH/NAD⁺ redox poise in Streptomyces coelicolor A3(2). EMBO J. 22, 4856-65 (2003).

[34] Wang, E. et al. Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex. Mol. Microbiol. 69, 466-78 (2008).

[35] Qi, G. et al. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol. Biofuels 7, 16 (2014).

[36] Dufour, S. et al. Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim. Biophys. Acta 1726, 87-95 (2005).

[37] Müller, S., Strack, S.N., Ryan, S.E., Kearns, D.B. & Kirby, J.R. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures. Appl. Environ. Microbiol. 81, 203-10 (2015).

[38] Wen, J., Zhao, X., Si, F. & Qi, G. Surfactin, a quorum sensing signal molecule, globally affects the carbon metabolism in Bacillus amyloliquefaciens. Metab. Eng. Commun. 12, e00174 (2021).

Figure legends

Fig. 1 Effects of reductants on biomass, hemolytic activity and biofilm formation in WH1. A: Effects of glucose on cell growth (left panel) and surfactin production (right panel) in WH1; B:Effects of glucose on genes transcription in WH1; C: Effects of glucose on biofilm formation in WH1; D: Effects of glucose on biofilm formation in $\Delta srfA$; E :Effects of glucose on PerR expression in WH1. Fig. 2 Effects of oxidants on biomass, hemolytic activity and biofilm formation in WH1. A: Effects of H_2O_2 on cell growth (left panel) and surfactin production (right panel) in WH1; B: Effects of H_2O_2 on biofilm formation in WH1;C: Effects of H_2O_2 on biofilm formation in $\Delta srfA$; D: Effects of H_2O_2 on genes transcription in WH1;

E: Effects of H_2O_2 on PerR expression in WH1.

Fig. 3 Equation of peductants on $\beta_{10\mu\alpha\sigma\varsigma}$, $\eta_{E\mu}$ α_{V} α_{S} α_{S} β_{10} α_{V} α_{S} β_{10} α_{V} α_{S} β_{10} α_{V} α_{S} α_{S} β_{10} α_{S} α_{S}

Fig. 4 Eqgests of of lowers on biomass, hence λ and λ and λ biometric active and λ biometric active $\lambda \sigma \pi \xi$. A:Effects of H₂O₂ on cell growth (left panel) and surfactin production (right panel); B: Effects of H₂O₂ on genes transcription ;C: Effects of H₂O₂ on biofilm formation; D: Effects of H₂O₂ on PerR expression.

Fig. 5 Equation of reductants on biomass, hemolytic actuity and biography population $\Delta \pi \epsilon \rho P$. A:Colony morphology and biofilm formation. C- $\Delta perR$: the perR -complementary strain. B: Growth (up-left panel), hemolytic activity (up-right panel) and genes transcription (down panel). C: Effects of glucose on cell growth (left panel) and surfactin production (right panel); D: Effects of glucose on genes transcription; E: Effects of glucose on biofilm formation.

Φιγ. 6 Εφφεςτς οφ οξιδαντς ον βιομασς, ηεμολψτις αςτιιτψ ανδ βιοφιλμ φορματιον ιν $\Delta \pi \epsilon \rho P$. A: Effects of H₂O₂ on cell growth (left panel) and surfactin production (right panel); B: Effects of H₂O₂ on genes transcription; C:Effects of H₂O₂ on biofilm formation.

Φιγ. 7 Πηενοτψπε ανδ ηεμολψτις αςτιιτψ ιν $\Delta \rho \epsilon \xi$ ανδ $\Delta \sigma i \gamma B$. A: Colony morphology and biofilm.B: Growth curves. C: Hemolytic activity. Left: knockout strains; Right: the *rex*-complementary strain.D : Genes transcription (left panel) and PerR expression (right panel) in Δrex and $\Delta sigB$.

Abbreviation

NADH/NAD+ (Nicotinamide adenine dinucleotide)

IPTG (Isopropyl β-D-Thiogalactoside)

Hosted file

SupplementaryMaterials.docx available at https://authorea.com/users/584799/articles/623823cellular-redox-state-affects-biofilm-formation-by-a-surfactin-dependent-manner-inbacillus-amyloliquefaciens

Hosted file

Fig all.docx available at https://authorea.com/users/584799/articles/623823-cellularredox-state-affects-biofilm-formation-by-a-surfactin-dependent-manner-in-bacillusamyloliquefaciens