
P
os

te
d

on
6

Fe
b

20
23

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

67
56

95
65

.5
11

41
12

8/
v1

|T
hi

s
a

pr
ep

ri
nt

an
d

ha
s

no
t

be
en

pe
er

re
vi

ew
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

Discriminating physiological from non-physiological interfaces in
structures of protein complexes: a community-wide study

Hugo Schweke1, Qifang Xu2, Gerardo Tauriello3, Lorenzo Pantolini3, Torsten Schwede3,
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Manon F. Réau9, Alexandre Bonvin9, Castrense Savojardo10, Pier-Luigi Martelli10, Rita
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Abstract

Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure

1



P
os

te
d

on
6

Fe
b

20
23

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

67
56

95
65

.5
11

41
12

8/
v1

|T
hi

s
a

pr
ep

ri
nt

an
d

ha
s

no
t

be
en

pe
er

re
vi

ew
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The
latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer
protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological
complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts,
making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein
interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological
and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups,
and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an
area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94 respectively, outperforming individual scores
developed by different groups. Additionally, AlphaFold2 engines were shown to recall the physiological dimers with significantly
higher accuracy than the non-physiological set, lending support for the pertinence of our benchmark dataset. Optimizing the
combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising
strategy.
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Abstract

Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric

state from the structure of the crystal lattice represent outstanding challenges. A community-wide

effort was launched to tackle these challenges. The latest resources on protein complexes and

interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein

crystal structures, including a balanced mix of physiological and non-physiological complexes. The

non-physiological complexes in the benchmark were selected to bury a similar or larger interface

area than their physiological counterparts, making it more difficult for scoring functions to

differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously

developed by 13 groups were collected and evaluated for their ability to discriminate between

physiological and non-physiological complexes. A simple consensus score generated using the best

performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were

created. Both approaches showed excellent performance, with an area under the Receiver Operating

Characteristic (ROC) curve of 0.93 and 0.94 respectively, outperforming individual scores developed

by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with

significantly higher accuracy than the non-physiological set, lending support to the reliability our

benchmark dataset annotations. Optimizing the combined power of interface scoring functions and

evaluating it on challenging benchmark datasets appears to be a promising strategy.
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1. Introduction

Protein-protein interactions and multi-protein assemblies, which often include other

macromolecular components such as DNA or RNA, play crucial roles in cellular processes [1] their

disruption or deregulation often leads to disease [2,3]. Consequently, charting these interactions and

elucidating their functions at the molecular and cellular levels have been important goals in

molecular biology and medicine.

Of crucial importance to these endeavors are atomic-resolution 3D structures of these assemblies.

These data are produced by experimental techniques such as X-ray crystallography, cryo-electron

microscopy (cryo-EM), with the resulting structural models deposited into the worldwide Protein

Data Bank (wwPDB) [4]. More recently, predicted structures of protein complexes have also been

produced by deep learning-based methods [5–7]. Moreover, recent technical advances are

facilitating the study of different states of macromolecular assemblies [8,9], varying in compositions

and conformational properties, thereby helping to derive deeper insights into the underlying

functional mechanisms. This, in turn, requires better characterisation of the structural data for these

assemblies in terms of their structural states, their binding interfaces, and the molecular function of

their components.

The formation of dimers and higher order protein assemblies is dependent on the concentrations of

the component proteins and conditions such as pH and ionic strength. Both protein concentrations

and experimental conditions, used to determine the structures of these assemblies by methods such

as X-ray crystallography, often differ from the physiological conditions under which these assemblies

operate in cells. In some cases, the 3D structures of the solved assemblies deposited in the wwPDB

may not represent the physiologically meaningful assembly.

For protein assemblies solved by X-ray diffraction, these problems are compounded by the fact that

proteins form many contacts whose sole function is to stabilize the crystal lattice. Deciding which of

these contacts are physiologically meaningful can be difficult. When the crystal contains only a single

protein chain, the problem of assigning the physiologically meaningful oligomeric state of the protein

(i.e., does it form a homodimer, homotrimer, etc, and through which interfaces?) can be even more

challenging. In general, these assignments are provided by the authors during the deposition process

with the PDB, but nevertheless remain error prone, as they require independent

biophysical/biochemical characterisation, which may yield ambiguous results or be missing

3
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altogether. A significant fraction of protein assemblies solved by X-ray crystallography in the PDB

(18%) are not even associated with a publication [10].

To remedy this problem, computational methods have been developed to infer the oligomeric state

of a protein directly from the intermolecular contacts made by the protein in the solved structure of

the crystal lattice. These methods exploit results from a large body of previous studies that

systematically evaluated the interface properties of native protein complexes and compared them to

those of crystal contacts, considered as representing weak nonspecific interactions [11,12]. The most

widely used methods are PISA [13] and EPPIC [12]. PISA evaluates chemical and structural properties

of interfaces, whereas EPPIC uses geometric measures and sequence conservation, which is often

associated with regions involved in biological function [14].

The corollary of the problem of defining physiological association modes, is to define association

modes that are non-physiological, i.e., that have not been selected by evolution, and would not form

in the cell. As mentioned above, crystal contacts are commonly considered as representing

non-physiological interactions.

The last 20 years have witnessed the development of efficient algorithms to predict the 3D structure

of protein-protein complexes. These include ab-initio docking methods [15,16] and template-based

methods that model the structure of a target complex, using as template the known structure of a

complex formed by related proteins [17,18]. An important component of both procedures are the

scoring functions, These evaluate binding interfaces to single out native complexes from non-native

‘decoy’ candidates [19–22]. The parameters of these scoring functions have typically been optimized

on various benchmark datasets of protein complexes from the PDB.

Prominent examples are the community-wide Docking Benchmark [23–25] which contains the

structures of native protein complexes and those of the corresponding unbound protein

components. An updated version of this benchmark also integrates binding affinity data for a

subset of the complexes [26]. More recently, various datasets of X-ray and modeled structures,

suitable for testing most aspects of docking algorithms are offered by the Dockground resource [27],

whereas customized benchmarks that include large sets of crystal contacts representing

non-physiological association modes in addition to native complexes have been

developed to train and test scoring functions such as EPPIC [12] and PRODIGY [28].
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Non-native binding modes of a given protein pair that are extensively sampled by

docking algorithms are a typical category of non-physiological association modes that

scoring functions need to select against. Two recent benchmarks include a large set of

such ‘decoy’ poses in addition to native complexes. The Scoreset [29] includes non-native

docking poses computed by participants of blind prediction challenges in CAPRI (Critical Assessment,

of Predicted Interaction [30,31]) in addition to the experimentally determined structure of the target

complex. The second benchmark comprises 230 structures of native complexes from the

community-wide benchmark-V5 [26] and 30,000 non-native docking poses generated for each of the

native complexes [32]. Datasets of this type, which contain as many as possible examples of both

native and non-native protein complexes, are a prerequisite for optimizing scoring functions,

including AI-based inference models, capable of distinguishing between the two categories of

complexes.

Here we present a novel approach for defining a benchmark dataset composed of high confidence

examples of 3D structures of both physiological and non-physiological protein complexes, limited to

homodimers at this point. Physiological homodimers are defined using two complementary methods.

These methods rely on the conservation of the 3D structure of the interface between two proteins in

PDB entries, respectively, across crystal forms of PDB entries as defined by the ProtCID resource [33]

and across protein homologs as defined by QSalign [34]. Non-physiological homodimers are defined

using two complementary criteria. In one, such dimers are defined as protein structures whose

assigned biological unit in the PDB is a homodimer, but the corresponding interface is deemed as

incorrect because another interface, which is conserved across homologs, is formed by the same

protein (QSalign approach). In the second, non-physiological dimers are defined as those forming a

unique interface that bears no similarity to any interface across all crystal forms in ProtCID, including

crystals of homologous proteins, when sufficient numbers of such crystal forms exist.

Physiological protein complexes, including homodimers, on average engage in higher affinity

interactions than their non-physiological counterparts, as reflected in their buried interface area,

known to positively correlate to binding affinity [35]. Therefore, a sizable fraction of the complexes in

each category can be correctly assigned solely on the basis of the interface area, a parameter that

the majority of the scoring functions include. At the same time, the significant overlap of the

interface area size distributions of complexes from both categories [11,12] is a clear indication that

other factors are at play in distinguishing between the two types of complexes. To better focus on
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these factors, we generated a set of non-physiological dimers that display on average similar or larger

interface areas than the physiological counterparts in the benchmark.

The resulting benchmark includes 1677 homodimers (836 physiological, and 841 non-physiological)

and is unique in several important ways. The definition of our negative examples (non-physiological

dimers) is less error prone because they feature interfaces that are unlike any other protein interface

across structures of protein families or across crystals of the entire known structural database. The

set of positive examples of our homodimer dataset is more reliable than the biological unit

definitions used by the PDB, because quaternary structure conservation across homologs proves

highly accurate at identifying physiological homomers, reducing the error rate from 10% (based on

PDB definitions) to less than 5% [34].

In the second part of the study, we compute specialized scores for the dimers of our benchmark

dataset. These scores are commonly used to rank interfaces, notably in blind prediction challenges

[30,36]. We then evaluate the performance of these scores in discriminating between the

physiological homodimers and their non-physiological counterparts. Two types of scores are

considered. Simple scores or ‘raw scores’ that quantify specific properties (features) of the

interaction interface, and complex scores that combine multiple simple scores (‘integrated scores’).

Integrated scores represent complex functions previously optimized or trained on datasets of known

protein complexes [20–22,37].

In addition to analyzing the discriminatory power of raw and integrated scores, we derive a

community-wide consensus score and train a Random Forest (RF)-based classifier [38] on the raw

scores as features. The consensus score and the RF classifier are shown to outperform raw scores as

well as the independently derived integrated scores evaluated here.

Lastly, AlphaFold2, the deep learning-based inference engine developed by DeepMind [5], has shown

a remarkable ability to accurately predict the 3D structure of protein monomers [39]. Follow up

studies have indicated that the same engine can accurately predict the 3D structure of protein

complexes by concatenating the sequences of the two protein chains, separated by a gap [40,41].

Following up on these reports we applied AlphaFold v2.0 and AlphaFold v2.1.1 - a subsequent

version of AlphaFold which includes a ‘multimer’ mode directly trained on protein complexes [7] - to

predict the 3D structure of the dimers of our benchmark dataset. Hypothesizing that physiological

dimers will be predicted more accurately than non-physiological dimers, the accuracy of predicted
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AlphaFold models was used to classify the dimers into the two categories and the results were

compared to those obtained here with the community-wide classifiers.

2. Material & Methods

2.1 The benchmark dataset of homodimers

The physiological dimers encompass 836 structures selected using two complementary methods.

These methods rely on the conservation of the 3D structure of the interface across crystal forms in

the PDB, as defined by the ProtCID resource [33], and across homologs, based on the QSalign

resource [34,42].

The non-physiological set was defined using two approaches (Figure 1A). A first group of

homodimers was identified based on QSalign. Those structures contained an interface not observed

in homologues, and exhibited another distinct and conserved interface (Figure 1A). Dimers

corresponding to these characteristics were further pruned to yield 141 assemblies with a similar

interface area distribution as for the physiological dimers (Figure 1B). This additional criterion was

imposed to create a set of non-physiological dimers that cannot be readily segregated from their

physiological counterparts based on lower interface area. Application of these criteria yielded

significantly fewer non-physiological dimers (141 in total) than those in the physiological set.

To balance the number of both types of assemblies, the set of non-physiological dimers was

expanded using a second method. Here, non-physiological dimers were identified among structures

where sufficient numbers of crystal forms exist. Specifically, we selected interfaces that are unique

among all interfaces across crystal forms (CFs) or across the crystal forms of homologs, as defined in

the ProtCID database (see Supplementary methods for details). The choice of these interfaces was

further biased towards dimers featuring similar or larger interface areas than their physiological

counterparts (Figure 1B). This procedure yielded an additional 700 non-physiological interfaces,

bringing the total number of these interfaces to 841, in good balance with the physiological

interfaces of the dataset (see Supplementary Table S1).

2.2 Scoring functions for evaluating protein-protein interfaces

Functions or scores capable of identifying native-like protein-protein association modes are a

major component of methods for predicting the structures of protein-protein complexes.
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These methods usually sample very large numbers of putative binding modes between

proteins, which need to be efficiently ranked. The development of such scoring schemes has

therefore been a major focus over the past two decades. These scoring schemes focus on

evaluating the properties of the binding interface formed between the two interacting

partners. They include atom and residue pair potentials, sometimes in the context of classical

physics-based potential energy terms, and increasingly implement different flavours of

knowledge-based potentials, representing functions derived from experimentally determined

structures in the PDB (wwPDB). More recently, these methods have been enriched with

evolutionary information, augmented with deep learning models, or replaced with such

models.

Here we evaluate the performance of methods developed by the community for scoring and

ranking interfaces in discriminating between the physiological and non-physiological

homodimers of our benchmark dataset. Two main types of scores are considered. Simple

scores or ‘raw scores’ that quantify specific properties (features) of the binding interface, and

‘integrated scores’ that integrate multiple raw scores, usually representing complex functions

optimized or trained on datasets of known structures.

The evaluated scoring functions are summarized in Table 1. These functions are described in

further detail in the individual reports by the 13 groups, representing the developers or expert

users of these functions (see Supplementary Material). Ten of these groups are

longstanding participants in CAPRI, including in the CAPRI blind scoring challenges

[30,43], which offered ample opportunities to test and optimize new scoring functions. In this

study, each of the 13 groups independently applied their functions (raw scores and/or

integrated scores) to the benchmark dataset and uploaded the results to the project GitHub

repository , accompanied with relevant information enabling further analysis and comparison

of the uploaded values (see description of the Github data in Supplementary Material).

After filtering out redundant scores (computed independently by different teams) a total 221 raw

scores, and 31 integrated scores were evaluated.

As a representative sample of the scoring functions developed by the community, the evaluated

scores span a wide range of characteristics. Examples of raw scores listed in Table 1 include

residue-residue contact potentials (Fernández-Recio), residue-residue contact statistics broken down

by contributions from different residue types (polar apolar, aliphatic, aromatic, charged) (Oliva), or

energy values for contacts at the interface, with solvent, and all contacts, computed using Voronoi

8
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tessellation (Venclovas). Residue-residue distance-dependent potentials, as well as atomic contacts

and distance-dependent potentials are also used (Fernández-Recio). Many scores also account for

the desolvation energy , often approximated by evaluating the solvent accessible area buried in the

binding interface, with contributions broken down by residue types (Fernández-Recio, MOBI,

Venclovas, HADDOCK, Oliva). Several groups use classical physics-based potentials, which include

VdW and electrostatic terms (Fernández-Recio, Kihara). Different terms from the Rosetta

InterfaceAnalyzer energy function are used by the Furman and Kihara groups (Table 1). The Furman

group computed these terms after local redocking and model refinement with the RosettaDock

software.

Examples of complex ‘integrated scores’ include ISPRED4 (Casadio), which combines information

from co-evolution with various other terms optimized using Machine learning. Information on

co-evolution is also incorporated in the scores of the Guerois group, whereas Kihara uses a set of

published scores developed by other groups, as well as integrated scores developed in-house using

Machine Learning (ML). ML-based (integrated) scores are also used by the groups of Zou, Bonvin,

Correia, Oliva and Schwede, with the QSQE composite score from SWISS-MODEL being trained to

rank template structures for modelling. Admittedly, this definition of integrated scores is biased

towards scores derived using ML, or by combining scores developed by other groups. Scores such as

the Rosetta energy functions, which approximate potential energy contributions and usually contain

multiple terms, are considered as raw scores.

2.3 AUC-based analysis

Selection of the best performing score for each group

Five-fold cross validated receiver operating characteristic (ROC) curves were generated using the

values of individual scores (simple or integrated score), computed for the dimers of our benchmark

dataset by each group. The best performing score of each group was selected as the score yielding

the largest area under the curve (AUC). The threshold used to classify a dimer as physiological

(positive example) or non-physiological (negative example) was defined as the point on the ROC most

distant from the diagonal. Figure S1 illustrates the 5-fold validation approach used to compute the

ROC, associated AUC, and the threshold value for a score computed by a given group.
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Computing a consensus score

After analyzing the performance of each group separately, we computed a consensus score that

averages the classifications of the best scoring method of each group as follows:

For each score, the optimal threshold (thr) on the ROC curve (the point of the ROC farthest away

from the diagonal in Figure S1B) was computed. Each score was then binarized with a score equal to

1 for values >thr, and 0 for values <=thr. A consensus score was then calculated for each structure as

the average of the binary-scores for each structure. The values of the resulting consensus score range

between 0 and 1, with 1 meaning that all the scores predicted the interface of as physiological, and 0

meaning that all the scores predicted it as non-physiological.

2.4 Random Forest based classification

To further investigate how effective the 221 unique raw features computed for the dimers of our

benchmark dataset are in discriminating between the two categories of dimer, we used a RF

classifier [38], as implemented in the Scikit-learn package [44]. The classifier, subjected to a

leave-one-out cross-validation, assigned to each homodimer an average probability to carry out a

given label (physiological, or non-physiological) that was used to compute the ROC curve. RFs are

protected against overfitting, since the computed probabilities are averaged over many random

decision-trees, thereby reducing variance without increasing bias.

Lastly, the contribution of individual features to the performance of the RF classifier was

estimated using the mean Gain/Gini importance index [45].

2.5 Predicting and scoring homodimer structures using AlphaFold2 and AlphaFold-Multimer

For each dimer, we obtained the full sequence of the protein to be used as input for AlphaFold2. A

few proteins included modified or unknown amino acids in their sequence, which we replaced with

alanines. The sequence was then run through two versions of AlphaFold2 ("Gap" [40,41] and

"Multimer" [7] versions) each resulting in 5 predicted models for each dimer.

For the “Gap” approach, the original AlphaFold2 pipeline was fed as input the concatenated

sequences of the interacting protein chains separated by a 200-residue gap [40,41]. We used the

original AlphaFold2 pipeline to produce the multiple sequence alignments (MSA) for the target

proteins which were trivially duplicated to produce the input for both protein chains. For this case,
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no template structures were used, no model relaxation was performed, and all five “monomer_ptm”

model parameter sets were used. We note that this version was not trained on any protein complex

[5]. Due to various technical issues, 60 targets failed to be predicted using the "Gap" version.

The analysis was repeated using AlphaFold v2.1.1 (Multimer version), which has been trained on

protein complexes [7]. This version includes a template search for single chains. This search was

restricted to use only templates whose coordinates were deposited before those of the PDB entry in

the benchmark dataset. We also performed model relaxation for some targets to evaluate its effect

on model accuracy. Five models were also produced using the AlphaFold-Multimer parameter sets

which were trained using complexes available in the PDB release of 2018-04-30. In this case, 4

targets could not be predicted, 160 targets were not relaxed due to the large runtime needed and 2

targets could not be scored using DockQ.

The 5 models produced for each dimer (“Gap” or “Multimer” approaches) were compared with the

corresponding structure in the benchmark dataset, using the QS-score, a measure that quantifies the

similarity between interfaces as a function of shared interfacial contacts [46,47] and DockQ [48], a

composite score which integrates the evaluation criteria used by CAPRI [49]. In both cases the

QS-scoring routines of OpenStructure [50] were used to find the optimal mapping between model

and reference chains. ROC AUCs were computed using the highest (best) values for QS-score and

DockQ over the 5 predicted structures for each dimer. Additionally, we report the mean and median

of these best scores for the physiological dimers of the benchmark.

3. Results and Discussion

3.1 The benchmark dataset of homodimer protein assemblies

The benchmark dataset derived in this study comprises 1677 homodimeric protein assemblies

predicted to be ‘physiological’ (836) or ‘non-physiological’ (841). Physiological dimers were identified

using two complementary methods relying, respectively, on the conservation of the 3D structure of

the interface between the subunits across crystal forms and across homologs in the PDB as defined

by the ProtCID [33] and QSalign [42] resources. The non-physiological dimers identified by QSalign

correspond to assemblies for which a different and conserved interface exist (and therefore the

non-conserved interface was presumed incorrect). Those identified using ProtCID correspond to

interfaces found in only one crystal form of several available (see Methods and Supplementary
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Methods for details). The selection of dimers in this category was biased towards dimers displaying

similar or larger interface areas than the physiological dimers (Figure 1B).

The full list of the homodimers of the benchmark dataset, the characteristics of the corresponding

proteins and their interfaces can be found in Table S1 of the Supplementary Material. The summary

of these characteristics is given in Table 2, which indicates that the non-physiological homodimers

display on average larger interface areas, involve more polar residues, as well as more polar

residue-residue contacts than their physiological counterparts. The non-physiological dimers also

include more extreme cases comprising dimers forming very few contacts (≤ 5 in entries 5ytb; 6g5g;

6ehy), or a dimer such as in entry 2znh, forming a very large interface (10985 Å2) due to significant

intertwining between the subunits. Dimers of both categories feature a similar distribution in terms

of the CATH fold classification [51,52] (Figure 2). Based on these characteristics, our benchmark

dataset may be considered as particularly challenging for scoring methods.

3.2 Performance of scoring methods

Two main approaches were used to evaluate the performance of methods for scoring interfaces in

segregating physiological from non-physiological dimers.

The first approach, which we denote as ROC-based, focuses on the groups participating in this effort

and highlights the complementarity between their best score. Each group submitted values for raw

scores (features) or integrated scores. Importantly, the latter were derived prior to this study and

were not optimized on this benchmark dataset. ROCs were computed from these scores using 5-fold

cross validation to select the best performing score for each group. For each of these ROCs, a

threshold corresponding to the value farthest from the diagonal was used to assign interfaces as

being physiological or non-physiological. Lastly, a simple consensus (average) score was derived from

the 13 optimally thresholded ROCs (see Methods).

The second approach, which we denote RF-based , focuses on all the computed raw scores

(features) (221 unique features in total) computed by the 13 participating groups (see Methods).

ROC-based approach: best performing scores from each group

Table 3 lists the number of scores from each category (raw or integrated) evaluated for each of the

13 participating groups, and the AUC values computed from the ROCs of the corresponding best

performing scores. The AUC values, generally used to gauge performance, range from 0.71 to 0.85,
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with the best score obtained for Deeprank-GNN, a DL-based classifier, closely followed by two raw

scores (features): F_DG.cross.DSASAx100 (AUC=0.84) from the Furman group, which evaluates the

binding energy per unit interface (including only cross-interface energy terms), and

F_Voronota_iface_expanded_area (AUC=0.82) from the Venclovas group, representing a sum of all

the tessellation-derived interface contact areas and the SASAs (solvent accessible surface area) of

interface atoms (see Table 2, and Collated Methods in Supplementary Material). The remaining 10

best scores of Table 3 exhibit significantly lower AUC values. Furthermore, of the 13 scores in Table

3, eight are integrated scores. Five of these are from groups that computed only integrated scores,

and 3 are from groups that computed both types of scores, suggesting that applied individually,

integrated scores confer in general little advantage over raw scores.

The classification of individual structures of our benchmark dataset into physiological and

non-physiological dimers according to the best performing scores of each group is illustrated using

1D heat plots (Figure 3).

ROC-based community-wide consensus score.

A consensus score was computed using the 13 best-performing individual scores and applying an

optimal threshold to each score for segregating the two types of dimers as described in Methods.

The top row of the heat plot of Figure 3, illustrates the classification of individual structures of our

benchmark dataset into physiological and non-physiological dimers produced by the consensus

score.

Figure 4a displays the ROC obtained by applying the consensus score to all the structures of our

benchmark dataset. The AUC of this ROC is 0.93, significantly higher than the highest AUC obtained

for ROCs of individual scores (0.85), highlighting that the different scores include complementary

features that help optimize performance. Interestingly, consensus scores computed from sets of

fewer best performing scores displayed slightly higher performance as judged by their AUCs (0.92 for

the top 5).

RF-based approach.

The RF classifier was derived using a total of 221 raw scores (features) computed by the participating

groups on dimers of our benchmark dataset and applying leave-one-out cross-validation (Methods).

Figure 4b displays the ROC obtained by applying this RF classifier to all the structures of our

benchmark dataset (RF_221). The AUC of this ROC is 0.942, somewhat higher than the AUC of the

ROC-based consensus score (0.93).
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Using Gain/Gini analysis [45], we evaluated the average impact of individual scores on the prediction

performance and found a smooth decay of the impact of these features. This is illustrated in Figure 5,

which displays the Gain/Gini importance index for the 50 raw scores with the highest impact.

Interestingly, ROCs computed using the RF classifier derived using only the 50 most impactful scores,

or the 20 most impactful ones yielded an identical AUC to that obtained using the full set of raw

scores, whereas the AUC dropped to 0.92 for the ROC computed using only 5 top scores (see

Supplementary Figure S2). Thus, the RF model with all 221 raw scores, and those with 50 and 20

highest impact scores, outperform the best performing individual features of Table 3 (which include

8 integrated scores or classifiers), and display superior performance to that obtained with the

consensus score derived using the ROC-based approach (0.93).

These results indicate that the RF classification and the Gain/Gini importance index prioritization of

the 20 most impactful features outperform the greedy single feature per group, prioritization (of only

13 features) by the ROC-based approach. The fact that ~10% of all the raw scores, (20/221) is

sufficient to closely approximate the optimal performance of the RF classifier is interesting. Thus, the

combination of the 20 most impactful scores listed in Table 4, seems particularly efficient in

capturing the key features that characterize the differences between physiological and

non-physiological homodimer of our dataset.

3.3 Correlations between raw scores for interfaces of protein-protein complexes

Raw scores developed by different groups tend to use different methods to quantify the same

properties of a given interface. To gain insight into the level of redundancy or complementarity

between different scores, we computed the correlations between the sets of values computed by

pairs of scores for our benchmark dataset.

The heatmap of the pairwise (Pearson) correlations between the 50 most impactful scores in the RF

classifier are displayed in Figures 6. The heatmap displaying the correlations between all 221 raw

scores analyzed in this study is depicted in Figure S3. These scores are referred to by the acronyms

provided by their authors. For further detail on the quantities that are being computed, the reader is

referred to the summary descriptions in Table 1, as well as the reports of individual groups and the

publications therein (see Collated Methods in the Supplementary Material).
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Both heatmaps display salient patterns of correlations between groups of scores. Examples of such

patterns are highlighted for the groups labelled 1-4 in the heatmap of Figure 6. These groups

comprise highly correlated scores that display weaker correlations (positively or negatively) with

other score groups. Most of the scores in these four groups are Voronoi tessellation-based scores

from the Venclovas team. Interestingly, scores from this team make up ~30% of all raw scores

(69/221) but represent over 60% (31/50) of the 50 most impactful scores in the RF classifier. This

indicates that while the individual features form the Venclovas team are poor discriminators between

the physiological and non-physiological dimers (F-Voronota-iface_expanded_area with an AUC of

0.82, being the best performing individual tessellation-based score form this team), the combination

of these scores is much more effective. These results are consistent with the outstanding

performance of the Venclovas team in recent blind prediction challenges [43,49,53].

Furthermore the tessellation-based scores of this team display interesting patterns of correlations.

For example, Group 1 (Figure 6) includes individual F_Voronota scores describing the normalized

(per-atom) VoroMQA pseudo-energy of the inter-chain interface, computed using interface and

global descriptors. Scores in this group are highly positively correlated to each other (red square,

upper left end of the diagonal in Figure 6) and more weakly correlated to two other groups of scores.

One of the latter groups contains positively correlated scores related to those in Group 1 such as the

VoroMQA pseudo-energy of the inter-chain interface, normalized by the associated surface area

terms, and the dG_cross interface energy term of the Rosetta suite from the Furman team (orange

square at the upper right diagonal of Figure 6). The other group includes scores mostly weakly

negatively correlated to those in Group1. These are F_Voronota scores representing global features

of the dimers (pale blue regions, top middle of Figure 6). Other correlation patterns are observed for

scores in Group 2 and 4, which contain a mix of Voronoi tessellation-bases scores and scores of other

teams, whereas the four scores of Group 3, are the only scores that are uncorrelated to all other 46

scores (P_corr ~0).

Analogous patterns of correlations between groups of scores are observed in the heatmap of the full

set of 221 raw scores. Interestingly, this larger set includes over 30 scores that are uncorrelated to

any other score (see Supplementary Figure S3)

Taken together, these observations indicate that multiple factors govern the impact of a set of

features on the classification performance, and that the combination of both highly correlated and

weakly correlated but meaningful scores that capture somewhat different properties is important.
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Occasionally, particularly pertinent scores that are uncorrelated to any other score in the set can also

be impactful. This seems to be the case of the dG_separated/dSASA and RosettaInterfaceEnergy

scores of the Rosetta suite computed by the Furman group (see Table 1). Both scores are

uncorrelated to all other scores of the analyzed set and are part of the 50 most impactful scores for

the RF classification, with dG_separated/dSASA being the top-ranking individual score overall (Figure

5).

3.4 Classification based on similarity scores of structures predicted by AlphaFold

AlphaFold2 was used to predict the 3D structures of the benchmark dimers from their sequence, and

the predicted structures were compared to those of the benchmark set. If Alphafold2 has learned

the characteristics of physiological association modes, it should predict structures matching those of

physiological dimers. At the same time, we expect the predictions of non-physiological dimer

structures to be different, as measured by the QS-score and DockQ metrics. For example, AlphaFold

might predict alternative models for non-physiological dimers (if the protein truly assembles into an

alternative homodimer), or predict a different random interface if the protein is monomeric in

solution. In both cases, we expect low QS-scores and DockQ metrics.

Figure 7 displays letter-value plots of the distributions of the QS-score and DockQ for a subset

comprising 1480 dimers of the benchmark dataset, which were successfully predicted using both the

gap and multimer versions, and which were relaxed using the multimer version. The dimers are split

into the physiological entries identified using QSalign (836 dimers), and the non-physiological entries

identified using QSalign (141 dimers) and ProtCID (700 dimers), respectively (see Methods for

details). Both the QS- and DockQ-scores range from 0 to 1, with 1 indicating optimal fit to the target

structure. We see indeed that the physiological dimers are predicted at significantly higher accuracy

than the non-physiological dimers of our dataset and that the distributions are highly distinct.

The ability of the DockQ and QS-score of the predicted models to classify the benchmark complexes

into the corresponding categories was evaluated by a ROC analysis and by computing the AUC. In

addition to evaluating the ROC AUC, we also computed the mean and median accuracy of the best

scoring model (among the five given by Alphafold2) predicted for each of the physiological dimers, as

measured by the QS-score and DockQ (see Methods). The results listed in Table 5 indicate a high

classification accuracy reaching an AUC of 0.954 with the gap version (using DockQ). This is higher

than the ones from any individual score (Table 3) or the consensus and RF scores (Figure 4) even

though no complexes were in AlphaFold's training data for the gap version. AlphaFold-multimer, on

the other hand, should benefit from having complexes included in its training set, but it may also
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have been "misled" by the non-physiological dimers in the QSalign set which used to be in the PDB.

In the end, the classification accuracy increased with the multimer version (AUC of 0.964 for DockQ).

The accuracy with which the structures of the physiological dimers are predicted is also generally

high and increases significantly for models produced by AlphaFold2-multimer. The data in Table 5,

also suggests that a somewhat higher prediction accuracy was displayed by the QS-score than by

DockQ for the physiological dimers, likely indicating that DockQ is a somewhat more stringent

similarity measure. The model relaxation option available for the multimer version had no effect on

classification performance or prediction accuracy.

The multimer version of AlphaFold2 also outputs a predicted model confidence score ipTM, for each

predicted structure. This score, computed in absence of any information on the target structure is

derived in the form a predicted TM-score [5], modified to score interactions between residues from

different chains [7]. To evaluate how ipTM relates to the QS-score and DockQ scores, we compared

the 3 scores for the model with highest ipTM score for each of the 1671 targets successfully

evaluated with the multimer version (Figure S4). We find that the ipTM distributions for structures

predicted for the different categories of dimers of our dataset show distinct behaviours. The

distribution for physiological dimers is unimodal peaking at high values (0.5-1.0), indicating that

interfaces of these dimers are predicted at high confidence, whereas the ipTM distribution for

predicted structures of non-physiological dimers is bimodal, with a main peak around low values

(~0.2) (indicating low confidence models) and a secondary peak around values of ~0.8 (indicating

high confidence models). Dimer models with high ipTM values likely correspond to non-physiological

dimers for which an alternative dimerization mode is correctly identified by Alphafold2. As a result,

the ipTM values for the non-physiological dimers display poorer Pearson correlation with the

structure similarity measures (0.17 with QS-score; 0.15 with DockQ) than for their physiological

counterparts (0.68 with QS-score; 0.73 with DockQ). QS-score and DockQ are generally highly

correlated (Pearson correlation of 0.97). .

3.5 Comparing the performance of different scoring methods.

Using the AUC to gauge performance clearly indicates that the DockQ and QS similarity scores of the

models predicted by AlphaFold2 (AUC: 0.954-0.964) outperform the RF and the consensus score

community-wide scoring/classification methods (AUC: 0.94, and 0.91, respectively) on our

benchmark dataset of homodimers (Supplementary Figure S5).

In line with these differences in performance, the similarity scores of AlphaFold2-predicted models

yield the lowest number (156) of misclassified entries (physiological dimers predicted to be
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non-physiological, and vice versa). The RF classifier misclassified 202 dimers, whereas the consensus

score misclassified the largest number of dimers (244) (Venn diagram of Figure 8). Interestingly

however, the overlap between the sets of misclassified entries by the 3 procedures is remarkably

small. Only 23 entries are misclassified by all three procedures, and 150 entries are misclassified by 2

or more procedures. These 150 misclassified entries include 68 dimers from the non-physiological set

against 82 from the physiological set (Supplementary Table S2). Part of these misclassifications may

be due to incorrect assignments of the dimers to this category when building the benchmark dataset.

The assignments of the 23 dimer misclassified by all three methods were therefore manually

re-evaluated using the updated ProtCID and ProtCAD resources. ProtCAD is similar to ProtCID but

consists of viable symmetric biological assemblies (as determined by EPPIC [12]) instead of pairwise

protein-protein interfaces [54]. This re-evaluation found evidence for 6 of the 12 misassigned

non-physiological dimers to represent physiological dimers, and 4 of the 11 misassigned physiological

dimers are likely to form other dimers than those in the benchmark, and hence to be in agreement

with the prediction results for these dimers. Examples of misassigned non-physiological dimers that

were correctly classified as physiological are illustrated in Figure 9. Interestingly, the

non-physiological homodimers featuring large interface areas (such as 4pbc_1, 5cb2_3) are not

systematically misclassified, but correctly classified as such by two out of the three classification

procedures.

4. Concluding remarks

This community-wide study exploited specialized resources on protein complexes and their interfaces

to derive a carefully crafted benchmark dataset of 1677 homodimer proteins crystal structures

comprising about an equal proportion of physiological and non-physiological dimers. We believe our

definitions of the dimers in each category to be less error prone than in other available benchmark

datasets because physiological dimers were required to have an interface that is well conserved

across homologs, whereas non-physiological dimers were required to form an interface unlike any

other interface across the known structural proteome. Interestingly, requiring non-physiological

dimers to display on average similar or larger interface areas than their physiological counterparts in

the benchmark dataset, had no detectable detrimental effect on the performance of the

classification procedures. These procedures were furthermore robust enough to enable the

detection of misassignments, i.e. dimers mistakenly assigned to the wrong category, based on earlier
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versions of the ProtCID and ProtCAD resources. Regularly updating these resources is hence

important for improving the benchmark quality.

In the second part of the study, over 252 scoring functions developed by 13 different groups from the

community were compiled and annotated. These functions were then used to evaluate the dimers of

our benchmark dataset, and their performance in discriminating between the physiological and

non-physiological complexes was quantified. Additionally, a greedy community-wide consensus score

was derived using the best performing score of each of the 13 groups, and a RF classifier was trained

on a subset of 221 scores, representing single features of the evaluated interfaces (the ‘raw scores’).

Evaluating the performance by the AUC/ROC metrics revealed the community-wide consensus score

to achieve a commendable performance (AUC 0.93). The latter was marginally surpassed by the

more elaborate RF classifier using either all 221 raw scores or the subsets of 50 or 20 top performing

raw scores (AUC 0.94). Both classifiers significantly outperformed individual scores previously

developed by the community. These scores include raw scores, integrated scores (those combining

multiple features of the interface), and integrated scores trained by deep learning methods on

various earlier benchmark datasets. The best performing scores of each group yield significantly

lower AUC values ranging from 0.71 to 0.85, and it is noteworthy that the two top ranking scores

with AUC values of 0.85 and 0.84 were achieved with a deep learning-based Integrated score

(Deeprank-GNN), and the physics-based F_dG.cross.dSASA100 score from the Rosetta suite,

respectively (Table 3). None of the individual scores were trained or optimized using our newly

derived benchmark dataset.

Taken together, these results indicate that most individual scores are rather ineffective in ranking

physiological homodimers more highly than their non-physiological counterparts and therefore

poorly discriminate between the two categories of dimers. The performance improves very

significantly when individual scores are combined/integrated using increasingly sophisticated

optimization methods or classifiers. A singularly effective combination was shown to comprise a set

of scores derived using Voronoi-based descriptions to evaluate purely geometric features as well as

contact surface areas and energy features. This is very encouraging considering the challenging

nature of our benchmark dataset, which includes several examples of non-physiological dimers with

very large interfaces that were nonetheless correctly classified as such by both the consensus score

and RF classifiers.
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Substantial progress was recently reported in CASP15 for the prediction of native protein complexes

from sequence using deep learning methods such as AlphaFold2 [7,40]. Various modifications of the

AlphaFold2 inference engine [41,55] and significant expansions of the MSA [56] were shown to

enable AlphaFold2 more extensive sampling of protein models predicted with high confidence

compatible with the evolutionary information extracted from the MSA. In several instances however,

difficulties were reported in discriminating between models based on the confidence scores of the

deep learning procedure. The analysis of the interface descriptors presented in this work could

mitigate this problem, either through analyses/scoring of the structures generated, or perhaps by

guiding the design of new deep learning architectures, capable of extracting relevant descriptors

from the structure encoding.

In the last part of our study, AlphaFold2 and AlphaFold-multimer were used to predict the 3D

structures of the dimers in our benchmark, and the structural similarity between the predicted and

benchmark structures was used to score candidate models. As expected, models for the physiological

dimers scored higher by the DockQ and QS similarity metrics, than for the non-physiological set, with

corresponding AUC values of 0.954 - 0.964. This indicates that the AlphaFold2 engines were able to

‘recall’ the physiological dimers with high accuracy, whereas lower accuracy models often represent

alternative association modes were predicted for a significant fraction of the non-physiological

dimers, in line with the fact that these dimers are rarely observed in crystallized proteins and not

conserved among homologs. Thus, while this analysis is orthogonal to the main goal of our study, the

global convergence of the predictions by the different methods as well as Alphafold2, provides strong

support for the definitions of physiological and non-physiological dimers of our benchmark dataset.

The benchmark dataset structures, the scores computed for the benchmark dimers, the results of the

classifications and all other analyses reported in this study are available on GitHub

(https://github.com/vibbits/Elixir-3DBioInfo-Benchmark-Protein-Interfaces)
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Figure Legends

Figure 1. Approach used to define the benchmark dataset. A. Physiological dimers (836 in total) were

identified based on the QSalign resource [34] and have their interface structure conserved across

homologues (e.g., 1n3i vs 1jil). A manual curation of that set was also performed based on the

ProtCID resource [33]. A subset of non-physiological dimers (141 structures) were identified based on

QSalign as structures exhibiting a different and conserved interface. For example, two assemblies are

available in the PDB for structure 1jil. Assembly 2 shows a conserved interface, which lets us infer

that Assembly 1 is non-physiological. This set was expanded to also include dimers forming interfaces

that are unique among all interfaces across crystal forms or across the crystal forms of homologs, as

defined in ProtCID, yielding an additional 700 structures. B. Interfaces area distributions of the

physiological and non-physiological homodimers and the sets described in panel A.

Figure 2. CATH classification of proteins of the physiological homodimer subset. The Sunburst plot

was generated using the R package ggvenn [57].

Figure 3. Heatmap of the consensus score and individual contributions. The bottom row  groups

non-physiological entries (left, orange); and physiological ones (left, dark red). Subsequent rows

show the predictions of the best performing score from each group (Methods). Benchmark entries

predicted as physiological are colored in dark red, and those predicted as non-physiological appear

orange. Whenever no prediction was available, entries are shown in white. The top row shows the

consensus score computed as described in Methods.

Figure 4. ROC curves computed using the consensus score and the RF procedure.

Figure 5. The 50 raw scores with the highest impact on the performance of the RF classifier.

The plot displays the Gain/Gini importance index [45] for the 50 raw scores with highest impact on

the RF classification.

Figure 6. Heatmap of the pairwise (Pearson) correlations matrix between the 50 raw scores with the

highest impact on the RF classification, clustered along columns and rows. The patterns of

correlations of groups of scores (Groups 1-4) highlighted on the right-hand vertical dimension of the

matrix are discussed in detail.
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Figure 7 Letter-value plots of the distribution of QS- and DockQ-scores for AlphaFold2 models. The

distributions are evaluated on the subset of 1480 dimers for which results were produced with all

AlphaFold2 versions (gap, multimer and multimer with model relaxation). The dimers are split into

physiological (identified using QSalign) and non-physiological (identified using QSalign and ProtCID).

Figure 8 Venn Diagram illustrating the limited overlap of misclassified dimers by the three classifiers.

CS stands for the ROC-based consensus score; RF stands for the Random Forest classifier, and AF

stands for the classification performed using the DockQ score of structures predicted by AlphaFold2

(gap). Numbers indicate the number of misclassified dimers, the fraction (%) that these numbers

represent of the total number of misclassified entries by all three methods (428) are given in

parentheses. Classification results were determined by thresholding the 3 ROCs using the point of

the curve most distant from the diagonal.

Figure 9. Dimers misassigned in benchmark.

A. The benchmark contains a “non-physiological” dimer, 1fp3_2 and a “physiological” dimer 2gz6_1

that are very similar. ProtCAD/ProtCID contains two clusters of symmetric homodimers of Pfam

GlcNAc_2-epim. The first one (left) contains 3 crystal forms and 3 different UniProts, including

interfaces from 2gz6 and 6f04 (89% sequence identity), as well as the benchmark dimer 1fp3_2 (38%

and 37% sequence identity respectively). AlphaFold2 reproduces all three of these dimers (center).

At right is a ProtCAD/ProtCID cluster of 2 crystal forms, including an interface from 1fp3 and the

benchmark dimer 2gz6_1. The structures are superposed on one monomer in each Figure. The data

indicate that the larger cluster is likely to be physiological. B. Two “non-physiological” dimers in the

benchmark belong to Pfam architecture (Response_reg)_(GerE), which has a cluster of 13 crystal

forms (out of a total of 22 in the PDB), shown at left, some of which contain DNA. These two dimers,

4zms_1 (center) and 4ldz_1 (right) are therefore likely to be physiological.

Tables

Table 1. Summary of scoring functions used to score or classify the homodimer interfaces of the benchmark
dataset, and to compute consensus scores.
Column 1 lists individual groups (PI name -group). Column 2 includes a high-level description of the methods
with literature references and links to servers provided whenever appropriate. Column 3 lists more detailed
descriptions of the scores. Additional information can be found in the reports of individual groups collated in
the Supplementary Material.
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Group Feature type / source Brief scoresFeature description
Fernandez-R
ecio

CCharPPI features [58]
----
Integrated scores
I_pyDock_Desolv_VDW [59]

- Residue contact/step potentials
- Residue distance-dependent potentials
- Atomic contact/step potentials
- Atomic distance-dependent potentials
- Statistical potential constituent terms
- Interface packing: F_NIPacking
- Composite scoring functions
- Solvation energy functions
- Hydrogen bonding
- Van der Waals and electrostatics

---------
pyDock [59]: Desolvation, electrostatics and Van der Waals
scores

MOBI Three descriptors for each interface
(F_shape, F_hydro and F_tails) and
one integrated score
(I_shape_hydro_tails) [60,61] (see
MOBI group Report in
Supplementary Material)

- I=F_shape+F_hydro(Ftails)
- F_shape (Sum of # of hits/residues)

 - F_hydro (Frac. of surface hydrophobicity)
- F_tails (Y/N of chain ends)

Venclovas Multiple Voronoi
tessellation-derived features
computed using the Voronota
software
(https://kliment-olechnovic.github.i
o/voronota/) [21,62]

- Voronoi tessellation-derived interface
contact areas,

- Solvent contact areas,
- All the contact areas.
- Voronoi tessellation-derived volumes.
- VoroMQA energy values (of interface contacts,  solvent
contacts, all the contacts)
- VoroMQA-light and VoroMQA-dark scores .

Wolfson All-atoms scores [63]
---------

Deep-Learning scores [64]

- F_SOAP: interaction score (all atoms)
- F_FireDockScore  (all atoms)
- F_Network_binding_0  
- F_Network_binding_1 (DL NN,

P_residues in interface)
- F_Network_full (DL, NN, P_residues

in contact)
---------

- I_Proba_Consensus (integrated score)

Zou [65,66] - ITScorePP (atomic-level, statistical potentials)
---------

- DLScoreBC (DL/CNN model for interface prediction)

Bonvin Two different classifiers [22,67]

Scoring method used in HADDOCK
[68]
DeepRank-GNN [69]: The PPI
interfaces were converted into
residue graphs and each node was
assigned PSSM information only (i.e.
20 features per node).

- PRODIGY-CRYSTAL [67]: RF classifier (residue contacts; residue
contacts per amino acid type, contact density/interface, trained
on the MANY dataset [12])

---------
- DeepRank-GNN (DL/GNN, trained using PSSM features only on
the MANY dataset [12])

---------
- HADDOCK score and its raw components [68] (not trained as a
classifier)

Furman Combined docking and local
refinement with RosettaDock,
InterfaceAnalyzer protocol (multiple
features) [70,71], RosettaCommon*

- I_sc: interface score (‘Interaction energy_1’)
- dG_cross/dSASA* (‘Interfaces energy_ 2’)
- sc_value: shape complementarity 
- fa_intra_sol_xover4: intra-residue LK solvation
- dG_separated/dSASA:  binding energy of separated
components/unit interface area 
- fa_dun: Internal energy of sidechain rotamers 
- dSASA_polar: polar components of interface area
- fa_intra_rep: Lennard-Jones repulsive between atoms in the
same residue
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Oliva COCOMAPS/CONSRANK features
[72] and BSA calculated with
NACCESS
(http://www.bioinf.manchester.ac.u
k/naccess/)

-----------
Integrated scores:  I_NN_all,
I_NN_sel, I_RF_all, I_RF_sel [32]
(see Oliva Group Report in
Supplementary Material)

- Residue-residue contact stats, including the total number of
contacts at the interface, the number of contacts per
physico-chemical class of amino acids involved in the contacts
(polar, apolar, aliphatic, aromatic and charged) and the relative
fraction over the total number of contacts per complex.
- BSA upon complex formation plus the polar and apolar
components calculated by NACCESS [73] and FreeSASA [74]

---------
- Probability for a dimer to be physiological and predicted class
(TRUE/FALSE) from Neural Network(NN)- and RF-based
classifiers, using 148 (_all) and 42 selected (_sel) features

Kihara A range of scores and potential
including scores published by the
Kihara group and other groups (See
Kihara Group report in
Supplementary Material).

Examples of scores:
- DFIRE: all-atom statistical potential [75]
- GOAP : all-atom statistical potential [75]
- Dove: DL (3D CNN) model [76]
- GNN-DOVE : Graph Neural Networks Model [77]
- ITScore : knowledge-based scoring function [65]
- PhysicsScore: physics-based score in    Multi-LZerd [78]
- RosettaInterfaceEnergy : Interface Energy of Rosetta Energy
Function [79]
- VoroMQA [21]

Casadio ISPRED4 predictor of protein
interaction sites
(https://ispred4.biocomp.unibo.it)
[80]

- Support vector machines (SVMs) and grammatical-restrained
hidden conditional random fields (GRHCRFs) incorporating 46
features: 
- Sequence profiles (MSA) 
- Residue physical-chemical properties: 
- PSICOV: intra-chain coevolution scores (Jones et al. 2012)
- Interface residue propensity
- Difference between predicted and observed solvent exposure
- Structural/geometric features: secondary structure, DPX, CX
(computed using PSAIA (Mihel et al. 2008))

SWISS-MOD
EL

QSQE score from
SWISS-MODEL[46,81]

- QSQE: composite score (values 0-1); ML(SVM)-based (interface
conservation, structural clustering, and other template
features); depends on availability of templates in the
SWISS-MODEL template library (not trained as a classifier but to
rank templates for modelling).

Guerois Scores from InterEvDock [82] - SPPh.10seq and SPPh.10seq.normsize:  novel version of
SOAP-PP [63] using coevolutionary information at atomic level,
using information from a set of 10 homologous complexes
(.normsize: score normalized by interface size).
- IESh.10 seq and IESh.10seq.normsize: same as above but using
InterEvScore [83] as a base scoring function instead of SOAP-PP

Correia DL MaSIF model [84] Integrated score, combining chemical (electrostatics, H-bonds,
hydrophobicity) and geometric (shape and curvature) features,
in a surface descriptor for the interacting surface patch of each
protein.
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---------
Computed the following quantities:
- Descriptor Distance Score: complementarity of
the 2-interacting surface patches.
- Neural Network Alignment Score (0-1):
calculates the alignment quality between the interacting surface
patches.

RosettaCommon*:
https://www.rosettacommons.org/docs/latest/application_documentation/analysis/interface-analyzer

Table 2: Summary statistics of the interfaces of the benchmark dataset of homodimers. The full dataset and
major properties and annotations associated with each entry can be found in the Supplementary Table S1. The
calculation performed with freesasa-2.0.3 (Mitternacht 2016).

Min. 1st Qu. Median Mean 3rd Qu. Max. set property

1 49 65 72.2 83 663 all number of contacts*

100.62 1612.79 2097.57 2273.57 2646.31 10984.55 all BSA

38.08 540.63 791.64 873.09 1100.79 4540.25 all BSA polar

22.2 994.15 1260.71 1396.86 1632.15 7170.96 all BSA apolar

0.09 0.31 0.38 0.38 0.45 0.86 all fraction BSA polar

0.14 0.55 0.62 0.62 0.69 0.91 all fraction BSA apolar

13 45 57 62.71 72 262 physio number of contacts*

589.93 1421.01 1778.8 1918.41 2150.92 7202.51 physio BSA

114.73 435.52 582.5 653.9 780.13 2721.74 physio BSA polar

101.16 944.95 1167.95 1264.51 1458.69 4480.77 physio BSA apolar

0.09 0.28 0.34 0.34 0.39 0.86 physio fraction BSA polar

0.14 0.61 0.66 0.66 0.72 0.91 physio fraction BSA apolar

1 57 72 81.63 92 663 non-physio number of contacts*

100.62 2074.61 2426.91 2626.61 2959.75 10984.55 non-physio BSA

38.08 796.62 1033.73 1090.98 1284.65 4540.25 non-physio BSA polar

22.2 1091.63 1366.69 1528.42 1768.84 7170.96 non-physio BSA apolar

0.09 0.36 0.43 0.42 0.49 0.78 non-physio fraction BSA polar

0.22 0.51 0.57 0.57 0.63 0.91 non-physio fraction BSA apolar

*Residue-Residue contacts, using a distance threshold of 5 Å.
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Table 3. Areas under the curve (AUC) of the ROC curves of the best performing score of each group
participating in the study.

Group Number of
raw/integrated
scores

Score AUC

group Bonvin 4/4 Deeprank-GNN* 0.85

group Furman 20/0 F_dG.cross.dSASA100 0.84

group Venclovas 74/0 F_Voronota_iface_expanded_area 0.82

group Zou 0/2 I_P_Biological* 0.81

group Guerois 0/11 I_IESh.10seq.normsize* 0.81

group Fernandez-Recio 87/2 F_NIPacking 0.79

group SWISS-MODEL 0/1 I_QSQE* 0.79

group Bologna 0/2 I_physiological_score_MCC* 0.76

group Kihara 8/0 F_GOAP 0.75

group Correia 0/3 I_descriptor_distance_score* 0.75

group Oliva 37/4 F_CP 0.75

group MOBI 3/1 I_shape_hydro_tails* 0.72

group Wolfson 5/1 I_Proba_Consensus* 0.71

* The corresponding descriptor is an integrated score or a classifier, rather than a raw score (see text for
definitions). Descriptions of these scores can be found in Table 2, and in the detailed descriptions of individual
groups (see Supplementary Material)

Table 4. list of the 20 raw scores with highest impact on the RF classification. The listed scores are the top 20

scores contributing to the RF classification of the benchmark dataset (see Figure 6).

Feature (raw score) Participant References
'F_dG-cross/dSASAx100' Furman RosettaCommon*, [71]

'F_Voronota_iface_expanded_area' Venclovas [21,85]

'F_Voronota_diff_nonsas_area'

'F_Voronota_diff_glob_light_score'

'F_bsa' Oliva NACCESS*, [86]

'F_Voronota_diff_sas_area' Venclovas [21,85]

'F_BSA_Polar naccess' Oliva NACCESS*, [86]

'F_NIPacking' Fernandez-Recio [58,87]

'F_BSA_Polar_Freesasa' Oliva NACCESS*, [86]

'F_Voronota_diff_glob_dark_score' Venclovas [21,85]

'F_dG-separated/dSASAx100' Furman

'F_Voronota_iface_shelled_energy_norm' Venclovas [21,85]

'F_Voronota_iface_expanded_shelled_energy_norm'

'F_Voronota_diff_glob_energy_norm'

'F_dSASA-polar' Furman RosettaCommon*, [71]

‘F_Voronota_iface_area’ Venclovas [21,85]

‘F_NSC’ Fernandez-Recio [58]

‘F_Voronota_iface-Atoms_light_score’ Venclovas [21,85]
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'F_CG_BETA' Fernandez-Recio [58]

-F_Voronota_iface_enery_norm’ Venclovas [21,85]

RosettaCommon*
(https://www.rosettacommons.org/docs/latest/application_documentation/analysis/interface-analyzer
NACCESS*: http://www.bioinf.manchester.ac.uk/naccess/

Table 5. Classification performance of AlphaFold2 models predicted for the physiological and non-physiological
homo dimers of the benchmark dataset. This is evaluated on the subset of 1480 targets for which results were
produced with all AlphaFold2 versions.
Column 1 lists the version of AlphaFold used for the predictions, and the score used to quantify the similarity
between the AlphaFold2 predicted model, and the homodimer structures of the corresponding benchmark
entry (see Main text for detail). Column 2 lists the Area Under the Curve (AUC) of the ROCs computed using the
listed scores. Columns 3 and 4 list the mean and median values for the computed scores considering only the
physiological dimers. Those for the non-physiological dimers are not reported, as AlphaFold2 tends to predict
alternative association modes for a significant fraction of these dimers, as expected.

Score ROC AUC Model Accuracy

Mean

(Physiological dimer)

Model Accuracy

Median

(Physiological dimers)

QS-score (AF-gap) 0.938 0.778 0.914

QS-score (AF-multimer) 0.957 0.833 0.940

QS-score  (AF_multimer relaxed) 0.957 0.832 0.938

DockQ  (AF-gap) 0.954 0.707 0.833

DockQ  (AF-multimer) 0.964 0.786 0.877

DockQ  (AF-multimer relaxed) 0.964 0.787 0.876
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