Necrotizing pneumonia due to Pseudomonas aeruginosa secondary to severe COVID-19 pneumonia

JUN HIRAI¹, NOBUAKI MORI¹, NOBUHIRO ASAI¹, and HIROSHIGE MIKAMO¹

¹Aichi Medical University Hospital

January 18, 2023

Abstract

Necrotizing pneumonia (NP) is a severe form of lung disease with a high mortality rate. Although NP generally occurs as a complication in community-acquired pneumonia, our case illustrates that NP can occur as a secondary infection even if the clinical course of COVID-19 pneumonia is favorable, particularly in intubated patients.

Case Images

Necrotizing pneumonia due to *Pseudomonas aeruginosa* secondary to severe COVID-19 pneumonia

Jun Hirai^{1,2}, Nobuaki Mori^{1,2}, Nobuhiro Asai^{1,2}, Hiroshige Mikamo^{1,2}

¹ Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Aichi, Japan

² Department of Infection Control and Prevention, Aichi Medical University Hospital, Aichi, Japan

Address correspondence to: Dr. Jun Hirai, Department of Clinical Infectious Diseases, Aichi Medical University, 1-1 Yazakokarimata, Nagakute-shi, Aichi 480-1195, Japan.

Tel: +81-561-62-3311

Fax: +81-561-61-1842

E-mail:hiraichimed@gmail.com

Keywords: COVID-19, necrotizing pneumonia, *Pseudomonas aeruginosa*, mechanical ventilation, secondary infection

A 60-year-old man was admitted to our hospital with a 7-hour history of dyspnea. On admission, his vital signs were as follows: blood pressure, 90/56 mmHg; heart rate, 112 beats/min; body temperature, 40.5; respiratory rate, 32 breaths/min; and oxygen saturation, 88% on 15 L/min oxygen via a reservoir mask. He was diagnosed with severe COVID-19 pneumonia, confirmed by polymerase chain reaction testing, intubated and admitted to the intensive care unit the diagnosis of severe COVID-19 pneumonia. Computed tomography (CT) of the chest showed bilateral diffuse ground-glass opacities primarily in the upper lobes and consolidation in the lower lobes (Figure 1a-c), but no evidence of pulmonary embolism on contrast-enhanced CT. The patient was treated with remdesivir (200 mg loading dose on day 1, followed by 100 mg daily for up to 9 additional days), dexamethasone (6.6 mg/day), and baricitinib (4 mg/day) for 10 days, according to the current recommendations for COVID-19 management. He gradually recovered and was afebrile with a stable respiratory condition after completing 10 days of treatment. However, on hospital day 12, he developed a fever (39.8) and recurrent respiratory distress. Chest CT revealed new multifocal consolidations with thick-walled cavitation in both lungs (Figure 1d-f) and he was diagnosed with necrotizing pneumonia (NP). We

immediately started tazobactam/piperacillin (18 g/day), but the patient died the next day. Sputum and two sets of blood cultures obtained on hospital day 12 confirmed *Pseudomonas aeruginosa*. However, the tip of the central venous catheter culture revealed no organism and transthoracic echocardiography showed no obvious vegetation of the heart valves.

Necrotizing pneumonia is a severe form of lung disease including necrosis of lung parenchyma with the formation of abscesses and cavitation and has a high mortality rate.¹ NP occurs as a complication in 0.8% of cases of community-acquired pneumonia.² The most common pathogens are *Staphylococcus aureus* and *Streptococcus pneumoniae*.³ In patients with COVID-19 pneumonia on invasive mechanical ventilation, the incidence of NP ranges from less than $0.5\%^4$ to 4.5%, and *Klebsiella pneumoniae* and *P. aeruginosa* are the most common pathogens.⁵ A retrospective study reported NP was diagnosed at a median of 27 days after COVID-19 symptom onset.⁵

This case illustrates that NP can occur as a secondary infection even if the clinical course of COVID-19 pneumonia is favorable, particularly in patients on invasive mechanical ventilation.

Author contribution

J.H. contributed to writing and editing of the manuscript. N.M. contributed to conceptualization. N.A. and H.M. contributed to supervision and validation.

Consent for publication

Written informed consent was obtained from the patient's family for the publication of this case report and the accompanying images.

Conflict of interest

All the authors have declared no competing interests.

References

1. Krutikov M, Rahman A, Tiberi S. Necrotizing pneumonia (aetiology, clinical features and management). Curr Opin Pulm Med. 2019 May;25(3):225–32.

2. Akagi Fukushima E, Bhargava A. Unusual case of necrotizing pneumonia caused by Fusobacterium nucleatum complicating influenza a virus infection. *Anaerobe* . 2021 Jun;69:102342.

3. Tsai YF, Ku YH. Necrotizing pneumonia: a rare complication of pneumonia requiring special consideration. Curr Opin Pulm Med.2012 May;18(3):246–52.

4. Gurumurthy B, Das SK, Hiremath R, Shetty S, Hiremath A, Gowda T. Spectrum of atypical pulmonary manifestations of COVID-19 on computed tomography. *Egypt J Radiol Nucl Med* . 2021 Dec; 52(1):72.

5. Hidron A, Quiceno W, Cardeño JJ, Roncancio G, García C. Post-COVID-19 Necrotizing Pneumonia in Patients on Invasive Mechanical Ventilation. *Infect Dis Rep.* 2021 Sep 8;13(3):835–42.

Figure legend

Figure 1. Course of the patient's COVID-19 pneumonia and necrotizing pneumonia due to *Pseudomonas aeruginosa*. (a-c) Chest computed tomography findings on admission showing bilateral ground-glass opacities in the upper lobe, and bilateral consolidation in the lower lobe of both lungs. (d-f) Chest computed tomography findings on hospital day 12 showing multiple thick-walled cavities with patchy shadows and ground-glass opacities detected as new findings, with near-complete resolution of the bilateral ground-grass opacities and consolidation detected on admission.

